EP0564437B1 - Procédé pour galvaniser un feuillard et installation pour la mise en oeuvre de ce procédé - Google Patents

Procédé pour galvaniser un feuillard et installation pour la mise en oeuvre de ce procédé Download PDF

Info

Publication number
EP0564437B1
EP0564437B1 EP93890052A EP93890052A EP0564437B1 EP 0564437 B1 EP0564437 B1 EP 0564437B1 EP 93890052 A EP93890052 A EP 93890052A EP 93890052 A EP93890052 A EP 93890052A EP 0564437 B1 EP0564437 B1 EP 0564437B1
Authority
EP
European Patent Office
Prior art keywords
strip
layer
zinc
control
pyrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93890052A
Other languages
German (de)
English (en)
Other versions
EP0564437A1 (fr
Inventor
Josef Dipl.-Ing. Faderl
Alois Dipl.-Ing. Stadlbauer
Klaus Dipl.-Ing. Dr. Zeman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Primetals Technologies Austria GmbH
Voestalpine Stahl Linz GmbH
Original Assignee
Voestalpine Stahl GmbH
Voestalpine Stahl Linz GmbH
Voest Alpine Industrienlagenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH, Voestalpine Stahl Linz GmbH, Voest Alpine Industrienlagenbau GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP0564437A1 publication Critical patent/EP0564437A1/fr
Application granted granted Critical
Publication of EP0564437B1 publication Critical patent/EP0564437B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Definitions

  • the invention relates to a method for galvanizing a strip, in particular a steel strip, the strip being continuously coated with zinc in a continuous process either electrolytically with zinc or according to the hot-dip galvanizing process in a zinc bath with zinc, then to form a Zn-Fe layer of a heat treatment in a continuous furnace and further subjected to an on-line control of the zinc layer, the galvanizing process being controlled in dependence on the on-line control, and a plant for carrying out the method.
  • the post-annealing process converts the pure zinc layer into a Zn-Fe layer by diffusing iron.
  • a product with different mechanical properties e.g. toughness, hardness
  • the Fe content can be measured on-line by appropriate measuring devices (for example by means of X-ray fluorescence, X-ray diffraction or similar methods), ie on-line, as described, for example, in EP-A-0 473 154, the measurement result generally about one Represents the mean of the Fe content over the thickness of the Zn-Fe layer.
  • the invention has for its object that described above. To further develop the method in such a way that a galvanized strip with a defined, fully reacted layer structure can be produced, with direct and immediate intervention in the manufacturing process to ensure a uniform quality of the galvanized strip and the production of rejects is minimized.
  • the method according to the invention should enable the automatic consideration of intended changes to process parameters as well as their unintentional changes, so that the manufacturing process is continuously optimized and without manual intervention.
  • This object is achieved in that the radiation emission of the strip surface is measured during or after the heat treatment by means of at least one pyrometer and the through reaction at the point of the pyrometer by changing the as a manipulated variable depending on the purpose of determining a through reaction of the Zn-Fe layer
  • the heating output of the continuous furnace serving the pyrometer display of the control process is ensured, whereby in addition to the determination of the through reaction, a value of the iron content of the Zn-Fe layer is determined as a reference variable, the actual value of the iron content of the Zn-Fe layer is compared with the reference variable and a control deviation via a controller is compensated for by a change in the heating power of the continuous furnace that serves as a control variable.
  • the temperature control in the continuous furnace has a decisive influence on the structure of the galvanized layer and therefore also the mechanical properties of the product, since the diffusion processes of the iron into the zinc layer (diffusion rate, iron content) depend on the temperature and the duration of the heat treatment in the continuous furnace.
  • the procedure is such that the point from which the Zn-Fe layer has reacted is determined on the belt passage section by measurement by means of a plurality of pyrometers arranged one behind the other in the belt running direction, and by regulating the heating power of the continuous furnace this point on the belt passage section is set to a desired one and is brought into a position that acts as a benchmark.
  • the control is preferably carried out in a closed control circuit with the aid of a computer which registers the control deviation and regulates the heating power of the continuous furnace by means of control commands, the computer advantageously having the strip dimension, the basic material of the strip with regard to its chemical composition and / or structure, the zinc layer thickness, the composition of the zinc bath, such as its Al content, the belt speed and possibly other parameters such as the temperature of the belt at the inlet of the continuous furnace and the ambient temperature are taken into account.
  • a preferred embodiment is characterized in that the heating power and thus the temperature within the Continuous furnace can be set differently in individual heating zones.
  • the heating power can be set differently in the heating zones adjacent to one another in the direction of the bandwidth.
  • the heating output can advantageously be set differently in the heating zones lying one behind the other in the direction of the strip passage, as a result of which the heating-up speed of the strip or the holding time of the strip at a specific temperature can be varied in order to achieve optimum strip quality.
  • the measurement of the radiation emission and / or the Fe content is expediently carried out at locations distributed over the bandwidth.
  • Measuring device for checking the zinc layer is characterized in that the measuring device is formed by at least one pyrometer, which is coupled to a controller, which is coupled via a control line to the heating device of the heat treatment device, with the determination of the iron content of the Zn-Fe layer
  • a measuring device downstream of the heat treatment device for measuring the iron content of the zinc layer is provided, which is coupled to a controller which is connected to the heater via a control line device of the heat treatment device is coupled.
  • a plurality of pyrometers arranged one behind the other in the strip running direction and coupled to the controller are provided.
  • the controller is advantageously coupled to a process computer.
  • FIG. 1 schematically illustrating a system for galvanizing a strip.
  • the diagram shown in FIG. 2 shows the dependence of the iron content on the heating power.
  • FIG. 3 shows a deviation in the iron content in the Zn-Fe layer as a function of the bandwidth
  • FIG. 4 shows the dependence of the radiation emission on the holding time.
  • a steel strip 1 to be galvanized is continuously guided along a strip path 3 from a unwinding station to a winding station, also not shown, by means of a belt guide device which has a plurality of belt guide rollers 2.
  • the steel strip first reaches a zinc coating device 4, which in the exemplary embodiment shown is designed as a hot-dip galvanizing device.
  • This has a zinc bath 5 and a stripping device 7 arranged downstream in the strip running direction 6 to ensure a constant zinc layer which is of equal thickness over the bandwidth.
  • the steel strip 1 is introduced via a hot-thickness measuring system 8 for measuring the thickness of the zinc layer and via a temperature measuring device 9 into a heat treatment device 13 having two continuous furnaces 10, 11. Heating takes place primarily in the first continuous furnace 10 of the galvanized steel strip 1 to the required annealing temperature. In the further continuous furnace 11 arranged subsequently, the steel strip 1 is primarily kept at a constant annealing temperature.
  • the radiation emission of the completely annealed steel strip 1 is measured by means of a pyrometer 14. Cooling devices 15 are then arranged on the belt guide. At a point downstream of the heat treatment device 13 of the belt path 3, a measuring device 16 is also provided for measuring the iron content of the Zn-Fe layer, which, as indicated by the double arrow 17, is preferably displaceable over the bandwidth, so that the bandwidth is at different points a measurement can be carried out.
  • the measuring device preferably works according to the X-ray method.
  • a controller 19 coupled to a process computer 18 is coupled to heating devices of the two continuous furnaces 10, 11 for the purpose of setting the heating power, as is illustrated by the double arrows 20.
  • the function of the system is as follows: Due to its higher affinity for iron, the aluminum dissolved in the zinc bath 5 initially forms an iron-aluminum layer (Fe2Al5) on the steel strip, which prevents a reaction of the iron substrate of the steel strip 1 and the zinc layer.
  • This system (steel strip 1 + Fe-Al layer + liquid Zn layer) reaches the first continuous furnace 10 and is brought to a temperature of 450 ° C. to 700 ° C. In the second continuous furnace 11, the steel strip 1 is kept at a certain temperature or heated even further. The process of diffusion of iron into the zinc layer that occurs converts the pure zinc layer into a zinc-iron layer.
  • the Fe-Al barrier layer formed in the zinc bath is first broken up by the Zn-Fe growth at the grain boundaries of the base material, and a mushroom-shaped growth of the Zn-Fe complexes begins.
  • different metallurgical phases are formed that have different properties.
  • the phases become harder or more brittle with increasing iron content. With subsequent deformation (e.g. deep drawing) this can lead to increased abrasion, which makes the adhesion of the Zn-Fe layer very poor.
  • the Zn-Fe layer has reacted completely, i.e. that the zinc forms a stable phase with the iron on the surface of the coated steel strip 1 due to the advance of the iron during the diffusion process.
  • a radiation emission measurement can be carried out using a pyrometer 14 for evaluation the galvan-aged layer become.
  • the pyrometer 14 can be arranged after or in the heat treatment device 13 (for example between the galvannealing furnace 10 and the holding furnace 11). This measurement is information about the radiation energy emitted purely from the surface of the steel strip 1, ie its Zn-Fe layer, which is a function of the temperature and the emission number of the surface condition.
  • the emission number of a pure zinc surface is less than 0.2 and that of a fully reacted Fe-Zn surface is about 0.6.
  • the heating power of the continuous furnaces 10, 11 is increased with the aid of the controller 19 connected to a process computer 18, to which the measured value of the pyrometer is input, until a complete reaction with the help of the pyrometer is detectable.
  • the heating power is the control variable of the control process.
  • the heating power of the continuous furnaces 10, 11 is now controlled with the help of the controller 19 so that the through reaction is completed from a certain desired point.
  • Another way of recognizing the point in the belt running direction at which the reaction is complete is to compare the pyrometer measurement with a thermal model calculation.
  • the pyrometer measurement is the empirically determined emissivity for the pure zinc layer and a second time the empirically determined emissivity of the fully reacted layer is used. In terms of calculations, this initially results in two pyrometer temperature values for the running belt that differ according to the different emission numbers.
  • the information on the reaction of the coating alone cannot be used to directly and directly deduce the Fe content of the Zn-Fe layer, but the Fe content is of great importance for the properties of the product, it is necessary to determine the heat output distribution over the length of the heat treatment device based on a combination of the two information, namely the Fe content of the Zn-Fe layer and the emissivity determination.
  • the iron content of the Fe-Zn layer is determined in addition to the determination and regulation of the reaction through on-line X-ray fluorescence measurement with the aid of the measuring device 16 , preferably over the entire bandwidth and also over the entire band length.
  • This actual value of the iron content of the Zn-Fe layer is determined with the aid of the controller 19 with a value of the Iron content of the Zn-Fe layer compared.
  • a possible control deviation is compensated for by the controller 19 by changing the heating power of the first or also the second continuous furnace 10, 11 which serves as a control variable.
  • the heating power of the continuous furnace is increased until the control deviation becomes zero or has dropped below a predetermined value (dead band), as explained below with reference to FIG. 2:
  • the course I indicates the relationship between the Fe content of the Zn-Fe layer and the heating power. This is determined empirically and made available to the control computer (controller 19), for example, as a formula or as a table.
  • the desired setting of the Fe content Fe 1 (point A) is achieved with the power setting P 1.
  • the band behaves somewhat differently, e.g. according to course II, through unintentional changes in process parameters, e.g. Drift of the ambient temperature, drift in the transformer output when the continuous furnaces are electrically heated or when other faults occur, this results in an Fe content Fe 2 on the strip which deviates from the set value Fe 1 (point B).
  • the result is an improved value of the Fe content (point C).
  • the control takes place as long as a control deviation is found (Fe content ⁇ Fe1).
  • all of the factors listed above influencing the iron content can be taken into account in that data specifying these factors are input into the process computer 18 and due to the coupling of the process computer 18 to the controller 19 of the latter when determining the Heating power of the heat treatment device 13 are taken into account.
  • Desired changes in process parameters e.g. a change in the dimension of the steel strip 1, a change in the chemical composition of the steel strip 1, a change in the zinc layer thickness or a change in the conveying speed of the steel strip 1 are entered into the process computer 18 to take into account the heating power of the heat treatment device.
  • the manipulated variables for the heat treatment device 13 are calculated by a computer of the controller 19 from the measured values and the target-actual deviation for the emissivity and possibly for the iron content.
  • the measured values from the hot measurement (layer thickness measurement) and / or a temperature measurement arranged in front of the continuous furnace 10, the belt speed and the heating power supplied in the individual zones of the heat treatment device 13 can be used to increase the accuracy of the control process, as indicated by the arrows 20, 21 is indicated.
  • the manipulated variables are calculated with the aid of a control model, which can differ depending on the measuring devices and actuating devices available in the specific system.
  • the control model is described by model parameters. These model parameters can be different for different base material, strip dimension, Al content in the zinc bath. Base material, tape dimension, Al content in the zinc bath can be transferred from a higher-level computer (eg production planning computer) or an external input unit to the process computer 18. They can be transferred to the computer of controller 19 with the target value valid for the product to be manufactured, cf. Arrow 22.
  • the computer of the controller 19 then calculates the corresponding control commands taking into account these model parameters of the control model.
  • the total output or the performance of parts of the continuous furnaces 10, 11 can be set within certain limits. It is particularly advantageous if the distribution of the heat input onto the belt, that is to say the heating power of the continuous furnaces 10, 11, can also be adjusted within certain limits over the width, since this makes it possible to vary the deviation of the Fe shown in FIG. Compensate the content of the Zn-Fe layer, which can occur despite the uniform thickness of the Zn-Fe layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Electroplating Methods And Accessories (AREA)

Claims (11)

  1. Procédé pour la galvanisation d'une bande (1), en particulier d'une bande en acier (1), dans lequel la bande (1) est revêtue en continu de zinc dans un procédé de passage continu, soit de façon électrolytique, soit selon le procédé de galvanisation à chaud dans un bain de zinc, et ensuite, cette bande est soumise à un traitement à chaud dans un four de passage continu (10, 11) pour former une couche Zn-Fe, et de plus elle est soumise à une commande en ligne de la couche de zinc, l'opération de galvanisation étant commandée en dépendance de la commande en ligne, caractérisé en ce que pour la détection d'une réaction entière de la couche Zn-Fe, l'émission de rayonnement de la surface de bande est mesurée pendant ou après le traitement thermique au moyen d'au moins un pyromètre (14), et que la réaction entière est assurée à l'emplacement du pyromètre par modification de la puissance calorifique du four de passage continu (10, 11), cette puissance servant de valeur de réglage d'une opération de réglage qui se déroule en dépendance de l'indication du pyromètre, et
    en ce que l'on détermine en supplément une valeur de la teneur en fer de la couche Zn-Fe en tant que grandeur pilote, on compare la valeur réelle de la teneur en fer de la couche Zn-Fe avec la grandeur pilote, et on compense un écart de réglage via un régulateur (19) par modification de la puissance calorifique du four de passage continu (10, 11), qui sert de valeur de réglage.
  2. Procédé selon la revendication 1, caractérisé en ce que l'on détermine, sur le trajet de passage de bande (3), par mesure au moyen de plusieurs pyromètres (14) agencés les uns derrière les autres en direction de circulation de bande (6), l'emplacement à partir duquel la couche Zn-Fe a entièrement réagi, et en ce que l'on amène cet emplacement sur le trajet de passage de bande (3), par réglage de la puissance calorifique du four de passage continu (10, 11), à une position désirée et faisant fonction de grandeur pilote.
  3. Procédé selon l'une ou l'autre des revendications 1 et 2, caractérisé en ce que le réglage est effectué dans un circuit de réglage fermé à l'aide d'un ordinateur qui enregistre l'écart de réglage et qui règle au moyen d'ordres de réglage la puissance calorifique du four de passage continu (10, 11).
  4. Procédé selon la revendication 3, caractérisé en ce que l'ordinateur prend en considération la dimension de la bande, le matériau de base de la bande (1) en ce qui concerne sa composition chimique et/ou sa structure, l'épaisseur de la couche de zinc, la composition du bain de zinc, comme par exemple sa teneur en Al, la vitesse de la bande, et le cas échéant d'autres paramètres, comme la température de la bande (1) à l'entrée du four de passage continu (10, 11) et la température ambiante.
  5. Procédé selon l'une ou plusieurs des revendications 1 à 4, caractérisé en ce que la puissance calorifique et ainsi la température peuvent être réglées différemment à l'intérieur du four de passage continu (10, 11) dans les zones de réchauffement individuelles (12, 12').
  6. Procédé selon la revendication 5, caractérisé en ce que la puissance calorifique peut être réglée différemment dans les zones de réchauffement (12, 12') situées les unes à côté des autres en direction de la largeur de bande.
  7. Procédé selon l'une ou l'autre des revendications 5 et 6, caractérisé en ce que la puissance calorifique peut être réglée différemment dans les zones de réchauffement situées les unes derrière les autres en direction du passage de la bande.
  8. Procédé selon l'une ou plusieurs des revendications 5 à 7, caractérisé en ce que la mesure de l'émission de rayonnement et/ou de la teneur en fer s'effectue à des emplacements agencés en répartition sur la largeur de la bande.
  9. Installation pour la mise en oeuvre du procédé selon l'une ou plusieurs des revendications 1 à 8, comportant un dispositif de guidage de bande (2) guidant une bande (1) le long d'un trajet de passage de bande (3), un dispositif de revêtement de zinc (4) agencé sur le trajet de passage de bande (3), un dispositif de traitement thermique (13) agencé à la suite et formé par un four de réchauffement pour la bande (1), et un dispositif de mesure (14) situé également sur le trajet de passage de bande (3) et agencé dans ou derrière le dispositif de traitement thermique (13), pour le contrôle de la couche de zinc, caractérisée en ce que le dispositif de mesure est formé par au moins un pyromètre (14) qui est accouplé au régulateur (19) qui est accouplé via une ligne de commande au dispositif de réchauffement du dispositif de traitement thermique (13), et en ce qu'il est prévu en supplément un dispositif de mesure (16) agencé derrière le dispositif de traitement thermique (13), pour mesurer la teneur en fer de la couche de zinc, qui est accouplé à un régulateur (19) qui est accouplé via une ligne de commande au dispositif de réchauffement du dispositif de traitement thermique (13).
  10. Installation selon la revendication 9, caractérisée en ce qu'il est prévu une pluralité de pyromètres agencés les uns derrière les autres en direction de circulation de bande (6) et accouplés au régulateur (19).
  11. Installation selon l'une ou l'autre des revendications 9 et 10, caractérisée en ce que le régulateur (19) est accouplé à un ordinateur de traitement (18).
EP93890052A 1992-03-31 1993-03-23 Procédé pour galvaniser un feuillard et installation pour la mise en oeuvre de ce procédé Expired - Lifetime EP0564437B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT653/92 1992-03-31
AT0065392A AT397814B (de) 1992-03-31 1992-03-31 Verfahren zum verzinken eines bandes sowie anlage zur durchführung des verfahrens

Publications (2)

Publication Number Publication Date
EP0564437A1 EP0564437A1 (fr) 1993-10-06
EP0564437B1 true EP0564437B1 (fr) 1995-09-20

Family

ID=3496268

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93890052A Expired - Lifetime EP0564437B1 (fr) 1992-03-31 1993-03-23 Procédé pour galvaniser un feuillard et installation pour la mise en oeuvre de ce procédé

Country Status (4)

Country Link
EP (1) EP0564437B1 (fr)
JP (1) JPH06207296A (fr)
AT (2) AT397814B (fr)
DE (1) DE59300611D1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT405770B (de) * 1997-09-24 1999-11-25 Voest Alpine Ind Anlagen Verfahren zur regelung eines ''galvannealing''-prozesses
DE10021948B4 (de) * 2000-05-05 2004-02-19 Thyssenkrupp Stahl Ag Verfahren und Anlage zum Verzinken eines Stahlbandes
DE102009053368A1 (de) * 2009-11-14 2011-05-19 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Fertigungsanlage zum Herstellen eines Blechformteils mit einer Korrosionsschutzbeschichtung
EP4116456A1 (fr) * 2021-07-09 2023-01-11 Matro GmbH Procédé et installation de galvanisation de pièces en fer et en acier

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3307968A (en) * 1963-09-03 1967-03-07 Armco Steel Corp Method and apparatus for controlling the alloying of zinc coatings
BE759903A (fr) * 1969-12-05 1971-05-17 British Steel Corp Regulateur de temperature
FR2563537A1 (fr) * 1984-04-25 1985-10-31 Stein Heurtey Procede et dispositif de recuit de diffusion pour l'obtention de toles a revetement allie
JPH01252761A (ja) * 1987-12-08 1989-10-09 Kawasaki Steel Corp 溶融亜鉛めっき用合金化炉の板温制御装置
JPH0637702B2 (ja) * 1988-09-29 1994-05-18 川崎製鉄株式会社 溶融亜鉛めっき合金化炉の燃料制御方法
JPH03146649A (ja) * 1989-10-31 1991-06-21 Kawasaki Steel Corp 合金化亜鉛めっき鋼帯の製造方法
JP2904891B2 (ja) * 1990-08-31 1999-06-14 日新製鋼株式会社 合金化亜鉛めつき鋼板のオンライン合金化度測定装置
DE69215613T2 (de) * 1991-09-10 1997-05-15 Nippon Steel Corp Verfahren zum Kontrollieren des Aufheizens eines Legierungsofens zum Herstellen von heiss-tauchmetallisiertem und legiertem Stahlband

Also Published As

Publication number Publication date
JPH06207296A (ja) 1994-07-26
ATA65392A (de) 1993-11-15
ATE128191T1 (de) 1995-10-15
AT397814B (de) 1994-07-25
DE59300611D1 (de) 1995-10-26
EP0564437A1 (fr) 1993-10-06

Similar Documents

Publication Publication Date Title
EP2010690B1 (fr) Procédé de revêtement par immersion en fusion d'un produit plat en acier hyperrésistant
EP2044234B1 (fr) Procédé de laminage flexible de bandes d'acier revêtues
EP2824216B1 (fr) Procédé de fabrication d'un produit en acier plat pourvu, par revêtement par galvanisation à chaud, d'une couche de protection métallique et four à passage continu pour une installation de revêtement par galvanisation à chaud
DE102012101018B3 (de) Verfahren zum Schmelztauchbeschichten eines Stahlflachprodukts
EP2795218B1 (fr) Dispositif tuyère destiné un four de traitement thermique d'un produit plat en acier, et four équipé d'un tel dispositif tuyère
DE3785661T2 (de) Verfahren zur herstellung eines nichtalternden feuerverzinkten stahlbleches.
DE3411605C2 (de) Verfahren und Einrichtung zur Gasaufkohlung von Stahl
DE3044358A1 (de) Verfahren zum steuern bzw. regeln der temperatur eines heizofens
DE2363223A1 (de) Verfahren und vorrichtung zum kontinuierlichen erhitzen eines eisenmetallbandes
EP0564437B1 (fr) Procédé pour galvaniser un feuillard et installation pour la mise en oeuvre de ce procédé
DE2537298A1 (de) Verfahren zur vorbehandlung eines unlegierten stahlband- und -blechmaterials vor dem flussmittelfreien tauchschmelzbeschichten
EP0571353B1 (fr) Procédé pour galvaniser un feuillard et installation pour la mise en oeuvre de ce procédé
DE3033501C2 (fr)
DE102004023886B4 (de) Verfahren und Vorrichtung zur Veredelung von flexibel gewalztem Bandmaterial
EP3511430A1 (fr) Procédé de traitement thermique en continu d'une bande en acier et installation de revêtement par immersion en bain fondu d'une bande en acier
EP3512969A1 (fr) Installation de traitement à chaud, flexible, pour une bande métallique dans une construction horizontale
DE2729931C3 (de) Turmofen zur Wärmebehandlung von Walzblechen
WO1993018197A1 (fr) Procede pour revetir de plusieurs couches un produit allonge
DE69723608T2 (de) Primärkühlverfahren für das kontinuierliche Glühen von Stahlbändern
DE102015001438A1 (de) Flexible Wärmebehandlungsanlage für metalisches Band
DE10021948B4 (de) Verfahren und Anlage zum Verzinken eines Stahlbandes
DE69215015T2 (de) Verfahren und Ofen zum Schwärzen von rostfreien Stahlbändern
DE1521422B2 (de) Verfahren zur kontinuierlichen Her stellung von mit einer Schutzschicht aus Metall, wie Zink, Aluminium und derglei chen, überzogenen Stahlbandern
DE3231981C2 (de) Verfahren zur Herstellung von beschichtetem, hochfestem, niedriglegiertem Stahl
DE2917566C2 (de) Verfahren und Vorrichtung für die Wärmebehandlung eines mit einem niedrigschmelzenden Metall überzogenen Stahlbandes bei der Überalterung des Stahlbandes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19940331

17Q First examination report despatched

Effective date: 19950105

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950920

REF Corresponds to:

Ref document number: 128191

Country of ref document: AT

Date of ref document: 19951015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59300611

Country of ref document: DE

Date of ref document: 19951026

ITF It: translation for a ep patent filed

Owner name: MARCHI & MITTLER S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951220

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951215

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050323

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20080301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090518

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100324

Year of fee payment: 18

Ref country code: FR

Payment date: 20100325

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100311

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100303

Year of fee payment: 18

Ref country code: BE

Payment date: 20100312

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

BERE Be: lapsed

Owner name: *VOEST-ALPINE STAHLINZ G.M.B.H.

Effective date: 20110331

Owner name: *VOEST-ALPINE INDUSTRIEANLAGENBAU G.M.B.H.

Effective date: 20110331

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110323

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110323

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110323