EP0563718A1 - Kälteeinrichtung für Kühlschränke - Google Patents

Kälteeinrichtung für Kühlschränke Download PDF

Info

Publication number
EP0563718A1
EP0563718A1 EP93104613A EP93104613A EP0563718A1 EP 0563718 A1 EP0563718 A1 EP 0563718A1 EP 93104613 A EP93104613 A EP 93104613A EP 93104613 A EP93104613 A EP 93104613A EP 0563718 A1 EP0563718 A1 EP 0563718A1
Authority
EP
European Patent Office
Prior art keywords
section
capillary throttle
throttle tube
capillary
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93104613A
Other languages
English (en)
French (fr)
Inventor
Bruno Ebel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KM Schmoele GmbH
Original Assignee
KM Schmoele GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KM Schmoele GmbH filed Critical KM Schmoele GmbH
Publication of EP0563718A1 publication Critical patent/EP0563718A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the invention relates to a refrigeration device for refrigerators or the like with a suction line for the conveyance of a vaporous refrigerant from an evaporator to a compressor and a capillary throttle tube arranged partially within the suction line for the expansion of the liquid refrigerant and its feed line to the evaporator.
  • a generic refrigeration device for refrigerators essentially comprises a plate evaporator consisting of interconnected sheets, a suction line for discharging the evaporated refrigerant, a compressor for drawing in and compressing the refrigerant, a condenser and a capillary throttle tube for expanding the liquefied refrigerant and its feed line to the evaporator.
  • Such refrigeration devices have long been used in refrigerators to extract heat from their contents and thus reduce the temperature prevailing in the refrigerator.
  • the low-pressure refrigerant is evaporated in the evaporator. Evaporation reduces the temperature in the cold room.
  • the compressor sucks in the steam and compresses it to a higher pressure.
  • the steam releases its heat to the outside in the downstream condenser.
  • the refrigerant is liquefied by the interaction of increased pressure and heat emission.
  • the liquid refrigerant in the capillary throttle tube is expanded to the lower pressure and gets back into the evaporator.
  • capillary throttle tubes with a very small inside diameter. This had the advantage that the capillary throttle tube could be made short, which ensured good handling and inexpensive execution.
  • the noises had a disadvantageous effect when the refrigerant was injected from the capillary throttle tube into the evaporator.
  • the noise emission was then remedied by increasing the inside diameter of the capillary throttle tubes.
  • this was associated with the disadvantageous consequence that the capillary throttle tubes had to be made very long for the same flow rate of the refrigerant.
  • the capillary throttle tube with an inner diameter D i of 0.6 mm had to have a length L K of 2000 mm.
  • the capillary throttle tubes had to be 5500 mm long under otherwise identical conditions.
  • the invention is based on the object of improving such a refrigeration device in such a way that the material used for the capillary throttle tube can be markedly reduced while reducing the injection noise.
  • the end of the capillary throttle tube on the evaporator side is now provided with a length section which is designed as a calming section.
  • the calming section has a larger inner diameter compared to the constant inner diameter of the previous length of the capillary throttle tube.
  • the length of the calming section is adjusted in such a way that the turbulence occurring during the transition from the smaller inside diameter to the larger inside diameter changes into an essentially calmed laminar flow.
  • the injection noise can be reduced to the same values as would otherwise only be achievable over the entire length if the capillary throttle tube was designed with a larger diameter.
  • the capillary throttle tubes can be made much shorter than usual, which also improves their manageability.
  • the material savings mean that the capillary throttle tubes are also available at a significantly lower cost than in the prior art. Since the capillary throttle tubes are mass products, this advantage is particularly noticeable from an economic point of view.
  • the enlargement of the inner diameter in the area of the calming section can be carried out with different manufacturing processes. For example, drawing, pressing, punching, rolling or rolling are conceivable.
  • a capillary throttle tube with a larger inner diameter can also be used and this can subsequently be narrowed to the area outside the calming section.
  • the length section of the capillary throttle tube having the calming section can be designed such that it continuously increases from the smaller inner diameter to the larger inner diameter. A laminar flow pattern is thereby achieved.
  • the transition from the length section of the capillary throttle tube with the smaller inside diameter to the calming section can be step-shaped with sharp-edged or rounded edges or else conical.
  • the capillary throttle tube is rolled up helically. This leads to a space-saving, flexible design.
  • this has a capillary throttle tube insertion section according to the features of claim 6.
  • the outer diameter of the suction line in the area of the capillary throttle tube insertion section is increased by approximately the outer diameter of the capillary throttle tube.
  • the capillary throttle tube is guided at least once helically around the suction line in front of the capillary throttle tube insertion section in accordance with the features of claim 8. Damage to the installation of the cooling device in the cooling units is also prevented in this way.
  • a further possibility of fixing the capillary throttle tube to the suction line before it is introduced into the suction line consists, according to the features of claim 9, in a connection which is produced from plastic by means of a shrink tube.
  • the shrink tube is pulled over the capillary throttle tube and the suction line and shrunk by heating, which creates the positionally stable connection.
  • the plate evaporator 1 shows a plate evaporator, in particular for refrigerators.
  • the plate evaporator 1 consists of two sheets 2, which are connected to one another in a known manner. At least one of the sheets 2 is provided with internal features 3, which form 2 channels 4 in the plate evaporator 1 after the sheets have been connected.
  • the plate evaporator 1 has a connection opening 5 through which both a suction line 6 leading to the compressor (not shown) for the vaporous refrigerant and a capillary throttle tube 7 for conveying the liquid refrigerant enter the plate evaporator 1.
  • a tubular suction channel 8 for the vaporous refrigerant at.
  • the suction channel 8 narrows at a sealing section 9 to the outer diameter D a of the capillary throttle tube 7. Behind the sealing section 9, the suction channel 8 widens to the evaporator channel 4a, into which the capillary throttle tube 7 opens with an end section 10.
  • the evaporator-side end section 10 of the capillary throttle tube 7 has a length section L B designed as a calming section (FIG. 2).
  • the capillary throttle tube 7 In the entire length section L of the capillary throttle tube 7 before the calming section, the capillary throttle tube 7 has a constant diameter D i .
  • the capillary throttle tube 7 in the length section L B has an internal diameter D i, g that is larger than the constant diameter D i of the preceding length section L.
  • the suction channel 8 and the capillary throttle tube 7 are connected in a refrigerant-tight manner on the sealing section 9.
  • the suction line 6 has a capillary throttle tube insertion section 11.
  • the suction line 6 is provided with a clear cross-section D k which is larger by the outer diameter D a of the capillary throttle tube 7 than its remaining length range L S.
  • the capillary throttle tube 7 is guided into the suction line 6.
  • the capillary throttle tube 7 is laid on a length section E parallel to the suction line 6.
  • the capillary throttle tube 7 has three helical windings 13 around the suction line 6.
  • the capillary throttle tube 7 is again provided on a section T with helical turns 14. This ensures a space-saving way of laying the capillary throttle tube 7.
  • FIG. 3 shows an embodiment of a length section L B1 with an evaporator-side end section 10a of a capillary throttle tube 7 with a transition 15, which takes place in steps with sharp-edged corners.
  • the inner diameter D i of the capillary throttle tube 7 widens to the larger inner diameter D i, g of the length section L B1 .
  • FIG. 4 of the length section L B comprising a calming section corresponds to that in FIG. 2.
  • the end section 10 of a capillary throttle tube 7 is shown with a transition 16 which tapers from the inside diameter D i of the capillary throttle tube 7 to the larger inside diameter D i, g expanded.
  • the transition 16 takes place on a short length L E.
  • FIG. 5 discloses a length section L B2 having a calming section with an end section 10b of a capillary throttle tube 7, in which the inside diameter D i continuously expands to the larger inside diameter D i, g .
  • the course of the calming section is optimized in terms of flow technology and has an inner contour adapted to the characteristics of the refrigerant with regard to at least the pressure and speed conditions.
  • FIG. 6 shows a length section L B3 designed as a calming section with an end section 10c of a capillary throttle tube 7 with a transition 17 which takes place in two stages 18, 19.
  • the length section L B3 is divided into the length sections L1 and L2.
  • the inside diameter D i of the capillary throttle tube 7 initially widens to a larger inside diameter D i, 1 in the length section L 1 .
  • the inner diameter D i, 1 expands to the inner diameter D i, g .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft eine Kälteeinrichtung für Kühlschränke mit einem Verdampfer, einer Saugleitung für die Ableitung des verdampften Kältemittels, einem Kompressor zum Ansaugen und Verdichten des Kältemittels, einem Verflüssiger sowie einem Kapillardrosselrohr (7) für die Entspannung des verflüssigten Kältemittels und dessen Zuleitung zum Verdampfer. Das verdampferseitige Ende (10) des Kapillardrosselrohrs (7) wird mit einem Längenabschnitt versehen, der als Beruhigungsstrecke ausgebildet ist. Die Beruhigungsstrecke weist einen im Vergleich zu dem konstanten Innendurchmesser (Di) der vorhergehenden Länge (L) des Kapillardrosselrohrs (7) größeren Innendurchmesser (Di,g) auf. Die Länge der Beruhigungsstrecke ist so abgestimmt, daß die beim Übergang von dem kleineren Innendurchmesser (Di) auf den größeren Durchmesser (Di,g) auftretenden Turbulenzen in eine im wesentlichen beruhigte laminare Strömung übergehen. Auf diese Weise wird gewährleistet, daß die Einspritzgeräusche erheblich reduziert werden und das Kapillardrosselrohr (7) wesentlich kürzer als bisher üblich ausgeführt werden kann. <IMAGE>

Description

  • Die Erfindung betrifft eine Kälteeinrichtung für Kühlschränke oder dergleichen mit einer Saugleitung für die Förderung eines dampfförmigen Kältemittels von einem Verdampfer zu einem Verdichter und einem teilweise innerhalb der Saugleitung angeordneten Kapillardrosselrohr für die Entspannung des flüssigen Kältemittels und dessen Zuleitung zum Verdampfer.
  • Durch die DE-PS 12 42 646 ist eine gattungsgemäße Kälteeinrichtung für Kühlschränke bekannt. Eine derartige Kälteeinrichtung umfaßt im wesentlichen einen aus miteinander verbundenen Blechen bestehenden Plattenverdampfer, eine Saugleitung für die Ableitung des verdampften Kältemittels, einen Kompressor zum Ansaugen und Verdichten des Kältemittels, einen Verflüssiger sowie ein Kapillardrosselrohr für die Entspannung des verflüssigten Kältemittels und dessen Zuleitung zum Verdampfer.
  • Solche Kälteeinrichtungen werden seit langem in Kühlschränken eingesetzt, um deren Inhalt Wärme zu entziehen und so die im Kühlraum herrschende Temperatur herabzusetzen. Das unter einem geringen Druck stehende Kältemittel wird im Verdampfer verdampft. Durch die Verdampfung wird die Temperatur im Kühlraum herabgesetzt. Den Dampf saugt der Kompressor an und verdichtet ihn auf einen höheren Druck. In dem nachgeschalteten Verflüssiger gibt der Dampf seine Wärme nach außen ab. Durch das Zusammenwirken von erhöhtem Druck und Wärmeabgabe wird das Kältemittel verflüssigt. Als letzte Phase wird das flüssige Kältemittel im Kapillardrosselrohr auf den kleineren Druck entspannt und gelangt wieder in den Verdampfer.
  • Bislang war es üblich, Kapillardrosselrohre mit sehr kleinem Innendurchmesser einzusetzen. Dies hatte den Vorteil, daß das Kapillardrosselrohr kurz ausgeführt werden konnte, wodurch ein gutes Handling und eine preiswerte Ausführung gewährleistet war. Nachteilig wirkten sich aber die Geräusche bei der Einspritzung des Kältemittels vom Kapillardrosselrohr in den Verdampfer aus.
  • Der Geräuschemission wurde dann gemäß einem weiteren Vorschlag dadurch abgeholfen, daß der Innendurchmesser der Kapillardrosselrohre vergrößert wurde. Damit verband sich jedoch die nachteilige Folge, daß bei gleichem Durchfluß des Kältemittels die Kapillardrosselrohre sehr lang ausgeführt werden mußten.
  • Um beispielsweise einen Volumenstrom Q von 5 l/min bei einem Druck p von 10 bar zu gewährleisten, mußte das Kapillardrosselrohr bei einem Innendurchmesser Di von 0,6 mm eine Länge LK von 2000 mm aufweisen. Bei einer Vergrößerung des Innendurchmessers Di von 0,6 mm auf 0,8 mm mußten die Kapillardrosselrohre unter sonst gleichen Bedingungen 5500 mm lang sein.
  • Solche extrem langen Kapillardrosselrohre waren schwierig zu handhaben. Das lange freie Ende mußte aufgerollt werden. Auch die Montage des Kapillardrosselrohrs war aufwendig. Darüberhinaus waren die langen Kapillardrosselrohre infolge des größeren Materialeinsatzes teuer.
  • Der Erfindung liegt ausgehend von den im Oberbegriff des Anspruchs 1 beschriebenen Merkmalen die Aufgabe zugrunde, eine solche Kälteeinrichtung derart zu verbessern, daß der Materialeinsatz für das Kapillardrosselrohr bei Verminderung der Einspritzgeräusche merklich gesenkt werden kann.
  • Die Lösung dieser Aufgabe besteht nach der Erfindung in den im kennzeichnenden Teil des Anspruchs 1 aufgeführten Merkmalen.
  • Danach wird jetzt das verdampferseitige Ende des Kapillardrosselrohrs mit einem Längenabschnitt versehen, der als Beruhigungsstrecke ausgebildet ist. Die Beruhigungsstrecke weist einen im Vergleich zu dem konstanten Innendurchmesser der vorhergehenden Länge des Kapillardrosselrohrs größeren Innendurchmesser auf. Die Länge der Beruhigungsstrecke ist so abgestimmt, daß die beim Übergang von dem kleineren Innendurchmesser auf den größeren Innendurchmesser auftretenden Turbulenzen in eine im wesentlichen beruhigte laminare Strömung übergehen.
  • Auf diese Weise können die Einspritzgeräusche auf die gleichen Werte reduziert werden, wie sie sonst nur bei Ausführung des Kapillardrosselrohrs mit größerem Durchmesser über die gesamte Länge erreichbar sind. Dies hat zur Folge, daß die Kapillardrosselrohre wesentlich kürzer als sonst üblich ausgeführt werden können, wodurch auch ihre Handhabbarkeit verbessert wird. Durch die Materialeinsparung sind die Kapillardrosselrohre außerdem im Vergleich zum Stand der Technik erheblich kostengünstiger bereitzustellen. Da es sich bei den Kapillardrosselrohren um ausgesprochene Massenartikel handelt, macht sich dieser Vorteil besonders in wirtschaftlicher Sicht außerordentlich stark bemerkbar.
  • Die Vergrößerung des Innendurchmessers im Bereich der Beruhigungsstrecke kann mit unterschiedlichen Fertigungsverfahren durchgeführt werden. Denkbar sind beispielsweise Ziehen, Drücken, Stanzen, Rollen oder Walzen.
  • Es ist möglich, den Bereich der Beruhigungsstrecke nachträglich aufzuweiten. Es kann aber auch ein Kapillardrosselrohr mit einem größeren Innendurchmesser verwendet und dieses nachträglich auf den Bereich außerhalb der Beruhigungsstrecke verengt werden.
  • Weiterhin ist es möglich, den Innendurchmesser der Beruhigungsstrecke in mehreren Stufen zu vergrößern.
  • Nach den Merkmalen des Anspruchs 2 kann der die Beruhigungsstrecke aufweisende Längenabschnitt des Kapillardrosselrohrs so ausgebildet sein, daß er sich kontinuierlich von dem kleineren Innendurchmesser auf den größeren Innendurchmesser vergrößert. Dadurch wird ein laminarer Strömungsverlauf erreicht.
  • Der Übergang von dem Längenabschnitt des Kapillardrosselrohrs mit dem kleineren Innendurchmesser zur Beruhigungsstrecke kann stufenförmig mit scharfkantigen oder gerundeten Kanten oder aber auch konisch ausgebildet sein.
  • Entsprechend den Merkmalen des Anspruchs 5 ist das Kapillardrosselrohr schraubenlinienförmig aufgerollt. Dies führt zu einer platzsparenden, flexiblen Bauweise.
  • Zur Einführung des Kapillardrosselrohrs in die Saugleitung weist diese gemäß den Merkmalen des Anspruchs 6 eine Kapillardrosselrohreinführstrecke auf. Der Außendurchmesser der Saugleitung ist im Bereich der Kapillardrosselrohreinführstrecke etwa um den Außendurchmesser des Kapillardrosselrohrs vergrößert. Damit ist fertigungstechnisch eine einfache Einführung des Kapillardrosselrohrs in die Saugleitung gewährleistet. Über die Kapillardrosselrohreinführstrecke wird das Kapillardrosselrohr in die Saugleitung geführt und fixiert. Auf diese Weise ist ein kältemitteldichter Abschluß nach außen gewährleistet.
  • Zur Halterung des Kapillardrosselrohrs und Ausgleich von Längenausdehnungen ist das Kapillardrosselrohr vor der Kapillardrosselrohreinführstrecke entsprechend den Merkmalen des Anspruchs 8 mindestens einmal schraubenlinienförmig um die Saugleitung geführt. Auch Beschädigungen beim Einbau der Kälteeinrichtung in die Kühlaggregate wird auf diese Weise vorgebeugt.
  • Eine weitere Möglichkeit, das Kapillardrosselrohr an der Saugleitung festzulegen, bevor es in die Saugleitung eingeführt wird, besteht gemäß den Merkmalen des Anspruchs 9 in einer Verbindung, die mittels eines Schrumpfschlauchs aus Kunststoff hergestellt wird. Dabei wird der Schrumpfschlauch über das Kapillardrosselrohr und die Saugleitung gezogen und durch Erwärmung geschrumpft, wodurch die lagefeste Verbindung hergestellt wird.
  • Die Erfindung ist nachfolgend anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
  • Fig. 1
    in der Ansicht, teilweise im vertikalen Längsschnitt den Ausschnitt eines Verdampfers für ein Kältemittel mit einer Saugleitung und einem Kapillardrosselrohr;
    Fig. 2
    in vergrößerter Darstellung den Ausschnitt II der Fig. 1;
    Fig. 3
    einen Ausschnitt des verdampferseitigen Endes eines Kapillardrosselrohrs mit stufenförmigem Übergang zu einer Beruhigungsstrecke;
    Fig. 4
    einen Ausschnitt des verdampferseitigen Endes eines Kapillardrosselrohrs mit konischem Übergang zu einer Beruhigungsstrecke;
    Fig. 5
    einen Ausschnitt des verdampferseitigen Endes eines Kapillardrosselrohrs mit einem sich kontinuierlich vergrößernden Innendurchmesser und
    Fig. 6
    einen Abschnitt des verdampferseitigen Endes eines Kapillardrosselrohrs mit zweifach gestuftem Übergang zu einer Beruhigungsstrecke.
  • In der Figur 1 ist mit 1 ein Plattenverdampfer, insbesondere für Kühlschränke, veranschaulicht. Der Plattenverdampfer 1 besteht aus zwei Blechen 2, welche in bekannter Weise miteinander verbunden sind. Mindestens eines der Bleche 2 ist mit inneren Ausprägungen 3 versehen, welche nach dem Verbinden der Bleche 2 Kanäle 4 im Plattenverdampfer 1 bilden.
  • Der Plattenverdampfer 1 weist eine Anschlußöffnung 5 auf, durch die sowohl eine zu dem nicht dargestellten Verdichter führende Saugleitung 6 für das dampfförmige Kältemittel als auch ein Kapillardrosselrohr 7 für die Förderung des flüssigen Kältemittels in den Plattenverdampfer 1 eintreten. An die Anschlußöffnung 5 des Plattenverdampfers 1 schließt sich ein rohrartiger Absaugkanal 8 für das dampfförmige Kältemittel an. Der Absaugkanal 8 verengt sich an einer Dichtstrecke 9 auf den Außendurchmesser Da des Kapillardrosselrohrs 7. Hinter der Dichtstrecke 9 erweitert sich der Absaugkanal 8 zu dem Verdampferkanal 4a, in den das Kapillardrosselrohr 7 mit einem Endabschnitt 10 mündet.
  • Der verdampferseitige Endabschnitt 10 des Kapillardrosselrohrs 7 weist einen als Beruhigungsstrecke ausgebildeten Längenabschnitt LB auf (Figur 2). In dem gesamten Längenabschnitt L des Kapillardrosselrohrs 7 vor der Beruhigungsstrecke besitzt das Kapillardrosselrohr 7 einen konstanten Durchmesser Di. Demgegenüber verfügt das Kapillardrosselrohr 7 im Längenabschnitt LB über einen im Vergleich zu dem konstanten Durchmesser Di des vorhergehenden Längenabschnitts L vergrößerten Innendurchmessers Di,g. An der Dichtstrecke 9 sind der Absaugkanal 8 und das Kapillardrosselrohr 7 kältemitteldicht verbunden.
  • Aus der Figur 1 ist weiterhin ersichtlich, daß die Saugleitung 6 über eine Kapillardrosselrohreinführstrecke 11 verfügt. Im Bereich der Kapillardrosselrohreinführstrecke 11 ist die Saugleitung 6 mit einem im Vergleich zu ihrem übrigen Längenbereich LS um den Außendurchmesser Da des Kapillardrosselrohrs 7 größeren lichten Querschnitt Dk versehen. An der Stirnseite 12 der Kapillardrosselrohreinführstrecke 11 ist das Kapillardrosselrohr 7 in die Saugleitung 6 geführt. Vor der Kapillardrosselrohreinführstrecke 11 ist das Kapillardrosselrohr 7 auf einem Längenabschnitt E parallel zur Saugleitung 6 verlegt. An den Längenabschnitt E anschließend, weist das Kapillardrosselrohr 7 drei schraubenlinienförmige Windungen 13 um die Saugleitung 6 auf. Im weiteren Verlauf ist das Kapillardrosselrohr 7 nochmals auf einem Teilstück T mit schraubenlinienförmigen Windungen 14 versehen. Damit ist eine platzsparende Verlegeweise des Kapillardrosselrohrs 7 gewährleistet.
  • In der Figur 3 ist eine Ausführungsform eines Längenabschnitts LB1 mit einem verdampferseitigen Endabschnitt 10a eines Kapillardrosselrohrs 7 dargestellt mit einem Übergang 15, der stufenförmig mit scharfkantigen Ecken erfolgt. Am Übergang 15 erweitert sich der Innendurchmesser Di des Kapillardrosselrohrs 7 auf den größeren Innendurchmesser Di,g des Längenabschnitts LB1.
  • Die Ausführungsform der Figur 4 des eine Beruhigungsstrecke umfassenden Längenabschnitts LB entspricht derjenigen der Figur 2. Dargestellt ist der Endabschnitt 10 eines Kapillardrosselrohrs 7 mit einem Übergang 16, der sich konisch von dem Innendurchmesser Di des Kapillardrosselrohrs 7 auf den größeren Innendurchmesser Di,g erweitert. Der Übergang 16 erfolgt auf einem kurzen Längenstück LE.
  • Die Figur 5 offenbart einen eine Beruhigungsstrecke aufweisenden Längenabschnitt LB2 mit einem Endabschnitt 10b eines Kapillardrosselrohrs 7, bei dem sich der Innendurchmesser Di kontinuierlich auf den größeren Innendurchmesser Di,g erweitert. Der Verlauf der Beruhigungsstrecke ist hierbei strömungstechnisch optimiert und besitzt eine an die Charakteristik des Kältemittels hinsichtlich mindestens der Druck- und Geschwindigkeitsverhältnisse angepaßte Innenkontur.
  • In der Figur 6 ist ein als Beruhigungsstrecke ausgebildeter Längenabschnitt LB3 mit einem Endabschnitt 10c eines Kapillardrosselrohrs 7 dargestellt mit einem Übergang 17, der in zwei Stufen 18, 19 erfolgt. Der Längenabschnitt LB3 teilt sich in die Längenabschnitte L₁ und L₂. An der Stufe 18 erweitert sich der Innendurchmeser Di des Kapillardrosselrohrs 7 zunächst auf einen größeren Innendurchmesser Di,1 im Längenabschnitt L₁. An der folgenden Stufe 19 erweitert sich der Innendurchmesser Di,1 auf den Innendurchmesser Di,g.
  • Bezugszeichenaufstellung
  • 1
    Plattenverdampfer
    2
    Blech
    3
    Ausprägung
    4
    Verdampferkanal
    4a - Verdampferkanal
    5
    Anschlußöffnung
    6
    Saugleitung
    7
    Kapillardrosselrohr
    8
    Absaugkanal
    9
    Dichtstrecke
    10
    Endabschnitt
    10a - Endabschnitt
    10b - Endabschnitt
    10c - Endabschnitt
    11
    Kapillardrosselrohreinführstrecke
    12
    Stirnseite
    13
    Windung
    14
    Windung
    15
    Übergang
    16
    Übergang
    17
    Übergang
    18
    Stufe
    19
    Stufe
    Da
    Außendurchmesser v. 7
    Di
    Innendurchmesser v. 7
    Di,g
    vergrößerter Innendurchmesser v. 7
    Dk
    Querschnitt v. 11
    E
    Längenabschnitt
    L
    Länge Kapillardrosselrohr
    LB
    Längenabschnitt
    LB1 - Längenabschnitt
    LB2 - Längenabschnitt
    LB3 - Längenabschnitt
    LE
    Längenstück
    LS
    Längenbereich
    L₁
    Längenabschnitt
    L₂
    Längenabschnitt
    T
    Teilstrecke

Claims (9)

  1. Kälteeinrichtung für Kühlschränke oder dergleichen mit einer Saugleitung (6) für die Förderung eines dampfförmigen Kältemittels von einem Verdampfer (1) zu einem Verdichter und einem teilweise innerhalb der Saugleitung (6) angeordneten Kapillardrosselrohr (7) für die Entspannung des flüssigen Kältemittels und dessen Zuleitung zum Verdampfer (1), dadurch gekennzeichnet, daß das Kapillardrosselrohr (7) im Bereich seines verdampferseitigen Endes (10, 10a-c) mindestens einen Längenabschnitt (LB, LB1, LB2, LB3) aufweist, der einen als Beruhigungsstrecke ausgebildeten, im Vergleich zu dem konstanten Innendurchmesser (Di) des vorhergehenden Längenabschnitts (L) größeren Innendurchmesser (Di,g) besitzt.
  2. Kälteeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Kapillardrosselrohr (7) einen Längenabschnitt (LB2) mit einem sich kontinuierlich vergrößernden Innendurchmesser (Di,g) aufweist.
  3. Kälteeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Übergang (15) des einen konstanten Innendurchmesser (Di) aufweisenden Längenabschnitts (L) zu dem als Beruhigungsstrecke gestalteten Längenabschnitt (LB, LB3) stufenförmig ausgebildet ist.
  4. Kälteeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Übergang (16) des einen konstanten Innendurchmesser (Di) aufweisenden Längenabschnitts (L) zu dem als Beruhigungsstrecke gestalteten Längenabschnitt (LB) konisch ausgebildet ist.
  5. Kälteeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Kapillardrosselrohr (7) im Bereich des einen konstanten Innendurchmesser (Di) aufweisenden Längenabschnitts (L) auf einem Teilstück (T) mit schraubenlinienförmigen Windungen (14) versehen ist.
  6. Kälteeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Saugleitung (6) eine Kapillardrosselrohreinführstrecke (11) aufweist, die einen etwa um den Außendurchmesser (Da) des Kapillardrosselrohrs (7) größeren lichten Querschnitt (DK) besitzt als in ihrem übrigen Längenbereich (LS).
  7. Kälteeinrichtung nach Anspruch 1 oder 6, dadurch gekennzeichnet, daß das Kapillardrosselrohr (7) über die Kapillardrosselrohreinführstrecke (11) kältemitteldicht in die Saugleitung (6) geführt ist.
  8. Kälteeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Kapillardrosselrohr (7) vor der Kapillardrosselrohreinführstrecke (11) mindestens einmal schraubenlinienförmig um die Saugleitung (6) geführt ist.
  9. Kälteeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Kapillardrosselrohr (7) vor der Kapillardrosselrohreinführstrecke (11) mittels eines Schrumpfschlauchs an der Saugleitung (6) festlegbar ist.
EP93104613A 1992-03-30 1993-03-20 Kälteeinrichtung für Kühlschränke Withdrawn EP0563718A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4210350 1992-03-30
DE4210350 1992-03-30

Publications (1)

Publication Number Publication Date
EP0563718A1 true EP0563718A1 (de) 1993-10-06

Family

ID=6455399

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93104613A Withdrawn EP0563718A1 (de) 1992-03-30 1993-03-20 Kälteeinrichtung für Kühlschränke

Country Status (1)

Country Link
EP (1) EP0563718A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779482B2 (de) 1995-12-11 2007-12-19 Matsushita Electric Industrial Co., Ltd. Kältekreislauf
EP1843110A3 (de) * 2006-04-05 2012-05-30 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät
DE102012205058A1 (de) 2012-03-29 2013-10-02 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät
EP3045842A1 (de) * 2015-01-14 2016-07-20 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder gefriergerät

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB507150A (en) * 1937-01-29 1939-06-09 Westinghouse Electric & Mfg Co Improvements in or relating to methods of and apparatus for controlling the flow of refrigerant in refrigerating systems
US2674105A (en) * 1950-10-07 1954-04-06 Int Harvester Co Tube joint in refrigeration system
US2933905A (en) * 1957-07-09 1960-04-26 Gen Motors Corp Refrigerating apparatus
DE1116247B (de) * 1957-01-26 1961-11-02 Schmoele Metall R & G Rohrelement fuer Waermeaustauscher, bei dem ein Mantel ein Kernrohr und mindestens ein an dessen Umfang anliegendes Aussenrohr kleineren Querschnittes umschliesst
DE1242646B (de) * 1961-02-08 1967-06-22 Schmoele Metall R & G Kaelteeinrichtung fuer Kuehlschraenke
FR1516944A (fr) * 1967-01-20 1968-02-05 Siemens Elektrogeraete Gmbh Machine frigorifique à compresseur incorporée à un réfrigérateur à isolement par mousse plastique
US3531947A (en) * 1968-10-29 1970-10-06 Gen Electric Refrigeration system including refrigerant noise suppression
FR2280303A7 (fr) * 1974-07-27 1976-02-20 Bosch Siemens Hausgeraete Evaporateur, en particulier evaporateur soude par cylindrage
US4445343A (en) * 1983-02-04 1984-05-01 General Electric Company Sonic restrictor means for a heat pump system
US4793150A (en) * 1988-05-13 1988-12-27 General Electric Company Refrigeration system including refrigerant noise suppression
DE9217405U1 (de) * 1992-03-30 1993-02-18 KM-Schmöle GmbH, 5750 Menden Kälteeinrichtung für Kühlschränke

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB507150A (en) * 1937-01-29 1939-06-09 Westinghouse Electric & Mfg Co Improvements in or relating to methods of and apparatus for controlling the flow of refrigerant in refrigerating systems
US2674105A (en) * 1950-10-07 1954-04-06 Int Harvester Co Tube joint in refrigeration system
DE1116247B (de) * 1957-01-26 1961-11-02 Schmoele Metall R & G Rohrelement fuer Waermeaustauscher, bei dem ein Mantel ein Kernrohr und mindestens ein an dessen Umfang anliegendes Aussenrohr kleineren Querschnittes umschliesst
US2933905A (en) * 1957-07-09 1960-04-26 Gen Motors Corp Refrigerating apparatus
DE1242646B (de) * 1961-02-08 1967-06-22 Schmoele Metall R & G Kaelteeinrichtung fuer Kuehlschraenke
FR1516944A (fr) * 1967-01-20 1968-02-05 Siemens Elektrogeraete Gmbh Machine frigorifique à compresseur incorporée à un réfrigérateur à isolement par mousse plastique
US3531947A (en) * 1968-10-29 1970-10-06 Gen Electric Refrigeration system including refrigerant noise suppression
FR2280303A7 (fr) * 1974-07-27 1976-02-20 Bosch Siemens Hausgeraete Evaporateur, en particulier evaporateur soude par cylindrage
US4445343A (en) * 1983-02-04 1984-05-01 General Electric Company Sonic restrictor means for a heat pump system
US4793150A (en) * 1988-05-13 1988-12-27 General Electric Company Refrigeration system including refrigerant noise suppression
DE9217405U1 (de) * 1992-03-30 1993-02-18 KM-Schmöle GmbH, 5750 Menden Kälteeinrichtung für Kühlschränke

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779482B2 (de) 1995-12-11 2007-12-19 Matsushita Electric Industrial Co., Ltd. Kältekreislauf
EP1843110A3 (de) * 2006-04-05 2012-05-30 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät
DE102012205058A1 (de) 2012-03-29 2013-10-02 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät
EP3045842A1 (de) * 2015-01-14 2016-07-20 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder gefriergerät

Similar Documents

Publication Publication Date Title
EP0132620A2 (de) Verdampfer
EP0629824B1 (de) Verdampfer für ein Kompressor-Kühlgerät
EP0487002B1 (de) Vorrichtung zur Klimatisierung des Innenraums von Kraftfahrzeugen
DE2226745A1 (de) Strahlgeblaese, sogenannter ejektor
EP1567770B1 (de) Schraubenverdichter
EP2984420A1 (de) Kältegerät mit einem verdampfer
DE2319547A1 (de) Kugelschraubgetriebe
EP1921401A2 (de) Verfahren zur Wärmerückgewinnung
EP0563718A1 (de) Kälteeinrichtung für Kühlschränke
DE9217405U1 (de) Kälteeinrichtung für Kühlschränke
DE4330214A1 (de) Wärmetauscher
DE3613395C1 (en) Compression refrigerating machine
EP1721763B1 (de) Kältemittelleitungen für Klimageräte
DE973828C (de) Kaelteeinrichtung fuer Kuehlschraenke
DE4442817C2 (de) Verdampfer für ein Kompressorkühlgerät
EP0698771B1 (de) Gefrierschrank
DE19900701A1 (de) Kapillar-Saugrohrsystem für Verdampfersysteme bzw. Kältekreislaufsysteme
DE2525889A1 (de) Klimaanlage, insbesondere fuer kraftfahrzeuge
DE4319192A1 (de) Verfahren zur Herstellung von Kältemittelverteilern, insbesondere für Verdampfer einer Klimaanlage eines Kraftfahrzeuges
DE1451039A1 (de) Rohrschlangen-Waermeaustauscher
DE102009041916A1 (de) Kühl- und/oder Gefriergerät
DE102007048386A1 (de) Kühl- und/oder Gefriergerät
DE202007014077U1 (de) Kühl- und/oder Gefriergerät
EP1540223A1 (de) Wärmetauscher und verfahren zur herstellung eines wärmetauschers sowie stranggepresstes verbundprofil zur verwendung in einem solchen verfahren
DE4443591A1 (de) Kältegerät, insbes. Haushaltskältegerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FR IT SE

17P Request for examination filed

Effective date: 19940311

17Q First examination report despatched

Effective date: 19950213

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950624