EP0565690B1 - Düseneinrichtung zum einleiten von medien in eine schmelze und verfahren zum betrieb dieser düseneinrichtung - Google Patents

Düseneinrichtung zum einleiten von medien in eine schmelze und verfahren zum betrieb dieser düseneinrichtung Download PDF

Info

Publication number
EP0565690B1
EP0565690B1 EP92922854A EP92922854A EP0565690B1 EP 0565690 B1 EP0565690 B1 EP 0565690B1 EP 92922854 A EP92922854 A EP 92922854A EP 92922854 A EP92922854 A EP 92922854A EP 0565690 B1 EP0565690 B1 EP 0565690B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
sleeve
assembly according
nozzle assembly
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92922854A
Other languages
English (en)
French (fr)
Other versions
EP0565690A1 (de
Inventor
William Wells
Georg Raidl
Walter Schmelzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kortec AG
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0565690A1 publication Critical patent/EP0565690A1/de
Application granted granted Critical
Publication of EP0565690B1 publication Critical patent/EP0565690B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • B22D1/005Injection assemblies therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters

Definitions

  • the invention relates to a nozzle device for introducing media into a melt according to the preamble of claim 1. Furthermore, it relates to a method for operating this nozzle device.
  • a nozzle device of this type has become known from DE-C2-38 09 828.
  • the known device for introducing gases and / or solid reaction substances and additives into a metallurgical melting vessel contains a perforated brick inserted into the wall of the melting vessel which axially displaceably receives a flushing brick which has at least one gas duct which can be connected to a gas line.
  • the outlet opening of the gas channel is provided on the circumferential surface of the sink block so that it is only released and the media can be introduced into the melt when the sink block is advanced with its inner end over the annular end face of the perforated block.
  • the nozzle device By pulling back the purging plug, a closure is ensured without the need to apply a continuous gas pressure to the purging system, so that the nozzle device is particularly suitable for transport vessels, such as a pan, in which it is not possible to use the gas purging system over the entire residence time of the melt to supply gas in the vessel.
  • the axial displacement of the flushing stone thus serves the task of being able to use it not only for introducing media but also as a closure member.
  • a nozzle for introducing fresh gas, in particular oxygen, has become known through the wall of a fresh vessel below the bath surface, in which the fresh gas is passed through an inner tube and through a concentric one
  • a protective medium can be passed into the outer tube into the melt and the two tubes are arranged concentrically in a stationary jacket tube.
  • the inner and outer tubes are axially displaceable and interchangeable, each spaced in at least one jacket tube.
  • At least one additional annular space is created for introducing a protective medium, and there is the possibility of changing the inner and outer tubes between two batches or moving them axially to influence the masonry wear in the immediate vicinity of the nozzles.
  • the inner and outer tubes can be advanced and the funnel can then be filled, for example by spraying or tamping.
  • EP-B1-0 182 965 discloses a method for protecting a nozzle from at least three concentric tubes, through which a central channel and at least two ring channels are formed, in which an oxygen-containing gas and an annular channel pass through the central channel a mist of atomized water is blown in as the cooling fluid, the atomization of the water being carried out by means of a carrier gas in a nozzle head on the inlet side of the nozzle.
  • This cooling fluid has proven to be particularly effective in increasing the service life of the nozzle.
  • GB-A-2 140 142 discloses a gas purging arrangement with a metallic or ceramic tube which is axially displaceable within a perforated brick.
  • the tube can consist of several tube sections screwed or otherwise connected and contain gas-permeable inserts which are firmly inserted into the tube and are axially displaceable together with it.
  • the outer surface of the tube is preferably covered with a refractory lubricant layer, for example made of graphite.
  • the metallic or ceramic tube including the inserts, is pushed into the interior of the furnace, refractory mass 19 stamped and then put the nozzle device back into operation.
  • the uppermost tip of the nozzle which is closed by solidified metal, is washed away when the new melt is introduced and the nozzle arrangement is brought into its functional state.
  • US-A-3,829,073 describes a nozzle device with two spaced apart concentric tubes, the outer of which is embedded in a filling material made of refractory material, which is stamped between the outer tube and a tubular casing.
  • a filling material made of refractory material, which is stamped between the outer tube and a tubular casing.
  • the ramming mass is subjected to an overpressure from the outside.
  • GB-A-1 152 330 discloses a nozzle device with two concentric steel tubes spaced apart.
  • a reactive gas, such as oxygen, is optionally mixed with an inert gas through the central channel and an inert gas is introduced through the ring channel between the two concentric tubes to protect the nozzle tip.
  • the outer of the two concentric pipes is cemented into a perforated brick using a filling material made of refractory material.
  • the gas flows introduced through the nozzle are switched off.
  • the metal melt penetrating into the nozzle tip solidifies inside the nozzle and the latter is replaced by a new nozzle after the liquid metal has been tapped from the vessel.
  • US-A-4,449,701 describes a non-displaceable nozzle device projecting over the inner wall of the furnace, for blowing in a non-oxidizing gas, from two concentrically spaced pipes, the inner pipe being filled with refractory material and through the annular gap between the inside - and the Outer tube gases are introduced.
  • the distance between the inner and the outer tube is determined by suitable helically arranged spacers.
  • the object of the invention is to increase the service life in a nozzle device for introducing media into a melt, to shorten the downtimes and to simplify the maintenance work. Furthermore, a method for operating this nozzle device is to be specified.
  • the nozzle device according to the invention is characterized by the features of claim 1, the method according to the invention by the features of claim 11.
  • both the consuming tip of the nozzle tubes and the refractory material surrounding this tip are replaced either continuously or periodically by re-inserting the sleeve containing the metallic nozzle tube or the metallic nozzle tubes. Since the nozzle is intended for use below the bath level of the melt, in addition to the axial displaceability of the sleeve, it must also be ensured that no melt can penetrate into the annular gap between the surfaces to be displaced relative to one another. This is made possible by covering the sleeve with a thermally resilient lubricant layer, providing an annular gap between the outside of the sleeve and the inside of the perforated brick and sealing it with a cement layer.
  • the sleeve protrudes a substantial amount on the outside of the perforated brick.
  • Pushing the sleeve receiving the metallic nozzle tube together with the nozzle tube has problems, namely damage to the sleeve, because of the different bending elasticity of metal and ceramic when the sleeve is subjected to buckling loads. It has been shown that the difficulties can be overcome if the metallic nozzle tube is not inserted firmly into the bore of the sleeve but is axially displaceable.
  • the outside of the nozzle tube adjacent to the inside of the sleeve is covered with a thermally resilient lubricant layer, an annular gap is provided between this outside of the nozzle tube and the inside of the sleeve and this is sealed with a cement layer.
  • the cement layer for sealing the respective annular gap after the sleeve has been introduced into the perforated brick or the nozzle tube pressed into the sleeve are provided in the perforated brick or in the sleeve approximately in the middle of their axial length.
  • the service life of the nozzle device can already be significantly increased by the continuous or periodic replacement of the nozzle tip, a further increase in the service life is possible if, in addition to the treatment media, such as oxygen, coal dust etc., a cooling fluid is also introduced. In this case, the lowering of the temperature along the sliding surfaces between the perforated brick and the sleeve or sleeve and the outer nozzle tube also maintains the mutual displaceability for longer.
  • the treatment media such as oxygen, coal dust etc.
  • the cooling fluid can be introduced, for example blown in, together with the treatment agent.
  • a nozzle device in which at least two concentric, metallic nozzle pipes are inserted into the sleeve, which form a central channel and at least one ring channel surrounding the central channel, the treatment agent and then through a channel another channel the cooling fluid is introduced.
  • a particularly effective cooling is achieved if a mist of atomized water is supplied as cooling fluid to a channel, in particular the outer ring channel.
  • the sleeve protrude from the perforated brick into the melt by a certain protrusion, for example in the order of magnitude of 100 mm.
  • the desired projection can be maintained by pushing the sleeve.
  • the nozzle device can be used with different melts, in particular such as metal melts, iron melts and lead melts. Due to its dimensions, it can also be adapted to the media to be introduced, which can be gaseous, liquid, pasty or dusty.
  • the nozzle device shown in FIGS. 1 and 2 contains a perforated brick 3 made of refractory material that can be inserted into the wall 1 of a vessel 2.
  • the wall of the vessel can be the bottom wall or the side wall of the vessel.
  • the perforated brick is to be used in such a way that the medium introduced through the nozzle device is fed to the melt below the bath level.
  • the perforated brick 3 axially slidably receives a sleeve 4 made of a refractory mass, which has an axial bore 5.
  • a sleeve 4 made of a refractory mass, which has an axial bore 5.
  • two concentric metallic nozzle tubes 6 and 7 are inserted at a distance from one another, which form a central channel 8 and an annular channel 9 surrounding the central channel. These channels are connected at the outer end of the nozzle tubes with connections 10 and 11 for the media to be introduced.
  • the sleeve 4 including the nozzle tubes 6 and 7, with its nozzle tip pointing into the interior of the vessel, that is to say with its inner end, protrudes beyond the inner end face 12 of the perforated brick 3, extends through the perforated brick 3 and stands with its outer End by a substantial amount, which in the case shown corresponds approximately to the length of the perforated brick from the outer end face 13 of the perforated brick 3.
  • the outer end of the sleeve 4 is provided with a first pressure plate 14 which is guided by guide rods 15 fastened to the housing wall and running parallel to the sleeve 4.
  • 16 with a flange is designated which carries the guide rods 15 and on the outer steel jacket 17 of the furnace vessel 2 is attached.
  • the flange 16 also carries a sealing device 18.
  • the outer ends of the concentric nozzle tubes 6 and 7 are fastened in a nozzle head 19, which has a second pressure plate 20 on its outer end face, which is non-positively connected to the first pressure plate 14. This second pressure plate 20 is also guided by the guide rods 15.
  • the sleeve 4 is coated with a lubricant layer 21 and an annular gap between the outside of the sleeve 4 and the inside of the perforated brick 3 is sealed with a cement layer 22.
  • the lubricant layer 21 is applied before the sleeve 4 is inserted into the perforated brick 3.
  • This can be, for example, a cover layer made of sliding material, such as a molybdenum compound, firmly attached to the sleeve 4.
  • the sliding layer can also be applied to the sleeve 4 in the form of a film immediately before it is inserted.
  • a radial bore 23 is provided in the perforated brick 3, through which the cement layer is pressed.
  • the thickness of the annular gap that is to be filled by the sealing cement layer must be chosen so that the layer pressed in via the radial bore 23 can penetrate to the end faces 12 and 13 of the perforated brick. With the usual dimensions, a value of 0.5 to 1 mm has proven to be expedient as the thickness for the annular gap to be filled through the cement layer.
  • the inner nozzle tube 7 is held at a distance within the outer nozzle tube 6 by spacers, not shown, to form the annular channel 9. It must be ensured that the spacers do not significantly impair the media flow through the ring channel 9.
  • the outer tube 6 is inserted into the sleeve 4 so that, on the one hand, there is a tight seal between the outside of the outer tube and the inside of the sleeve, but on the other hand slight longitudinal displacements between the sleeve and the outer tube are possible, i.e. the transmission of axial forces at the interface between the sleeve and the outer tube is largely avoided.
  • a lubricant layer 25 is applied to the outer tube 6 - this can be a solid coating applied during the manufacture of the tube or a coating applied before the tube is inserted - and it becomes at least after the tubes 6 and 7 have been inserted a provided in the sleeve 4 radial bore 26, a cement layer 27 for sealing an annular gap between the outer tube 6 and sleeve 4 is pressed.
  • a magnesite-phosphate compound is preferably used for the treatment of an iron melt
  • a magnesite-chromium compound is preferably used for the treatment of a lead melt
  • a magnesite-silicon compound is preferably used for the treatment of a glass melt.
  • a line for the supply of oxygen gas or pulverized coal suspended in a carrier gas is connected to the connection 10 which is connected to the central channel 8 of the inner nozzle tube 7 and a line for the supply of a cooling fluid, preferably a mist of atomized water, to the connection 11 connected to the ring channel 9.
  • a cooling fluid preferably a mist of atomized water
  • the water can also be atomized by means of an atomizing device provided in the nozzle head 19, as described, for example, in EP-182 965.
  • the nozzle device shown only partially in FIGS. 3 and 4 contains a conical perforated brick 3 and only one nozzle tube 6.
  • the same reference symbols have been chosen. Reference is made to the description of these parts relating to the first exemplary embodiment.
  • the nozzle device according to the second exemplary embodiment has been used for the oxidation of lead ores and for the reduction of lead oxide slag in order to form metallic lead.
  • the treatment process is divided into two sections, namely an oxidation section and a reduction section.
  • the oxidation section produces slags with a high iron oxide and lead oxide content.
  • the working temperature is between 1000 and 1100 ° C. This is the section with the higher nozzle wear.
  • the slag In the reduction section there are operating temperatures between 1200 and 1300 ° C, the slag has a low lead oxide content, namely about 2% and contains about 20% iron oxide.
  • chrome magnesite is used both for the consecutive perforated brick 3 and for the sleeve 4.
  • the treatment agent is introduced through the central channel of the nozzle tube 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Nozzles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Continuous Casting (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Glanulating (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Blast Furnaces (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Manufacture Of Iron (AREA)

Description

  • Die Erfindung betrifft eine Düseneinrichtung zum Einleiten von Medien in eine Schmelze gemäß dem Oberbegriff des Patentanspruchs 1. Ferner bezieht sie sich auf ein Verfahren zum Betrieb dieser Düseneinrichtung.
  • Durch die DE-C2-38 09 828 ist eine Düseneinrichtung dieser Art bekannt geworden. Die bekannte Einrichtung zum Einbringen von Gasen und/oder festen Reaktion- und Zusatzstoffen in ein metallurgisches Schmelzgefäß enthält einen in die Wandung des Schmelzgefässes eingesetzten Lochstein der axial verschiebbar einen Spülstein aufnimmt welcher wenigstens einen an eine Gasleitung anschließbaren Gaskanal aufweist. Die Auslaßöffnung des Gaskanals ist an der Umfangsfläche des Spülsteins vorgesehen so daß diese nur freigegeben wird und die Medien in die Schmelze eingeleitet werden können wenn der Spülstein mit seinem inneren Ende über die ringförmige Stirnseite des Lochsteins vorgeschoben ist. Durch Zurückziehen des Spülsteins ist ohne die Notwendigkeit einen kontinuierlichen Gasdruck am Spülsystem anzulegen ein Verschluß gewährleistet, so daß sich die Düseneinrichtung in besonderer Weise für Transportgefäße, wie eine Pfanne, eignet, bei denen es nicht möglich ist, das Gasspülsystem über die gesamte Verweilzeit der Schmelze im Gefäß mit Gas zu versorgen. Die axiale Verschiebung des Spülsteins dient somit der Aufgabe, diesen nicht nur zum Einleiten von Medien sondern auch als Verschlußorgan benutzen zu können.
  • Durch die DE-C-23 24 0 86 ist eine Düse zum Einleiten von Frischgas, insbesondere Sauerstoff, durch die Wandung eines Frischgefäßes unterhalb der Badoberfläche bekannt geworden, bei der durch ein Innenrohr das Frischgas und durch ein konzentrisches Außenrohr ein Schutzmedium in die Schmelze geleitet werden und die beiden Rohre konzentrisch in einem ortsfesten Mantelrohr angeordnet sind. Das Innen- und das Außenrohr sind axial verschiebbar und auswechselbar jeweils mit Abstand in mindestens einem Mantelrohr angeordnet.
  • Auf diese Weise entsteht mindestens ein zusätzlicher Ringraum zum Einleiten eines Schutzmediums und es ergibt sich die Möglichkeit das Innen- und das Außenrohr zwischen zwei Chargen zu wechseln oder axial zu verschieben, um den Mauerwerksverschleiß in unmittelbarer Umgebung der Düsen zu beeinflussen. So können im Falle von einer durch Verschleiß gebildeten Trichterbildung im Bereich der Austrittsöffnung der Düseneinrichtung das Innen- und Außenrohr vorgeschoben und dann der Trichter beispielsweise durch Spritzen oder Stampfen aufgefüllt werden.
  • Durch die EP-B1-0 182 965 ist ein Verfahren zum Schutz einer Düse aus wenigstens drei konzentrischen Rohren, durch die ein zentraler Kanal und wenigstens zwei Ringkanäle gebildet werden, bekannt geworden, bei dem durch den zentralen Kanal ein sauerstoffhaltiges Gas und durch einen Ringkanal als Kühlfluid ein Nebel aus zerstäubten Wasser eingeblasen wird, wobei die Zerstäubung des Wasser mittels eines Trägergases in einem Düsenkopf an der Eintrittsseite der Düse erfolgt. Dieses Kühlfluid hat sich als besonders wirksam im Hinblick auf eine Erhöhung der Standzeit der Düse erwiesen.
  • Die GB-A-2 140 142 offenbart eine Gasspülanordnung mit einem innerhalb eines Lochsteins axial verschebbaren, metallischen oder keramischen Rohr. Das Rohr kann aus mehreren zusammengeschraubten oder anderweitig verbundenen Rohrabschnitten bestehen und gasdurchlässige Einsätze enthalten, die fest in das Rohr eingefügt und zusammen mit diesem axial verschiebbar sind. Die Außenfläche des Rohres ist vorzugsweise mit einer feuerfesten Gleitmittelschicht, beispielsweise aus Graphit, überzogen.
  • Wenn der Gefäßboden so weit abgetragen ist, daß er separiert werden muß, wird das metallische bzw. keramische Rohr einschließlich der Einsätze in das Ofeninnere vorgeschoben, feuerfeste Masse 19 eingestampft und danach die Düseneinrichtung wieder in Betrieb genommen. Hierbei wird die oberste Spitze der Düse, die durch erstarrtes Metall verschlossen ist, beim Einbringen der neuen Schmelze weggespült und die Düsenanordnung in ihren funktionsfähigen Zustand versetzt.
  • Die US-A-3,829,073 beschreibt eine Düseneinrichtung mit zwei im Abstand zueinander angeordneten konzentrischen Rohren, von denen das äußere in eine Füllmasse aus feuerfestem Material eingebettet ist, das zwischen das äußere Rohr und einer rohrförmigen Umhüllung eingestampft ist. Um zu verhindern, daß die als Kühlgas durch den Ringspalt zwischen den beiden Rohren der Düseneinrichtung eingeleiteten Kohlenwasserstoffe unverbrannt durch die das äußere Rohr umhüllende Stampfmasse nach außen dringen und sich außerhalb des Ofengefäßes entzünden können, wird die Stampfmasse von außen mit einem Überdruck beaufschlagt.
  • Die GB-A-1 152 330 offenbart eine Düseneinrichtung mit zwei im Abstand voneinander angeordneten konzentrischen Stahlrohren. Durch den zentralen Kanal wird ein reaktives Gas, wie Sauerstoff, gegebenenfalls mit einem Inertgas vermischt und durch den Ringkanal zwischen den beiden konzentrischen Rohren ein Inertgas zum Schutz der Düsenspitze eingeleitet. Das äußere der beiden konzentrischen Rohre ist mittels einer Füllmasse aus feuerfestem Material in einen Lochstein einzementiert.
  • Nach Beendigung des Frischprozesses werden die durch die Düse eingeleiteten Gasströme abgeschaltet. Die in die Düsenspitze eindringende Metallschmelze verfestist sich innerhalb der Düse und letztere wird nach dem Abstechen des flüssigen Metalls aus dem Gefäß durch eine neue Düse ersetzt.
  • Die US-A-4,449,701 beschreibt eine nicht verschiebbare, über die Innenwand des Ofens vorstehende Düseneinrichtung, zum Einblasen eines nicht oxidierenden Gases, aus zwei konzentrisch im Abstand zueinander angeordneten Rohren, wobei das Innenrohr mit feuerfestem Material gefüllt ist und durch den Ringspalt zwischen dem Innen- und dem Außenrohr Gase eingeleitet werden. Der Abstand zwischen dem Innen- und dem Außenrohr ist durch geeignete wendelförmig angeordnete Abstandhalter festgelegt.
  • Aufgabe der Erfindung ist es bei einer Düseneinrichtung zum Einleiten von Medien in eine Schmelze die Standzeit zu erhöhen, die Ausfallzeiten zu verkürzen und die Wartungsarbeiten zu vereinfachen. Ferner soll ein Verfahren zum Betrieb dieser Düseneinrichtung angegeben werden.
  • Die Düseneinrichtung nach der Erfindung ist durch die Merkmale des Anspruches 1 gekennzeichnet, das erfindungsgemäße Verfahren durch die Merkmale des Anspruches 11.
  • Bei der Düseneinrichtung nach der Erfindung wird sowohl die sich verbrauchende Spitze der Düsenrohre als auch das diese Spitze umgebende feuerfeste Material entweder kontinuierlich oder periodisch durch Nachschieben der das metallische Düsenrohr oder die metallischen Düsenrohre enthaltenden Hülse ersetzt. Da die Düse für einen Einsatz unterhalb des Badspiegels der Schmelze vorgesehen ist muß neben der axialen Verschiebbarkeit der Hülse auch gewährleistet sein, daß in den Ringspalt zwischen den relativ zueinander zu verschiebenden Flächen keine Schmelze eindringen kann. Dies wird dadurch ermöglicht, daß die Hülse mit einer thermisch belastbaren Gleitmittelschicht überzogen, zwischen der Außenseite der Hülse und der Innenseite des Lochsteins ein Ringspalt vorgesehen und dieser mit einer Zementschicht abgedichtet wird. Auf diese Weise läßt sich bei einer axial verschiebbaren Hülse eine dauerhafte Abdichtung zwischen den Gleitflächen selbst für eine dünnflüssige Schmelze, wie eine Bleischmelze bei Temperaturen von etwa 1200°C, erzielen. Da die Düsenspitze je nach Einsatzgebiet Temperaturen zwischen 1000 und 2000°C ausgesetzt ist, ist es wesentlich daß nicht nur die den Ringspalt abdichtende Zementschicht sondern auch die die axiale Verschiebung ermöglichende Gleitmittelschicht thermisch belastbar ist. Außerdem soll das Material der Gleitmittelschicht nur sehr geringe Benetzungstendenz gegenüber der angrenzenden Zementschicht aufweisen. Bei einer Zementschicht auf Magnesit- oder Magnesit-Chrom-Basis haben sich als Material für die Gleitmittelschicht Graphit und Molybdänverbindungen als besonders vorteilhaft erwiesen.
  • Zu Beginn des Einsatzes der Düseneinrichtung steht die Hülse an der Außenseite des Lochsteins um ein wesentliches Stück vor. Das Nachschieben der das metallische Düsenrohr aufnehmenden Hülse zusammen mit dem Düsenrohr hat wegen der unterschiedlichen Biegeelastizität von Metall und Keramik bei der durch das Einschieben der Hülse entstehenden Knickbelastung zu Problemen, nämlich zu einer Beschädigung der Hülse geführt. Es hat sich gezeigt, daß die Schwierigkeiten überwunden werden können, wenn das metallische Düsenrohr nicht fest in die Bohrung der Hülse eingesetzt wird sondern axial verschiebbar. Zu diesem Zweck wird die der Innenseite der Hülse benachbarte Außenseite des Düsenrohres mit einer thermisch belastbaren Gleitmittelschicht überzogen, ein Ringspalt zwischen dieser Außenseite des Düsenrohres und der Innenseite der Hülse vorgesehen und dieser mit einer Zementschicht abgedichtet. Auf diese Weise wird die Übertragung axialer Kräfte zwischen der Außenseite des Düsenrohres und der Innenseite der Hülse reduziert und die Gefahr von Beschädigungen der Hülse beim Nachschieben vermindert.
  • Während die Gleitmittelschichten auf der Außenfläche der Hülse bzw. auf der Außenfläche des äußeren Düsenrohres jeweils vor dem Einsetzen entweder in den Lochstein oder in die Hülse aufgebracht werden wird die Zementschicht zum Abdichten des jeweiligen Ringspalts nach dem Einbringen der Hülse in den Lochstein bzw. des Düsenrohres in die Hülse eingepreßt. Zu diesem Zweck sind im Lochstein bzw. in der Hülse etwa in der Mitte ihrer axialen Länge radiale Bohrungen zum Einpressen von Zement vorgesehen.
  • Obwohl sich durch das kontinuierliche oder periodische Ersetzen der Düsenspitze die Standzeit der Düseneinrichtung bereits wesentlich erhöhen läßt ist eine weitere Steigerung der Standzeit möglich, wenn neben den Behandlungsmedien, wie Sauerstoff, Kohlenstaub etc., auch ein Kühlfluid eingeleitet wird. In diesem Fall wird durch die Temperaturerniedrigung längs der Gleitflächen zwischen Lochstein und Hülse bzw. Hülse und äußerem Düsenrohr auch die gegenseitige Verschiebbarkeit länger aufrecht erhalten.
  • Das Kühlfluid kann bei einer Düseneinrichtung mit einem in die Hülse eingesetzten Düsenrohr zusammen mit dem Behandlungsmittel eingeleitet, beispielsweise eingeblasen, werden. Besonders vorteilhaft ist es jedoch, insbesondere weil es eine unabhängige Steuerung der Kühlung ermöglicht, wenn eine Düseneinrichtung verwendet wird, bei der in die Hülse wenigstens zwei konzentrische, metallische Düsenrohre eingesetzt sind, die einen zentralen Kanal und wenigstens einen, den zentralen Kanal umgebenden Ringkanal bilden, wobei dann durch einen Kanal das Behandlungsmittel und durch einen anderen Kanal das Kühlfluid eingeleitet wird. Eine besonders wirksame Kühlung wird erzielt, wenn einem Kanal, insbesondere dem äußeren Ringkanal, ein Nebel aus zerstäubten Wasser als Kühlfluid zugeführt wird. Durch Verdampfen der im Sprühnebel enthaltenen kleinen Wassertröpfchen innerhalb des Kanals und durch Dissoziation beim Einleiten in die Schmelze wird sowohl auf der gesamten thermisch beanspruchten Länge der Hülse als auch an der Düsenspitze eine intensive Kühlung erzielt, die in Verbindung mit dem Nachschieben der Hülse zu unerwartet hohen Standzeiten führt.
  • Um die Beanspruchung der dem Gefäßinneren zugewandten Stirnseite des Lochsteines zu vermindern ist es zweckmäßig die Hülse stets um einen bestimmten Überstand, beispielsweise in der Größenordnung von 100 mm, aus dem Lochstein in die Schmelze vorstehen zu lassen. Der gewünschte Überstand kann durch Nachschieben der Hülse aufrecht erhalten werden.
  • Die Düseneinrichtung kann bei unterschiedlichen Schmelzen, insbesondere wie Metallschmelzen, Eisenschmelzen und Bleischmelzen, eingesetzt werden. Sie ist durch ihre Abmessungen auch den jeweils einzuleitenden Medien, die gasförmig, flüssig, pastenförmig oder staubförmig sein können, anpaßbar.
  • Die Erfindung wird durch zwei Ausführungsbeispiele anhand von vier Figuren näher erläutert. Es zeigen:
  • Fig. 1
    im Längsschnitt eine erste Ausführungsform einer Düseneinrichtung,
    Fig. 2
    in vergrößerter Darstellung den Schnitt II-II von Fig. 1,
    Fig. 3
    im Längsschnitt einen Teil einer weiteren Ausführungsform einer Düseneinrichtung und
    Fig. 4
    die rechte Seitenansicht der Düseneinrichtung nach Fig. 3.
  • Die in den Figuren 1 und 2 dargestellte Düseneinrichtung enthält einen in die Wandung 1 eines Gefäßes 2 einsetzbaren Lochstein 3 aus feuerfestem Material. Bei der Wandung des Gefäßes kann es sich um die Bodenwandung oder die Seitenwandung des Gefäßes handeln. Der Lochstein soll so eingesetzt werden, daß das durch die Düseneinrichtung eingeleitete Medium unterhalb des Badspiegels der Schmelze dieser zugeführt wird.
  • Der Lochstein 3 nimmt axial verschiebbar eine Hülse 4 aus einer feuerfesten Masse auf, die eine axiale Bohrung 5 aufweist. In diese sind zwei konzentrische metallische Düsenrohre 6 und 7 mit Abstand voneinander eingesetzt, die einen zentralen Kanal 8 und einen den zentralen Kanal umgebenden Ringkanal 9 bilden. Diese Kanäle sind am äußeren Ende der Düsenrohre mit Anschlüssen 10 und 11 für die einzuleitenden Medien verbunden. Die Hülse 4 steht einschließlich der Düsenrohre 6 und 7 mit ihrer in das Gefäßinnere weisenden Düsenspitze, das heißt mit ihrem inneren Ende, um einen Überstand a über die innere Stirnseite 12 des Lochsteins 3 vor, erstreckt sich durch den Lochstein 3 und steht mit ihrem äußeren Ende um ein wesentlich Maß, das im dargestellten Fall etwa der Länge des Lochsteins entspricht aus der äußeren Stirnseite 13 des Lochsteins 3 vor. Das äußere Ende der Hülse 4 ist mit einer ersten Druckplatte 14 versehen, die durch an der Gehäusewand befestigte, parallel zur Hülse 4 verlaufende Führungsstäbe 15 geführt ist. Mit 16 ist ein Flansch bezeichnet der die Führungsstäbe 15 trägt und am äußeren Stahlmantel 17 des Ofengefäßes 2 befestigt ist. Der Flansch 16 trägt außerdem eine Dichtungsvorrichtung 18.
  • Die äußeren Enden der konzentrischen Düsenrohre 6 und 7 sind in einem Düsenkopf 19 befestigt, der an seiner äußeren Stirnseite eine zweite Druckplatte 20 aufweist, die kraftschlüssig mit der ersten Druckplatte 14 in Verbindung steht. Auch diese zweite Druckplatte 20 wird durch die Führungsstäbe 15 geführt.
  • Wie die vergrößerte Darstellung gemäß Fig. 2 erkennen läßt ist die Hülse 4 mit einer Gleitmittelschicht 21 überzogen und ein Ringspalt zwischen der Außenseite der Hülse 4 und der Innenseite des Lochsteins 3 mit einer Zementschicht 22 abgedichtet. Die Gleitmittelschicht 21 wird vor dem Einsetzen der Hülse 4 in den Lochstein 3 aufgebracht. Es kann sich hier beispielsweise um eine auf der Hülse 4 fest aufgebrachte Deckschicht aus gleitendem Material, wie einer Molybdänverbindung, handeln. Die Gleitschicht kann auch in Form eines Films unmittelbar vor dem Einführen der Hülse 4 auf diese aufgetragen werden. Zum Einbringen der dichtenden Zementschicht 22 ist im Lochstein 3 eine radiale Bohrung 23 vorgesehen, durch die die Zementschicht eingepreßt wird. Die Dicke des Ringspalts der durch die abdichtende Zementschicht ausgefüllt werden soll, muß so gewählt werden, daß die über die radiale Bohrung 23 eingepreßte Schicht bis zu den Stirnseiten 12 und 13 des Lochsteins vordringen kann. Als Dicke für den durch die Zementschicht auszufüllenden Ringspalt hat sich bei den üblichen Abmessungen ein Wert von 0,5 bis 1 mm als zweckmäßig erwiesen.
  • Das innere Düsenrohr 7 wird durch nicht dargestellte Abstandhalter unter Bildung des Ringkanals 9 mit Abstand innerhalb des äußeren Düsenrohres 6 gehalten. Hierbei muß gewährleistet sein, daß die Abstandhalter den Medienfluß durch den Ringkanal 9 nicht wesentlich beeinträchtigen.
  • Das äußere Rohr 6 ist in die Hülse 4 so eingesetzt daß einerseits zwischen der Außenseite des äußeren Rohrs und der Innenseite der Hülse ein dichter Abschluß besteht, andererseits aber geringfügige Längsverschiebungen zwischen Hülse und äußerem Rohr möglich sind, das heißt die Übertragung axialer Kräfte an der Grenzfläche zwischen Hülse und äußerem Rohr weitgehend vermieden wird. Zu diesem Zweck ist auf das äußere Rohr 6 eine Gleitmittelschicht 25 aufgebracht - es kann dies ein bei der Herstellung des Rohres aufgebrachter fester Überzug oder ein vor dem Einsetzen des Rohres aufgetragener Überzug sein - und es wird nach dem Einsetzen der Rohre 6 und 7 über wenigstens eine in der Hülse 4 vorgesehene radiale Bohrung 26 eine Zementschicht 27 zum Abdichten eines Ringspalts zwischen äußerem Rohr 6 und Hülse 4 eingepreßt.
  • Als Zement dient für eine Behandlung einer Eisenschmelze vorzugsweise eine Magnesit-Phosphat-Verbindung, für die Behandlung einer Bleischmelze vorzugsweise eine Magnesit-Chrom-Verbindung und für die Behandlung einer Glasschmelze vorzugsweise eine Magnesit-Silicium-Verbindung.
  • Beim Einsatz der Düseneinrichtung zum Unterbadeinblasen eines Behandlungsmittels, wie Sauerstoff oder Kohlenstaub, in ein Stahlbad wird an den Anschluß 10 der mit dem zentralen Kanal 8 des inneren Düsenrohres 7 verbunden, eine Leitung für die Zufuhr von Sauerstoffgas oder pulverisierter Kohle suspendiert in einem Trägergas angeschlossen und an den mit dem Ringkanal 9 verbundenen Anschluß 11 eine Leitung für die Zufuhr eines Kühlfluids, vorzugsweise eines Nebels aus zerstäubtem Wasser. Die Zerstäubung des Wasser kann auch durch eine im Düsenkopf 19 vorhandene Zerstäubungseinrichtung, wie sie beispielsweise in der EP-182 965 beschrieben ist, erfolgen.
  • Wenn durch die thermische und mechanische Beanspruchung der in die Schmelze ragenden Düsenspitze diese um ein Stück zurückgebrannt ist, wird durch einen axialen Druck auf die zweite Druckplatte 20 (siehe Pfeil 29) und infolge der kraftschlüssigen Verbindung zwischen der ersten und der zweiten Druckplatte 14 und 20 die Hülse 4 zusammen mit den Düsenrohren 6 und 7 um ein entsprechendes Stück nach innen geschoben und damit die verbrauchte Düsenspitze ersetzt. Dies kann in bestimmten Zeitabständen erfolgen, wodurch gegenüber einer Düseneinrichtung ohne diese Verschiebemöglichkeit die Lebensdauer wesentlich erhöht wird. Aufgrund der Kühlung der Hülse und des die Hülse umgebenden Lochsteins durch das durch den äußeren Ringkanal 9 geleitete Kühlfluids auf der gesamten Länge der Hülse wird nicht nur deren Verschiebbarkeit über einen längeren Zeitraum gewährleistet, sondern auch die Lebensdauer der Düseneinrichtung weiter erhöht. Es können gegenüber bekannten Düseneinrichtungen wesentlich erhöhte Standzeiten erzielt werden wobei der Ersatz des verbrauchten feuerfesten Materials an der thermisch und mechanisch am meisten beanspruchten Düsenspitze durch Nachschieben der Hülse 4 ohne Unterbrechung des Behandlungsverfahrens der Schmelze möglich ist.
  • Die in den Figuren 3 und 4 nur teilweise dargestellte Düseneinrichtung enthält einen konisch ausgebildeten Lochstein 3 und nur ein Düsenrohr 6. Für der ersten Düseneinrichtung nach den Figuren 1 und 2 entsprechende Teile sind gleiche Bezugs$ zeichen gewählt worden. Auf die Beschreibung dieser Teile zum ersten Ausführungsbeispiel wird verwiesen.
  • Die Düseneinrichtung gemäß dem zweiten Ausführungsbeispiel ist eingesetzt worden, zur Oxidation von Bleierzen und zur Reduktion von Bleioxidschlacke um metallisches Blei zu bilden. Der Behandlungsprozess ist in zwei Abschnitt unterteilt, nämlich einen Oxidationsabschnitt und einen Reduktionsabschnitt.
  • Beim Oxidationsabschnitt entstehen Schlacken mit hohem Eisenoxid- und Bleioxidanteil. Die Arbeitstemperatur liegt zwischen 1000 und 1100°C. Dies ist der Abschnitt mit dem stärkeren Düsenverschleiß.
  • Im Reduktionsabschnitt liegen Betriebstemperaturen zwischen 1200 und 1300°C vor, die Schlacke hat einen niedrigen Bleioxidanteil, nämlich etwa 2% und enthält etwa 20% Eisenoxid.
  • Es hat sich gezeigt, daß Chrom-Magnesit-Steine eine größere Standzeit haben, als Magnesitsteine. Aus diesem Grund wird Chrom-Magnesit sowohl für den konsichen Lochstein 3 als auch für die Hülse 4 verwendet. Das Behandlungsmittel wird jeweils durch den zentralen Kanal des Düsenrohres 6 eingeleitet.

Claims (14)

  1. Düseneinrichtung zum Einleiten von Medien in eine Schmelze
    mit einem in die Wandung (1) eines Gefäßes (2) einsetzbaren Lochstein (3) aus feuerfestem Material,
    der axial verschiebbar einen zylindrischen Körper aus einer feuerfesten Masse mit einer axialen Bohrung (5) zum Einleiten des Gases bzw. des Behandlungsmittels aufnimmt,
    welcher, bezogen auf die im eingebauten Zustand in das Gefäßinnere weisende Düsenspitze mit seinem entgegengesetzten äußeren Ende aus dem Lochstein (3) vorsteht, und an diesem Ende mit einer ersten Druckplatte (14) zum axialen Verschieben des
    Körpers versehen ist,
    mit der Maßgabe,
    daß der zylindrische Körper als Hülse (4) ausgebildet ist, in die wenigstens zwei konzentrische, metallische Düsenrohre (6, 7) eingesetzt sind, die einen zentralen Kanal (8) und wenigstens einen, den zentralen Kanal umgebenden Ringkanal (9) bilden, und daß diese Kanäle am äußeren Ende der Düsenrohre mit Anschlüssen (10, 11) für die einzuleitenden Medien verbunden sind.
  2. Düseneinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Hülse (4) mit einer thermisch belastbaren Gleitmittelschicht (21) überzogen und ein Ringspalt zwischen der Außenseite der Hülse (4) und der Innenseite des Lochsteins (3) mit einer Zementschicht (22) abgedichtet ist.
  3. Düseneinrichtung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die Hülse (4) auf ihrer Außenseite axial verlaufende Längsrippen aufweist, die über den Umfang der Hülse verteilt sind.
  4. Düseneinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die der Innenseite der Hülse (4) benachbarte Außenseite des Düsenrohres (6) mit einer thermisch belastbaren Gleitmittelschicht (25) überzogen und ein Ringspa!t zwischen dieser Außenseite des Düsenrohres (6) und der Innenseite der Hülse (4) mit einer Zementschicht (27) abgedichtet ist.
  5. Düseneinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Lochstein (3) und/oder die Hülse (4) etwa in der Mitte seiner bzw. ihrer axialen Länge eine radiale Bohrung (23 bzw. 26) zum Einpressen von Zement aufweist bzw. aufweisen.
  6. Düseneinrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das äußere Ende des Düsenrohres (6) bzw. die äußeren Enden der Düsenrohre (6, 7) in einem Düsenkopf (19) befestigt ist bzw. sind, der an der äußeren Stirnseite eine zweite Druckplatte (20) aufweist, die kraftschlüssig mit der ersten Druckplatte (14) in Verbindung steht.
  7. Düseneinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Druckplatte(n) (14, 20) durch an der Gehäusewand befestigte, parallel zur Hülse verlaufende Führungsstäbe (15) geführt ist bzw. sind.
  8. Düseneinrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das feuerfeste Material des Lochsteins (3) und/oder der Hülse (4) überwiegend aus Magnesit oder Chrommagnesit besteht.
  9. Düseneinrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Gleitmittelschicht (21, 25) überwiegend aus einer Graphitpaste, einer Molybdänverbindung, Speckstein oder Talg besteht.
  10. Düseneinrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Zementschicht (22, 27) überwiegend aus einer Magnesit-Phosphat- einer Magnesit-Chrom- oder einer Magnesit-Silicium-Verbindung besteht.
  11. Verfahren zum Betrieb einer Düseneinrichtung nach einem der Ansprüche 1 bis 10, welche in die Wandung (1) eines eine Schmelze aufnehmenden Gefäßes (2) eingesetzt ist und durch die Medien unterhalb des Badspiegels der Schmelze eingeleitet werden, dadurch gekennzeichnet, daß kontinuierlich oder in zeitlichen Abständen durch Nachschieben der Hülse (4) zusammen mit dem oder den Düsenrohren (6; 7) in das Gefäßinnere die verbrauchte Düsenspitze ersetzt wird.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß durch Nachschieben der Hülse stets ein Überstand (a) über die innere Stirnseite (12) des Lochsteins (3) aufrechterhalten wird.
  13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß durch einen der Kanäle (9), insbesondere den äußeren Ringkanal, ein Kühlfluid eingeleitet wird.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß dem Kanal (9) als Kühlfluid ein Nebel aus zerstäubtem Wasser zugeführt wird.
EP92922854A 1991-11-06 1992-11-03 Düseneinrichtung zum einleiten von medien in eine schmelze und verfahren zum betrieb dieser düseneinrichtung Expired - Lifetime EP0565690B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4136552 1991-11-06
DE4136552A DE4136552A1 (de) 1991-11-06 1991-11-06 Dueseneinrichtung zum einleiten von medien in eine schmelze und verfahren zum betrieb dieser dueseneinrichtung
PCT/EP1992/002520 WO1993009255A1 (de) 1991-11-06 1992-11-03 Düseneinrichtung zum einleiten von medien in eine schmelze und verfahren zum betrieb dieser düseneinrichtung

Publications (2)

Publication Number Publication Date
EP0565690A1 EP0565690A1 (de) 1993-10-20
EP0565690B1 true EP0565690B1 (de) 1997-03-05

Family

ID=6444213

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92922854A Expired - Lifetime EP0565690B1 (de) 1991-11-06 1992-11-03 Düseneinrichtung zum einleiten von medien in eine schmelze und verfahren zum betrieb dieser düseneinrichtung

Country Status (16)

Country Link
US (1) US5465942A (de)
EP (1) EP0565690B1 (de)
JP (1) JPH0781790B2 (de)
KR (1) KR100206639B1 (de)
CN (1) CN1027596C (de)
AT (1) ATE149574T1 (de)
AU (1) AU659242B2 (de)
BR (1) BR9205420A (de)
CA (1) CA2099781C (de)
DE (2) DE4136552A1 (de)
ES (1) ES2098551T3 (de)
RU (1) RU2080393C1 (de)
TR (1) TR27311A (de)
UA (1) UA32416C2 (de)
WO (1) WO1993009255A1 (de)
ZA (1) ZA928448B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153440A2 (de) 2007-04-26 2008-12-18 Techkom Gmbh Фурменное устройство для введения газовых сред под уровень жидкого металла
MD3946G2 (ro) * 2003-06-16 2010-02-28 Techcom Import Export Gmbh Dispozitiv al gurii de vânt pentru introducerea mediilor gazoase sub un strat de metal lichid

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142405B4 (de) * 2000-09-04 2011-09-15 Schott Ag Vorrichtung, deren Verwendung und Verfahren zum Einleiten von aggressiven Gasen in eine Glasschmelze
ATE297363T1 (de) * 2001-07-12 2005-06-15 Rockwool Int Verfahren zur herstellung einer zu fasern verarbeitbaren schmelze eines mineralmaterials
DE10252276C1 (de) * 2002-11-11 2003-10-30 Rhi Ag Wien Metallurgisches Schmelzgefäß und Verfahren zur sekundärmetallurgischen Behandlung
DE10328420B3 (de) * 2003-06-25 2004-08-26 Rhi Ag Düseneinrichtung und deren Verwendung in einem metallurgischen Schmelzgefäß
DE10347947B4 (de) * 2003-10-15 2007-04-12 Maerz-Gautschi Industrieofenanlagen Gmbh Industrieofen und zugehöriges Düsenelement
RU2471874C1 (ru) * 2011-12-19 2013-01-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ удаления титана из высокохромистых расплавов
KR101447581B1 (ko) * 2013-11-25 2014-10-07 국도정밀(주) 제련로용 인젝션 노즐 인입장치
DE102013114080A1 (de) * 2013-12-16 2015-06-18 Norma Germany Gmbh Element einer Schellen-Flansch-Verbindung
WO2019014914A1 (en) * 2017-07-21 2019-01-24 Linde Ag NOZZLE ARRANGEMENT FOR MELTING A POWDER MATERIAL
CN109163565B (zh) * 2018-09-10 2024-01-26 中国恩菲工程技术有限公司 浸没式喷枪及熔炼设备系统
JP7107141B2 (ja) * 2018-09-27 2022-07-27 日本製鉄株式会社 転炉の羽口構造

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE391483C (de) * 1924-03-07 Walter R Schlage Tuerschloss
US3397878A (en) 1965-11-19 1968-08-20 Union Carbide Corp Under-bath tuyere
BE776428A (fr) 1971-12-08 1972-04-04 Metallurg Ct Voor De Researchi Perfectionnements aux dispositifs d'insufflation d'oxygene par le fond d'un convertisseur metallurgique.
DE2324086C3 (de) * 1973-05-12 1985-05-09 Eisenwerk-Gesellschaft Maximilianshütte mbH, 8458 Sulzbach-Rosenberg Düse zum Einleiten von Frischgas
US4023781A (en) * 1973-05-12 1977-05-17 Eisenwerk-Gesellschaft Maximilianshutte Mbh Tuyere for metallurgical vessels
DE2455029C3 (de) * 1974-11-20 1978-10-19 Neunkircher Eisenwerk Ag, Vormals Gebrueder Stumm, 6680 Neunkirchen Verfahren und Schmelzenpfanne für die Herstellung von Vakuumstahl
FR2334751A1 (fr) * 1975-12-10 1977-07-08 Creusot Loire Dispositif de fixation de tuyeres sur la plaque de fond ou sur la cuirasse d'un convertisseur ou d'un four d'affinage
JPS5320241A (en) * 1976-08-10 1978-02-24 Teijin Ltd Automotive floor mat
DE3003884C2 (de) * 1980-02-02 1983-02-10 Didier-Werke Ag, 6200 Wiesbaden Verfahren zum Einbau und Austausch eines gasdurchlässigen feuerfesten Einsatzes in der Wandung eine Schmelze enthaltenden Behälters für das Einführen von Gasen, in den Behälter und Anordnung für die Durchführung dieses Verfahrens
JPS6045685B2 (ja) * 1981-12-11 1985-10-11 新日本製鐵株式会社 底吹用二重管羽口
US4449701A (en) * 1982-08-23 1984-05-22 Pennsylvania Engineering Corporation Tuyere for the injection of gases into a metallurgical vessel
DE3318422C2 (de) * 1983-05-20 1985-03-21 Didier-Werke Ag, 6200 Wiesbaden Gasspülanordnung und Verfahren zur Betätigung einer derartigen Anordnung
JPH01208411A (ja) * 1988-02-16 1989-08-22 Nippon Steel Corp 溶融金属炉のガスノズルの冷却法
DE3809828A1 (de) * 1988-03-23 1989-10-12 Radex Heraklith Spuelstein
DE3907887A1 (de) * 1988-03-23 1989-10-26 Radex Heraklith Spuelstein
DE3833502A1 (de) * 1988-10-01 1990-04-05 Didier Werke Ag Gasspuelstein
DE3904356A1 (de) * 1989-02-14 1990-08-23 Didier Werke Ag Gasspueleinrichtung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD3946G2 (ro) * 2003-06-16 2010-02-28 Techcom Import Export Gmbh Dispozitiv al gurii de vânt pentru introducerea mediilor gazoase sub un strat de metal lichid
WO2008153440A2 (de) 2007-04-26 2008-12-18 Techkom Gmbh Фурменное устройство для введения газовых сред под уровень жидкого металла

Also Published As

Publication number Publication date
CN1074485A (zh) 1993-07-21
KR100206639B1 (ko) 1999-07-01
CA2099781A1 (en) 1993-05-07
ATE149574T1 (de) 1997-03-15
WO1993009255A1 (de) 1993-05-13
DE59208130D1 (de) 1997-04-10
DE4136552A1 (de) 1993-05-13
EP0565690A1 (de) 1993-10-20
CN1027596C (zh) 1995-02-08
TR27311A (tr) 1995-01-10
ES2098551T3 (es) 1997-05-01
BR9205420A (pt) 1993-11-23
JPH06500162A (ja) 1994-01-06
UA32416C2 (uk) 2000-12-15
AU2894892A (en) 1993-06-07
JPH0781790B2 (ja) 1995-09-06
CA2099781C (en) 1998-08-04
AU659242B2 (en) 1995-05-11
US5465942A (en) 1995-11-14
ZA928448B (en) 1993-05-05
RU2080393C1 (ru) 1997-05-27
KR930703469A (ko) 1993-11-30

Similar Documents

Publication Publication Date Title
EP0565690B1 (de) Düseneinrichtung zum einleiten von medien in eine schmelze und verfahren zum betrieb dieser düseneinrichtung
AT397056B (de) Vorrichtung für das verdeckte abgiessen von metallschmelzen
WO2003060169A1 (de) Verfahren zur pyrometallurgischen behandlung von metallen, metallschmelzen und/oder schlacken sowie eine injektorvorrichtung
DE3204389A1 (de) Vorrichtung und verfahren zum abgiessen von metallschmelzen
DE2818303A1 (de) Verfahren und vorrichtung zum plasmaspritzen eines ueberzugmaterials auf eine unterlage
DE3019812C2 (de)
DE4213007C1 (de) Verfahren und Vorrichtung zum Abdichten von Düsen in der umgebenden feuerfesten Ausmauerung
DE2324086C3 (de) Düse zum Einleiten von Frischgas
EP0859678B1 (de) Verfahren und vorrichtung zum verschliessen einer abstichöffnung
DE69400909T2 (de) Verfahren zur herstellung eines heizelementes zum transport flüssigen metalls, heizelement, verwendung und anwendung
DE19526882A1 (de) Verfahren zum Kühlen einer heißen Oberfläche sowie Einrichtung zur Durchführung des Verfahrens
DE2834737A1 (de) Stahlherstellungsverfahren
DE2425025C3 (de) Elektrode für einen Glasschmelzofen
DE2811877C2 (de)
DE3142369A1 (de) Elektrode fuer lichtbogenoefen
DE2637632A1 (de) Bodenelektrode fuer schmelzoefen
EP0959997A2 (de) Verfahren, vorrichtung und verschlussglied zum angiessen von flüssigen schmelzen
EP1673481B1 (de) Industrieofen und zugehöriges düsenelement
DE10252276C1 (de) Metallurgisches Schmelzgefäß und Verfahren zur sekundärmetallurgischen Behandlung
DE2602178A1 (de) Verfahren zum einbrennen der feuerfesten auskleidung von bodenblasenden stahl-frischgefaessen
DE3444514C2 (de) Schieberverschluß für metallurgische Gefäße, insbesondere für Stahlpfannen, zum Einblasen von Gasen oder von in Gasen suspendierten Feststoffen
DE524194C (de) Reversibler, regenerativ beheizter Schmelzofen
AT409138B (de) Wandbauteil
AT394731B (de) Verfahren und gasspuelstein zum einblasen von behandlungsstoffen in reaktionsgefaesse
DD288616A5 (de) Vorrichtung zur ueberfuehrung von heissgas und schlacke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930624

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT LU NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KORTEC AG

17Q First examination report despatched

Effective date: 19950718

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MANNESMANN AKTIENGESELLSCHAFT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT LU NL

REF Corresponds to:

Ref document number: 149574

Country of ref document: AT

Date of ref document: 19970315

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59208130

Country of ref document: DE

Date of ref document: 19970410

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2098551

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970516

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20091120

Year of fee payment: 18

Ref country code: DE

Payment date: 20091120

Year of fee payment: 18

Ref country code: AT

Payment date: 20091113

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091121

Year of fee payment: 18

Ref country code: GB

Payment date: 20091119

Year of fee payment: 18

Ref country code: FR

Payment date: 20091201

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59208130

Country of ref document: DE

Effective date: 20110601

Ref country code: DE

Ref legal event code: R119

Ref document number: 59208130

Country of ref document: DE

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120418

Year of fee payment: 20

Ref country code: NL

Payment date: 20120425

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20121103

BE20 Be: patent expired

Owner name: *MANNESMANN A.G.

Effective date: 20121103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120425

Year of fee payment: 20

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121104