EP0550649B2 - Dispositif de surveillance d'appareils portatifs de respiration - Google Patents

Dispositif de surveillance d'appareils portatifs de respiration Download PDF

Info

Publication number
EP0550649B2
EP0550649B2 EP91918293A EP91918293A EP0550649B2 EP 0550649 B2 EP0550649 B2 EP 0550649B2 EP 91918293 A EP91918293 A EP 91918293A EP 91918293 A EP91918293 A EP 91918293A EP 0550649 B2 EP0550649 B2 EP 0550649B2
Authority
EP
European Patent Office
Prior art keywords
signal
receiver
transmitter
pressure
monitoring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91918293A
Other languages
German (de)
English (en)
Other versions
EP0550649A1 (fr
EP0550649B1 (fr
Inventor
Markus Mock
Ernst Völlm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uwatec AG
Original Assignee
Uwatec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6416667&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0550649(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Uwatec AG filed Critical Uwatec AG
Priority to AT9191918293T priority Critical patent/ATE105246T1/de
Publication of EP0550649A1 publication Critical patent/EP0550649A1/fr
Application granted granted Critical
Publication of EP0550649B1 publication Critical patent/EP0550649B1/fr
Publication of EP0550649B2 publication Critical patent/EP0550649B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/32Decompression arrangements; Exercise equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • B63C9/0005Life-saving in water by means of alarm devices for persons falling into the water, e.g. by signalling, by controlling the propulsion or manoeuvring means of the boat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C2011/021Diving computers, i.e. portable computers specially adapted for divers, e.g. wrist worn, watertight electronic devices for detecting or calculating scuba diving parameters

Definitions

  • the present invention relates to a monitoring device for mobile breathing devices.
  • Mobile respirators of this type e.g. by divers, by firefighters at the Firefighting or generally used when the Air is contaminated with pollutants that allow free breathing to make impossible.
  • Mobile breathing devices usually exist one or two metal bottles, e.g. on the back carried by the user and in which a highly compressed oxygen-gas mixture with a pressure of e.g. up to 350 bar is included. This oxygen-gas mixture is simplified in the following as breathing air or simply called air. The air we breathe becomes the bottles removed via a shut-off valve and by the user of a so-called lung regulator.
  • the diver therefore needs a monitoring device the actual air consumption and the still possible To be able to estimate the length of stay under water.
  • the present invention is therefore based on the object a device for monitoring mobile breathing apparatus create through which the user at least over his Air supply is informed and the reliable and works in particular free of external interference and whose display is easy to read. It is further object of the invention, a corresponding method to monitor mobile respirators.
  • the inventive method is the subject of the claim 33.
  • the monitoring device consists of a transmitter and from a separate from this Receiving device.
  • This design has the advantage that the receiving device, which is usually immediately with the display device is combined, in the field of vision of the User can be arranged without it Freedom of movement, e.g. through a hose device, is unnecessarily restricted and without having to read the Display device requires special handling is.
  • the receiving device can thus in any way from Users are worn. It is preferable that the Receiver directly on the wrist of the User is arranged. Opposite an arrangement on a Face mask, this has the advantage that the user does not Accommodation difficulties when reading the display Has. In addition, he does not always have that Display instruments in view, what irritate him or could distract. The arrangement on the wrist allows that User, the corresponding displayed data even then easy to read if it e.g. any work with your hands.
  • a risk that should not be underestimated goes to the wireless transmission also assume that appropriate Usually missions or dives alone be undertaken, but that several people take the Use or do the dive together. There within a rescue organization or diving center often identical for all members of such a group Devices are used, the risk is very high that a Receiving device the signals of the transmitting device Neighbors and thus the user wrong values displays.
  • the distance from different users e.g. when collecting objects together or people, be very small, so the distance-related Difference in intensity no longer matters. This applies e.g. then when a diver tries to to help colleagues in difficulty.
  • the monitoring device solves this Problems very reliable.
  • a Identification signal ensures that each Receiving device only receives and processes the signals, broadcast by the assigned transmitter become. This not only prevents signals other devices can be received; because of the rigid predetermined identification pattern is also prevented that signals are processed by external Disturbances, e.g. from any other channels. This is achieved in that the signal is only processed further if it exactly matches the respective identification pattern corresponds. That interference signals from others any transmitter corresponding identification pattern included is very unlikely.
  • each part of the broadcast already at the Production of a specific receiving part or vice versa is assigned.
  • this has the disadvantage that e.g. in the event of a failure of the receiving part, the associated one Transmitting part also becomes unusable and vice versa.
  • transmission and Receiving part designed so that the identification signal change mode always from one device, and preferably from Transmitting part, is triggered, this device then preferably also a fixed, unchangeable identification signal owns.
  • both when Transmitting part as well as necessary battery at the receiving part be arranged pressure-tight in the respective housing and cannot be changed by the user himself.
  • the batteries of the transmitter and Receiving part depending on the respective usage profile, would be consumed at different speeds for the Time of battery replacement of a device, which is usually can only be made by the manufacturer, both devices such a combination fail. This disadvantage too is avoided by the changeable assignment.
  • variable assignment also has the advantage that one Sending device can also be assigned to two receiving devices can. It is then e.g. possible that a diving instructor has two Receiving devices used with which he kept his air supply and the air supply of a student diving with him can watch. If the devices also have a Air consumption measurement are provided, the instructor can moreover from this display the stress state of his Judge the student.
  • the identification signal change mode is preferred triggered by the transmitter by a manual Activity is caused to give a particular signal that Identification control signal to be sent out to the Receiving device indicates that an assignment process to be held.
  • a manual Activity is caused to give a particular signal that Identification control signal to be sent out to the Receiving device indicates that an assignment process to be held.
  • the actual assignment is done by using the Identification control signal also the identification signal of the transmitting part is broadcast. That in the identification signal change mode brought receiver receives this identification signal and stores it in a corresponding memory until it is in the frame a new assignment another identification signal receives.
  • One of the preferred goals of the monitoring device is the calculation of the user of the breathing apparatus Available breathing time. This breathing time is preferred calculated by a computing device that either is installed in the sending device or in the receiving device. This allows the user to see the breathing apparatus how long the air we breathe at the current Conditions will still suffice.
  • this computing device is installed in the receiving section and performs the air consumption calculation in the sense of a forecast if no signal is received from the transmitter. Thereby can receive a signal after an interruption its plausibility will be checked.
  • the receiving device due to a fault receives no signal, it calculates the air consumption so long due to the previous measurements continue to be high until the next signal is reliably received. Then it will be checks whether this received signal in a certain Tolerance range of the projected air consumption is. If so, the signal is considered a new value displayed. If this is not the case, there is no display. Also preferred is as long as the reception situation is unclear, no display value is output.
  • This design has the advantage of being reliable can be prevented that the receiving device due to an incorrectly received signal displays an incorrect value that could irritate the user.
  • the transmission of the signals from the transmitting part to the receiving part can with all suitable for the signal transmission Procedure. If the monitoring device is under Water is used, the data transmission can be done with Ultrasound done. One is particularly preferred Use under water, however, the use of radio signals, and here in particular the use of signals in the long wave range, i.e. the use of radio signals with a frequency of 5 Hertz to 100 Kilohertz.
  • Both the transmitter and the receiver can be used other functions.
  • This computer is preferably in the receiving section housed and is connected to a pressure sensor, the the hydrostatic pressure of the water and thus the Measures depth. It is also another timer provided by which the diving time is measured can.
  • the measured Values of diving depth and diving time the saturation or Desaturation behavior for a finite number of Tissue types determines how this e.g. in the quoted work by Buehlmann is shown. Can be determined from these values and showing the diver how long the ascent is to the water surface as a whole, and in which Deep decompression stops with which length are to be inserted.
  • the Decrease in pressure with known bottle volume determined what amount of air the diver takes in per unit of time. Of this value is based on an average or a increased physiological work performance that closed is then taken into account in the decompression calculation.
  • Both the absolute and the relative air consumption measurement can be continued while surfacing to to influence the decompression calculation further. Thereby it is possible to perform a physiological work during the decompression phase, which in the Usually the decompression time is shortened.
  • Air consumption measurement can also be done using an appropriate Sensor detects the pulse rate of the diver and to the Decompression meter can be transmitted.
  • the pulse rate also provides a measure of the physiological Work performance. If the pulse frequency is e.g. over electrodes removed, which is arranged in the chest area of the diver the values can e.g. by means of a cable connection forwarded to the transmitter on the scuba tank and thence wirelessly with the monitoring device to the Wrist-worn receiving device can be transmitted.
  • the monitoring device When using the monitoring device in the fire and combating disasters can also do several additional functions can be integrated in the receiver.
  • the remaining one Breathing time and / or breathing rate calculated and displayed become.
  • the receiving device Provide measuring sensors that provide the user with information about give the condition of the surrounding air. For example, at fire fighting the carbon monoxide content in the air measured and displayed so that the user of the Breathing apparatus e.g. about the danger of those to be saved People is informed.
  • Gas detectors but also sensors for all other types of measurable damage (e.g. Geiger counter and the like).
  • Embodiment of the invention is intended in Used with a diver's breathing apparatus become. However, it can also be done with appropriate Modifications also for breathing devices, such as e.g. at the Fire and disaster control are used Find.
  • Fig. 1 shows a highly schematic representation of the Monitoring device, generally designated 1 and is a transmitting part 2, which is the transmitting device includes, and a receiving part 3, the receiving device includes, has.
  • the transmitting part 2 is, in the present example, (in the Fig. Not shown) firmly on a diving bottle 5th appropriate.
  • the diving bottle is a conventional one Steel bottle with a volume of e.g. 7 to 18 liters and a maximum storage pressure of e.g. 350 bar, which can be closed with a manually operated shut-off valve 6.
  • the shut-off valve 6 is open during use, and the pressure of the air supplied to the user is above a schematically indicated pressure control valve 9 regulated.
  • This valve 9, which is usually used as a regulator is one of the different types have, which are known in the prior art.
  • the user then removes the air from the breathing apparatus, e.g. about a (not shown) hose connection by means of a Mouthpiece.
  • shut-off valve There is a between the shut-off valve and the regulator Pressure sensor 7 arranged in the bottle prevailing pressure.
  • the arrangement of the pressure sensor after the shut-off valve 6 has the advantage that the Pressure sensor during storage of the bottle with the Device pressure is applied; still has this as before is explained, advantages in terms of security design the monitoring device.
  • the receiving part 3 is in use in spatial Distance to the transmitting part 2 used and is with a Coupled display device 4, which is usually directly integrated into the housing of the receiver is.
  • the transmitting part 2 shown schematically in FIG. 2 has one of non-magnetic material, preferably Plastic, existing housing 10 in which the electrical and electronic components of the transmitting part are included.
  • the inside of the housing 10 of the transmitter part 2 is completely with electrically non-conductive oil, Filled silicone or the like.
  • the area of the housing 10a, in which the pressure sensor 7 is arranged, is so designed that the pressure in the bottle 5 is exposed. This is due to the connecting piece 11, 12 shown schematically.
  • the remaining part 10b of the housing is also sealed to prevent water ingress avoid.
  • a battery 13 is also accommodated in the housing 10, which supplies the transmitter with electrical energy, and which is therefore also exposed to the pressure in the housing.
  • the pressure sensor 7 is via electrical lines here and are only shown schematically below, connected to a signal conditioning circuit 20.
  • Pressure sensor can be all commercially available sensor types can be used, provided that they are used with a Battery voltage of less than 5 V can be operated and use as little energy as possible. Especially to Therefore, pressure sensors based on the piezoelectric are preferred Working principle.
  • the analog signal from the pressure sensor is in the signal conditioning circuit 20 into one using an A / D converter digital signal converted.
  • the signal conditioning circuit 20 is still with a quartz controlled timer 21 connected, the purpose of which will be explained below.
  • the digitally processed signal becomes a commercially available one Microprocessor computing unit 22 supplied.
  • the microprocessor computing unit 22 is connected to a memory 23 and also receives the signals from the timer 21.
  • the Memory 23 (and the corresponding memory in the receiving section) can be built entirely from RAM memory elements his. But it is also possible to use a mixed storage, consisting of ROM (read-only memory) and RAM memory elements to use. Since the battery voltage is permanently Is available, the memory contents can also be found at Long-term use of volatile memory elements be secured.
  • the Transmit output stage 25 the signal on the antenna 26th transfer.
  • the antenna 26 consists of a ferrite core, which with Copper wire is wrapped. Has proven to be particularly cheap an inductance of the transmitter coil in the range between 10 and 50 mHenry proven.
  • time segment 41 is in the left part of the figure the transmitter in stand-by mode.
  • the signal conditioning circuit is caused to to carry out a pressure measurement at certain intervals, what is characterized by columns 42.
  • the time interval here is approximately 5 seconds surrender.
  • the microprocessor 22 is between two Measurements always switched to a stand-by mode in which he uses very little energy. That’s it possible, the transmitter part with a typical usage profile for about 5 years with a lithium battery operate.
  • the start signal for the pressure measurement comes from the timer 21 of the transmitting device.
  • the microprocessor 22 is then activated and the pressure by means of the pressure sensor 7 measured.
  • the transmission device from stand-by mode to transmission mode switched.
  • Various switch-on criteria can be used Criteria are used. Has been particularly advantageous it turned out to be the result of two successive Compare pressure measurements and if the pressure rises to switch to transmit mode.
  • the switch-on criterion is preferably such that the transmission mode is switched on if within 5 sec an increase in pressure from below 5 bar to e.g. 30 bar or above is determined. This increase is in achieved in any case if the user of the breathing apparatus Shut-off valve 6 of bottle 5 opens and thus the Pressure sensor 7 applied with the bottle pressure. Random pressure fluctuations, e.g. through temperature changes, Changes in height etc. are not enough to meet this switch-on criterion.
  • the identification change mode is followed by the actual one Normal mode in period 45, which is the real one Represents the use phase of the device. As in FIG. 3 is shown schematically, change in this mode a measurement interval 46 and a transmission interval 47 from. It has proved to be cheap, even during normal mode with a time interval of the pressure measurements of 5 sec to work. After the recording of each measured value is then generated and transmitted by the microprocessor the transmission output stage 25 fed to the antenna 26.
  • the time interval between the pressure measurement and the transmission of the signal is not constant, but is replaced by the Random microprocessor within a predetermined time range varies.
  • the sending of the However, the signal always occurs before the next one is recorded Measured value.
  • This time variation has the advantage that two operated simultaneously at a short distance Monitoring devices using various breathing apparatus monitor a collision of transmitted signal values can only happen randomly.
  • the Switch-off criterion exists if for a predetermined one Number of measuring intervals no longer decrease in pressure is detected.
  • the signal transmission from the transmitting device 2 to the receiving device 3 takes place by means of an electromagnetic radio wave of constant frequency.
  • the quartz-controlled timer 21 is used to control the transmission frequency. Since the frequency of the quartz crystal is 32,768 Hz, the structure of the transmission part is simplified if a frequency is used which is derived from this frequency with the divider 2 n .
  • a known method that is also used for the monitoring device of the type shown could be used the frequency change of the transmission signal with the so-called Frequency Shift Keying ''. With this procedure the Bit information contents 0 and 1 different frequencies assigned. However, this means that 2 frequencies have to be transmitted what increases the effort on the sender and receiver side.
  • phase Shift Keying (PSK)
  • DPSK differential phase Shift Keying
  • the transmission signal experiences one Phase shift when a 1 is transmitted; should be a 0 the send signal remains unchanged. Because with this method the first bit of the transmitted bit pattern contains an uncertainty, it must not be used as an information carrier serve.
  • FIG. 4 An example of this digital encryption is in Fig. 4 shown.
  • the diagram 60 is over a time axis 61 and a number axis 62 a bit pattern consisting of bits 011010011 ....
  • a signal sequence 5 which, as shown in FIG. 5, consists of a Preamble, the identification signal, a data block and a postamble is set up.
  • the preamble serves the Receiving device the synchronization to the sent Enable signal.
  • the identification code contains the transmitter-specific identification.
  • the identification code the actual one to be transferred closes Data block.
  • the data block always contains the measured pressure value, but can be at a preferred Embodiment also contain a temperature value, which is detected by a corresponding temperature sensor. It is also possible to e.g. from the measurement of the Pressure signal derived respiratory rate in this data block transferred to. Of course, others can also Data will be transferred if this is specific Use case is of interest.
  • the Postamble which is used, among other things, for error correction.
  • this includes 16-bit synchronization interval, the identification code 24 bits, the data block 32 bits and the postamble 4 bits. So each signal is 76 bits long.
  • the receiving part 3 is separate from the transmitting part in one Plastic housing 70 housed and has none Connection mechanical or electrical Lines with the transmitter part 2.
  • the plastic housing 70 is with electrically non-conductive oil, silicone or the like filled and has a battery 71 to the electrical and electronic components with electrical To supply energy.
  • On the housing 70 is also a flexible bracelet (not shown) arranged that it allows the user to use the receiving part as one Attach wrist watch to wrist.
  • the housing is designed to withstand water pressure too withstands the greatest depths that can be reached by divers and has on its outer surface facing the water no movable electrical switching devices.
  • the digital signal is fed to a comparator 83.
  • This comparator determines whether the received and processed signal the identification signal or the Identification control signal contains. Is that the case, the signal is fed to a microprocessor 85 which, controlled by a stored in a memory 86 Program that takes over further processing.
  • the use of the upstream comparison stage has the Advantage that the microprocessor 85 only with the signal is applied when it is established that the individual Receiving device is addressed.
  • the timing of the receiving part is carried out via a Timer 84.
  • the data derived from the received signal as well if necessary, further data are shown on the display 87 Users displayed.
  • the display 87 is behind one transparent area in the wall of the housing 70 of the Receiving part 2 arranged.
  • the in the bottle 5 prevailing pressure and preferably also the remaining breath time is displayed.
  • a further pressure sensor 89 is required, the respective Measures ambient pressure.
  • the remaining breath will be determined by the microprocessor from the pro Time unit measured pressure drop taking into account the current air consumption is determined from the ambient pressure becomes.
  • the air consumption can either be short past time or over a longer period of time be averaged to obtain realistic values. Out of it then the expected time to complete Extracted air extraction.
  • the respective data are shown on the display as long as until after a new measurement and the transfer of the Values new data are determined.
  • the receiving device also has a schematic only Switching device 88 shown with those already mentioned Metal pins 73 on.
  • the metal pins 73 can also in greater distance from each other or at different Sides of the case can be arranged to prevent accidental To prevent contact bridging.
  • each broadcasting part will be broadcast on the Manufacturing an identification signal that is assigned is only awarded once.
  • a 24-bit signal is used resulting in a total of 16.7 million different ones Identification opportunities arise. Because of this high number ensures that there are never two transmission parts with same signal exist.
  • the identification signal of the transmitting part is in one Read-only memory area of the memory 23 of the transmitting part 2 filed. It is also possible to in the identification signal store a RAM memory area; in this case but the signal e.g. through simultaneous use as Manufacturer number otherwise fixed in the device, so the signal is correct again when changing the battery can be read.
  • the identification change mode is started every time when the transmitter is put into operation. This happens, as explained above, preferably by a fixed switch-on criterion, e.g. turning up the Device valve 6 of the bottle 5.
  • the transmitter part then goes in the identification change mode and sends, as in 6 shows a signal which consists of a preamble, an identification control signal, the actual identification signal and there is a postamble.
  • the preamble is 16 bits, the postamble 4 bits and the identification control signal and that Identification signal each 24 bits long.
  • the identification control signal is from all receiving parts of the corresponding series understood. Once a Receiving part receives this signal, it is over the Microprocessor in the identification change mode switched. The processor then asks on the display whether the identification signal of the transmitting part is accepted shall be. This is done by the user via the switching device 88 confirmed by means of the metal pins 73, that is Identification signal of the transmitter part adopted and in Memory 86 as an identification comparison signal saved.
  • the control program of the stored in the memory 86 Receiving part can be designed so that the receiving part, once it has the identification control signal of the Receiving part in identification change mode, checks whether its stored identification comparison signal with the identification signal of the Transmitting part matches. If so, it can Receiving part then indicate that it is on this transmitting part is set so that the user knows that the two Devices are assigned to each other.
  • the first stage is the coupling of the beginning of the Identification change mode to the switch-on criterion of the transmitting part.
  • the identification change is only ever immediately after the switch-on criterion occurs performed. This reliably prevents a Identification change during normal use of the Devices is started.
  • the second part of the security level is used by the receiver a corresponding device an energy measurement of the in Identification change mode received signal carried out.
  • the program of the receiving part is so designed that whenever the identification control signal is received, an energy measurement of the Overall signal is carried out. Only when the transmission energy exceeds a certain limit is one Assignment possible.
  • the transfer of energy from the transmitting part to the receiving part depends, as is known, on the distance and, to a considerable extent, also on the respective alignment of the two antennas to each other. Only if the devices are spatially and angularly are arranged in a certain way to each other, the maximum energy absorbed by the receiver.
  • the limit value for energy measurement is therefore chosen so that an assignment can only take place if send and Receiving part are arranged at a small distance from each other and also a given angular orientation to each other.
  • the antennas of the transmitter and Receiving part preferably so in the respective housing arranged that the maximum energy at a parallel or T-shaped arrangement of the devices to each other results. To rule out coincidences here, too the transmission of the identification control signal several times repeated and only then of sufficient signal energy assumed when the measured value at a certain percentage of the transmissions above the Limit is.
  • the switching device 88 press to confirm the identification change.
  • the three metal pins in a way used that in the identification change mode only two may be bridged. This excludes that an identification assignment under water (in this Case, all three metal pins would be electrically connected) happens. It is also possible to have three metal pins in the Way to use that first a first pair and then a second pair must be bridged.
  • the following describes how the one shown Receiving device the plausibility of the received data checked.
  • the monitoring device should if possible never, not even at short notice, wrong values Show. Because of the wireless transmission it can however, the reception of the whole while a transmission interval transmitted signal or parts of the signal, e.g. by strong movements of the user or the like is impaired.
  • an additional Security measure a plausibility check provided to rule out any danger of a false report.
  • the plausibility check is carried out via the Calculation of the expected pressure drop in the bottle of the breathing apparatus by the microprocessor of the receiving part.
  • Monitoring device which is shown schematically in FIG. 8 is shown, the monitoring device with a Decompression calculator combined.
  • the decompression calculator could be with the sending device as well as with the receiving device be arranged.
  • Decompression computers of the type in question here known in the art have such devices, for example, in large numbers in 1989 in Europe, USA, Japan, Australia and many other countries e.g. under the name "Aladin pro" expelled.
  • the current ambient pressure which is a measure of the diving depth is, and the entire dive time over a corresponding Pressure measuring device and a time measuring device detected.
  • These input values are based on one in a memory stored program using a microprocessor Saturation and desaturation behavior of a certain Number, e.g. six or sixteen different tissues simulated.
  • the computing unit determines which tissue Tissue is decisive for decompression, the so-called Guide fabric, and then determines the number, the depth and the respective duration of the necessary decompression stages.
  • the diver will see the on a display total diving time, the current diving depth, each next decompression stop and the entire duration displayed that is required to work with a particular prescribed ascent rate and the Decompression steps to reach the water surface.
  • the decompression computer with memory devices provided, a so-called log book, in which the Dive profile from previous dives saved is, so that the diver after leaving the water the respective diving times etc.
  • a decompression computer with a device to measure the air pressure before diving to thus also for lakes that are at a higher altitude than the Sea level to be operational and to keep up with fluctuations in air pressure not to be included in the measurement result.
  • the embodiment shown in Fig. 8 of the invention Monitoring device works with one Transmitting part, as explained in relation to FIG. 2 and is therefore no longer shown in FIG. 8.
  • the Receiving part has a pressure-resistant, non-magnetic Housing 100 in which, as by the dash-dotted line Is indicated area, the receiving device 103 and the Decompression calculator 104 are arranged together.
  • the Housing is oil filled and has an internal pressure that is the same is the pressure of the water surrounding the housing.
  • the Dimensions of a sample of this case that is to be worn provided on the wrist is approx. 75 mm (length transverse to the arm direction) and about 75 mm wide, along the Poor measured.
  • the housing has a thickness of approx. 20 mm.
  • the receiving part 103 is as described above constructed and has an antenna 110 and a first Microprocessor 112 with a memory 113.
  • the in essential components serving the signal processing are summarized schematically in component 111.
  • the decompression computer has a microprocessor 120 with a memory 121 for program and data.
  • the Pressure of the surrounding water is measured by a pressure sensor 125 recorded.
  • the remaining electrical components, such as Timers etc. are summarized schematically in component 127.
  • At least the Power supply battery 130 one in the Housing wall recessed display 132 and a switching device 134 provided with four metal pins 136.
  • a common one Display control device and a common timer and the like can be used.
  • the monitoring device can according to this Embodiment coupled with ads that are first become visible after leaving the water, e.g. a Warning sign in the form of an airplane that the diver indicates that the use of an airplane is not yet is possible again, a logbook display etc.
  • the decompression data are, as described above, from the microprocessor 120 via the simulation of the behavior determined a certain number of tissue types.
  • the allowable residence time at a certain depth by e.g. iterative approximation, by the pre-calculated time that the air supply still sufficient in the remaining stay and in the Total surfacing time that is required to expire the time of stay emerging from this depth is divided.
  • the calculated air consumption in the decompression calculation be taken into account. Because air consumption is a measure of that physiological work performed by the diver, can, according to the research results of the Diving medicine, the influence of physical work performance on the decompression times are taken into account.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring Fluid Pressure (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

Un dispositif de surveillance pour appareils portatifs de respiration comprend un manomètre qui détecte la pression dans le réservoir sous pression (5) de l'appareil de respiration et un émetteur (2) qui émet à des intervalles réguliers un signal correspondant à la pression. L'émetteur comprend en outre un générateur de signaux qui génère un signal d'identification caractéristique de l'émetteur. Le signal de pression et le signal d'identification sont reçus et contrôlés par un récepteur (3). Lorsque le signal d'identification coïncide avec un signal de comparaison d'identification enregistré dans le récepteur, la valeur de mesure de la pression est affichée sur un dispositif d'affichage (4).

Claims (33)

  1. Dispositif de surveillance pour un appareil mobile de respiration comprenant :
    un dispositif de mesure de pression qui mesure la pression dans un ou plusieurs récipients sous pression de l'appareil de respiration au moyen d'un capteur de pression et délivre un signal de pression électrique représentatif de la pression ;
    un dispositif émetteur qui reçoit le signal de pression délivré par le dispositif de mesure de pression et qui émet un signal d'émission correspondant ;
    un dispositif récepteur destiné à être porté par l'utilisateur, qui est associé à ce dispositif émetteur et qui reçoit le signal d'émission émis par le dispositif émetteur ;
    un dispositif à microprocesseur disposé dans le dispositif récepteur, qui est commandé par un programme qui est stocké dans la mémoire disposée dans le dispositif récepteur, ce dispositif à microprocesseur déterminant à partir du signal d'émission reçu la valeur de pression mesurée par le dispositif de mesure de pression ;
    un dispositif d'affichage qui affiche des données sous forme de chiffres et de symboles, qui est couplé au dispositif récepteur et qui affiche cette valeur de pression calculée ; caractérisé par le fait
    que le dispositif émetteur comporte un dispositif de commande qui agit de manière telle que les signaux d'émission soient émis par intervalles d'émission ;
    que le dispositif de commande agit en outre de manière telle que l'espacement dans le temps entre la mesure de pression et l'émission du signal d'émission ne soit pas constant ;
    que le dispositif émetteur comporte un dispositif de génération de signal qui génère un signal d'identification qui est caractéristique du dispositif émetteur individuel et qui l'identifie de manière univoque ;
    que le dispositif de commande agit de manière telle que ce signal d'identification soit émis au moins une fois à l'intérieur de chaque intervalle d'émission ;
    qu'un signal d'identification de référence associé au dispositif émetteur individuel correspondant est stocké dans la mémoire du dispositif récepteur ;
    que le dispositif récepteur comporte un dispositif comparateur qui, en utilisant ce signal d'identification de référence, examine si un signal reçu contient le signal d'identification correspondant au dispositif émetteur associé, et
    qu'une valeur de pression n'est déterminée à partir d'un signal reçu par le dispositif récepteur et affichée que dans le cas où le signal d'identification reçu par le dispositif récepteur correspond au signal d'identification stocké dans le dispositif émetteur associé.
  2. dispositif de surveillance selon la revendication 1, caractérisé par le fait qu'il est prévu un dispositif convertisseur qui code sous forme de données numériques les signaux devant être transmis par le dispositif émetteur.
  3. Dispositif de surveillance selon la revendication 1 ou 2, caractérisé par le fait qu'au moins l'unité de commande et le dispositif de génération de signal du dispositif émetteur sont regroupés dans un premier dispositif à microprocesseur qui est commandé par un programme stocké dans une mémoire.
  4. Dispositif de surveillance selon l'une au moins des revendications 1 à 3, caractérisé par le fait que le signal d'identification est stocké dans le dispositif émetteur sous forme de séquence de chiffres numériques à n bits et par le fait que le signal d'identification de référence est stocké dans le récepteur également sous forme de séquence de chiffres numérique à n bits.
  5. Dispositif de surveillance selon l'une au moins des revendications 1 à 4, caractérisé par le fait que le signal d'identification stocké dans le dispositif émetteur et/'ou le signal d'identification de référence stocké dans le dispositif récepteur peut ou peuvent être modifiés aux fins d'adapter mutuellement le signal d'identification et/ou le signal d'identification de référence du dispositif émetteur et/ou récepteur.
  6. Dispositif de surveillance selon la revendication 5, caractérisé par le fait que le dispositif de génération de signal du dispositif émetteur génère un signal de commande d'identification, par le fait qu'un signal de commande d'identification de référence est stocké dans la mémoire du dispositif récepteur et par le fait que le dispositif comparateur commute le dispositif récepteur en mode de modification de signal d'identification dès que le dispositif comparateur constate qu'un signal de commande d'identification émis par le dispositif émetteur est identique au signal de commande d'identification de référence stocké dans le dispositif récepteur.
  7. Dispositif de surveillance selon la revendication 6, caractérisé par le fait que le dispositif émetteur comporte un premier dispositif de détection qui détecte l'apparition d'une condition préétablie et provoque une commutation du dispositif émetteur d'un mode d'émission dans lequel au moins le signal de pression et un signal d'identification sont émis vers un mode de modification de signal d'identification dans lequel un signal de commande d'identification et le signal d'identification sont émis.
  8. Dispositif de surveillance selon la revendication 7, caractérisé par le fait que le signal de pression mesuré par le dispositif de mesure de pression est transmis au premier dispositif de détection et que celui-ci détecte comme condition préétablie si la pression mesurée par le dispositif de mesure de pression augmente d'une valeur prédéterminée à l'intérieur d'un intervalle de temps prédéterminé.
  9. Dispositif de surveillance selon l'une au moins des revendications 6 à 8, caractérisé par le fait que le dispositif récepteur comporte un dispositif de mesure d'énergie de signal au moyen duquel on mesure l'énergie du signal reçu du dispositif émetteur au moins chaque fois que le dispositif comparateur détecte qu'un signal de commande d'identification émis par le dispositif émetteur est identique au signal de commande d'identification de référence stocké dans le dispositif récepteur.
  10. Dispositif de surveillance selon l'une au moins des revendications 6 à 9, caractérisé par le fait que le dispositif récepteur comporte un dispositif de commutation pouvant être actionné manuellement et par le fait qu'un signal d'identification reçu par le dispositif récepteur pendant le mode de modification d'identification n'est mémorisé que si le dispositif de commutation manuel est actionné.
  11. Dispositif de surveillance selon la revendication 10, caractérisé par le fait que le dispositif de commutation comporte des broches de contact électrique en métal qui traversent une partie du boítier électriquement non conducteur du dispositif de récepteur et peuvent être touchées de l'extérieur.
  12. Dispositif de surveillance selon les revendications 5, 6, 9 et 10, caractérisé par le fait que le dispositif récepteur ne mémorise un signal d'identification reçu pendant le mode de modification d'identification que si l'énergie du signal reçu est supérieure à une valeur donnée prédéterminée et si le dispositif de commutation est actionné.
  13. Dispositif de surveillance selon l'une au moins des revendications 1 à 12, caractérisé par le fait que la transmission du signal émis entre le dispositif émetteur et le dispositif récepteur a lieu par ultrasons.
  14. Dispositif de surveillance selon l'une au moins des revendications 1 à 12, caractérisé par le fait que la transmission des signaux entre le dispositif émetteur et le dispositif récepteur a lieu au moyen d'ondes électromagnétiques (ondes radio).
  15. Dispositif de surveillance selon la revendication 14, caractérisé par le fait que la fréquence des ondes électromagnétiques se situe dans la plage des ondes longues, de préférence entre 5 et 100 kilohertz, plus particulièrement entre 5 et 50 kilohertz et de manière encore plus précise entre 5 et 15 kilohertz.
  16. Dispositif de surveillance selon la revendication 14 ou 15, caractérisé par le fait que la transmission de données a lieu par modification du phasage d'un signal sinusoïdal (phase shift keying) et de préférence par modification différentielle du phasage (différential phase shift keying).
  17. Dispositif de surveillance selon l'une au moins des revendications 1 à 16, caractérisé par le fait qu'au moins quatre séquences de bits à nombre de bits déterminé sont émises pendant chaque intervalle d'émission, la première séquence de bits étant un préambule qui permet de synchroniser le dispositif récepteur avec le dispositif émetteur, les deuxième et troisième séquences de bits par exemple étant une séquence de données qui est représentative du signal de pression mesuré ou qui contient le signal de commande d'identification et par exemple la quatrième et dernière séquence de bits terminant chaque intervalle d'émission comme postambule.
  18. Dispositif de surveillance selon l'une au moins des revendications 1 à 17, caractérisé par le fait que le dispositif émetteur comporte une unité d'horloge et est commandé de manière telle que le dispositif de mesure de pression mesure la pression à intervalles fixes prédéterminés.
  19. Dispositif de surveillance selon la revendication 18, caractérisé par le fait que la valeur déterminée lors de la mesure de la pression est transformée en signal d'émission et émise avant qu'ait lieu la mesure de pression suivante et par le fait qu'il est prévu un circuit aléatoire qui agit de manière telle que l'espacement dans le temps entre la mesure de pression et l'émission du signal de pression mesuré soit aléatoire.
  20. Dispositif de surveillance selon la revendication 18 ou 19, caractérisé par le fait que le dispositif émetteur comporte un deuxième dispositif de détection qui détecte l'apparition d'un événement donné et, lors de l'apparition dudit événement, commute le dispositif émetteur d'un mode d'attente passif en un mode d'émission actif et par le fait qu'il est prévu un troisième dispositif de détection qui détecte que la valeur mesurée, pour un nombre prédéterminé de mesures de pression successives, n'a pas varié et commute le dispositif émetteur du mode actif en mode passif.
  21. Dispositif de surveillance selon l'une au moins des revendications 2 à 20, caractérisé par le fait que, de préférence au moyen du dispositif à microprocesseur du dispositif récepteur, on calcule à partir de la consommation d'air instantanée la baisse prévisible de la pression ou de l'air dans le récipient sous pression.
  22. Dispositif de surveillance selon la revendication 21, caractérisé par le fait qu'en cas d'interruption de courte durée de la liaison entre le dispositif émetteur et le dispositif récepteur, la nouvelle pression reçue est comparée à la pression calculée et est affichée si la pression calculée et la pression mesurée diffèrent d'une valeur préétablie.
  23. Dispositif de surveillance selon la revendication 21 ou 22, caractérisé par le fait qu'à partir de la consommation d'air calculée, on détermine et éventuellement on affiche la durée prévisible de la réserve d'air.
  24. Dispositif de surveillance selon l'une au moins des revendications 1 à 23, caractérisé par le fait que le dispositif émetteur et le dispositif récepteur sont disposés chacun dans un boítier étanche à la pression, de préférence rempli d'huile, de telle sorte que le dispositif de surveillance pet être utilisé sous l'eau.
  25. Dispositif de surveillance selon l'une au moins des revendications 1 à 24, caractérisé par le fait que le dispositif récepteur et le dispositif d'affichage sont disposés dans un boítier commun qui peut être fixé sur le bras ou au poignet de l'utilisateur à l'aide de moyens de fixation.
  26. Dispositif de surveillance selon l'une au moins des revendications 24 ou 25, prévu spécialement pour être emporté en plongée, caractérisé par le fait que le dispositif récepteur est couplé à une unité de calcul de décompression qui est liée à un deuxième dispositif de mesure de pression et a une horloge qui, à l'aide d'un programme prédéterminé stocké dans une mémoire du dispositif de calcul de décompression, en tenant compte du temps passé à différentes profondeurs de plongée, calcule le temps nécessaire à l'utilisateur pour atteindre la surface de l'eau sans risque de problèmes dus à la décompression, le temps de remontée total et/ou la prochaine étape de décompression et le temps de séjour correspondant et/ou le dépassement de la vitesse de remontée maximale admissible étant indiqués à l'utilisateur.
  27. Dispositif de surveillance selon les revendications 26 et 21, caractérisé par le fait que le dispositif à microprocesseur du dispositif récepteur ou le dispositif de calcul de décompression calcule, à partir du temps calculé pour lequel la réserve d'air suffit et de la durée de remontée totale déterminée, le temps que le plongeur peut encore passer à la profondeur à laquelle il se trouve.
  28. Dispositif de surveillance selon la revendication 26 ou 27, caractérisé par le fait que le dispositif récepteur et le dispositif de calcul de décompression comportent des dispositifs à microprocesseurs séparés.
  29. Dispositif de surveillance selon la revendication 26 ou 27, caractérisé par le fait que le dispositif récepteur et le dispositif de calcul de décompression comportent un dispositif à microprocesseur commun.
  30. Dispositif de surveillance selon au moins la revendication 3 ou la revendication 3 et l'une des revendications 1 à 29, caractérisé par le fait que le premier dispositif à microprocesseur du dispositif émetteur, par l'intermédiaire du programme stocké dans la mémoire, exécute au moins partiellement les fonctions du dispositif de mesure de pression et'ou du dispositif convertisseur et/ou du premier et/ou du deuxième et/ou du troisième dispositif de détection et/ou du circuit aléatoire.
  31. Dispositif de surveillance selon au moins la revendication 9 ou la revendication 9 et l'une des revendications 10 à 30, caractérisé par le fait que le dispositif à microprocesseur du dispositif récepteur exécute par l'intermédiaire du programme stocké dans la mémoire au moins partiellement la fonction du dispositif de mesure d'énergie de signal.
  32. Dispositif de surveillance selon la revendication 26 ou 27, caractérisé par le fait que le résultat de la mesure de la consommation d'air est transmis en tant que donnée d'entrée supplémentaire à l'unité de calcul de décompression de telle sorte que l'influence de la consommation d'air, en tant que donnée sur le travail physiologique du plongeur, puisse être prise en considération dans le calcul des paramètres de décompression.
  33. Procédé de surveillance d'un appareil de respiration mobile comportant un mélange de gaz-oxygène stocké dans des récipients sous pression, un dispositif de surveillance qui comporte un dispositif de mesure de pression, un dispositif émetteur et un dispositif récepteur, où le dispositif émetteur et le dispositif récepteur sont munis chacun d'un dispositif à microprocesseur, caractérisé en ce que le dispositif émetteur transmet les valeurs de pression mesurées et éventuellement d'autres données par intervalles d'émission, le dépassement dans le temps entre la mesure de pression et l'émission du signal d'émission n'étant pas constant, et en ce qu'un signal d'identification caractérisant l'émetteur individuel est transmis avec chaque intervalle d'émission, la transmission ayant lieu sous forme codée numériquement et le dispositif récepteur comparant le signal d'identification transmis à un signal d'identification de référence stocké dans une mémoire du dispositif récepteur et agissant de manière telle que les données de pression émises et éventuellement d'autres données ne soient exploitées que quand le signal d'identification émis par l'émetteur et le signal d'identification stocké dans le récepteur sont identiques, et le signal d'identification stocké dans le dispositif émetteur et/ou le signal d'identification de référence stocké dans le dispositif récepteur étant modifiables, pour adapter l'un à l'autre le signal d'identification et/ou le signal d'identification de référence du dispositif émetteur et/ou du dispositif récepteur.
EP91918293A 1990-10-19 1991-10-18 Dispositif de surveillance d'appareils portatifs de respiration Expired - Lifetime EP0550649B2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT9191918293T ATE105246T1 (de) 1990-10-19 1991-10-18 Ueberwachungsvorrichtung fuer mobile atemgeraete.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4033292 1990-10-19
DE4033292A DE4033292A1 (de) 1990-10-19 1990-10-19 Ueberwachungsvorrichtung fuer mobile atemgeraete
PCT/EP1991/001982 WO1992006889A1 (fr) 1990-10-19 1991-10-18 Dispositif de surveillance d'appareils portatifs de respiration

Publications (3)

Publication Number Publication Date
EP0550649A1 EP0550649A1 (fr) 1993-07-14
EP0550649B1 EP0550649B1 (fr) 1994-05-04
EP0550649B2 true EP0550649B2 (fr) 2000-03-01

Family

ID=6416667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91918293A Expired - Lifetime EP0550649B2 (fr) 1990-10-19 1991-10-18 Dispositif de surveillance d'appareils portatifs de respiration

Country Status (6)

Country Link
US (2) US5392771A (fr)
EP (1) EP0550649B2 (fr)
JP (1) JPH06504245A (fr)
DE (2) DE4033292A1 (fr)
ES (1) ES2056662T5 (fr)
WO (1) WO1992006889A1 (fr)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4033292A1 (de) * 1990-10-19 1992-04-23 Uwatec Ag Ueberwachungsvorrichtung fuer mobile atemgeraete
US5191317A (en) * 1991-09-09 1993-03-02 Undersea Industries, Inc. Low air warning system for scuba divers
US5394879A (en) 1993-03-19 1995-03-07 Gorman; Peter G. Biomedical response monitor-exercise equipment and technique using error correction
DE4329898A1 (de) 1993-09-04 1995-04-06 Marcus Dr Besson Kabelloses medizinisches Diagnose- und Überwachungsgerät
DE4332401A1 (de) * 1993-09-23 1995-03-30 Uwatec Ag Vorrichtung und Verfahren zum Überwachen eines Tauchganges
SE503155C2 (sv) * 1994-07-28 1996-04-01 Comasec International Sa Sätt och anordning för funktionskontroll vid andningsapparat
FI103192B1 (fi) * 1995-12-21 1999-05-14 Suunto Oy Sukellustietokone
US5832916A (en) * 1996-02-20 1998-11-10 Interspiro Ab Method and system for checking the operability of electrical-based components in a breathing equipment
DE19628356C2 (de) 1996-07-13 2003-04-17 Detlef Tolksdorf Verfahren zur Normalisierung des Atemmusters von mit Atmungsgeräten ausgestatteten Personen, insbesondere von Sport- und Berufstauchern, sowie Einrichtung zur Durchführung des Verfahrens
US6377610B1 (en) * 1997-04-25 2002-04-23 Deutsche Telekom Ag Decoding method and decoding device for a CDMA transmission system for demodulating a received signal available in serial code concatenation
IT1293193B1 (it) * 1997-02-19 1999-02-16 Htm Sport Spa Dispositivo di segnalazione di condizioni di pericolo e/o di emergenza per immersioni subacquee.
US6024089A (en) 1997-03-14 2000-02-15 Nelcor Puritan Bennett Incorporated System and method for setting and displaying ventilator alarms
IL121561A (en) * 1997-08-18 2000-10-31 Divecom Ltd Underwater communication apparatus and communication network
IT1297708B1 (it) * 1997-11-28 1999-12-20 Htm Sport Spa Metodo per la valutazione del consumo di aria per sub in immersione.
US6130859A (en) * 1997-12-01 2000-10-10 Divecom Ltd. Method and apparatus for carrying out high data rate and voice underwater communication
JPH11197248A (ja) * 1998-01-19 1999-07-27 Nippon Sanso Kk 呼吸用ガス消費量のモニタリング装置及びモニタリング方法
DE19822412B4 (de) * 1998-05-19 2008-06-05 Deutsche Telekom Ag System zur Überwachung von Atemschutzgeräteträgern
US6199550B1 (en) * 1998-08-14 2001-03-13 Bioasyst, L.L.C. Integrated physiologic sensor system
DE19911869B4 (de) * 1999-03-17 2004-03-25 T.E.M.! Techn. Entwicklungen Und Management Gmbh Neuartige Atemschutzmaske mit Sensor-Mikrosystem und Verfahren zum Betreiben derselben
US6810502B2 (en) * 2000-01-28 2004-10-26 Conexant Systems, Inc. Iteractive decoder employing multiple external code error checks to lower the error floor
DE10008048C2 (de) * 2000-02-22 2003-04-24 Andreas Toeteberg Überwachungssystem für den Atemschutz
US6496705B1 (en) * 2000-04-18 2002-12-17 Motorola Inc. Programmable wireless electrode system for medical monitoring
US6441747B1 (en) * 2000-04-18 2002-08-27 Motorola, Inc. Wireless system protocol for telemetry monitoring
US6611705B2 (en) * 2000-07-18 2003-08-26 Motorola, Inc. Wireless electrocardiograph system and method
JP4580083B2 (ja) * 2000-10-16 2010-11-10 エア・ウォーター防災株式会社 呼吸器
DE10120565C2 (de) * 2001-04-26 2003-05-08 C Con Gmbh System zum Antrieb einer Person im Wasser und Taucherbrille
US6856578B2 (en) 2001-05-22 2005-02-15 Daniel J. Magine Underwater alert system
US7933642B2 (en) * 2001-07-17 2011-04-26 Rud Istvan Wireless ECG system
US7398097B2 (en) * 2002-12-23 2008-07-08 Scott Technologies, Inc. Dual-mesh network and communication system for emergency services personnel
US7263379B1 (en) * 2002-12-23 2007-08-28 Sti Licensing Corp. Communications network for emergency services personnel
US7454248B2 (en) * 2004-01-30 2008-11-18 Ge Medical Systems Global Technology, Llc Method, apparatus and product for acquiring cardiac images
DE102004007986A1 (de) 2004-02-18 2005-09-08 Uwatec Ag Tauchcomputer
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
US7652571B2 (en) * 2006-07-10 2010-01-26 Scott Technologies, Inc. Graphical user interface for emergency apparatus and method for operating same
US7310549B1 (en) 2006-07-14 2007-12-18 Johnson Outdoors Inc. Dive computer with heart rate monitor
US7784461B2 (en) 2006-09-26 2010-08-31 Nellcor Puritan Bennett Llc Three-dimensional waveform display for a breathing assistance system
NZ560653A (en) * 2007-08-15 2010-07-30 Prink Ltd Diver monitoring and communication system
DE102007047130A1 (de) * 2007-10-02 2009-04-09 Uemis Ag Tauchcomputer für mehrere Benutzer
FI121866B (fi) * 2007-12-20 2011-05-13 Suunto Oy Kytkentä ja menetelmä mobiililaitteen langatonta lisälaitetta varten
US8261744B2 (en) * 2008-09-26 2012-09-11 Intertechnique, S.A. Oxygen breathing device with redundant signal transmission
IT1392029B1 (it) 2008-10-10 2012-02-09 Mares Spa Sistema di comunicazione subacquea
FI120923B (fi) * 2008-11-26 2010-04-30 Suunto Oy Menetelmä rannesukellustietokoneen yhteydessä ja rannesukellustietokonejärjestelmä
US8335992B2 (en) 2009-12-04 2012-12-18 Nellcor Puritan Bennett Llc Visual indication of settings changes on a ventilator graphical user interface
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
US9262588B2 (en) 2009-12-18 2016-02-16 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US20110197881A1 (en) * 2010-02-17 2011-08-18 Abulrassoul Abdullah M Underwater Breathing Apparatus
GB2478759A (en) 2010-03-17 2011-09-21 3M Innovative Properties Co A powered air purifying respirator
US8957770B2 (en) * 2010-03-31 2015-02-17 Shanghai Baolong Automotive Corporation Automatic networking apparatus and system for vehicles
JP2013125320A (ja) * 2011-12-13 2013-06-24 Riken Keiki Co Ltd 可搬型ガス検知器
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
US20140088397A1 (en) * 2012-09-18 2014-03-27 Ki Chon Fabrication and Use of Epidermal Electrodes
EP2920610A2 (fr) * 2012-11-13 2015-09-23 Aqwary AB Procédé et système de surveillance de l'état des plongeurs
FI125009B (fi) * 2013-09-10 2015-04-30 Suunto Oy Vedenalainen kommunikointijärjestelmä ja kommunikointimenetelmä ja -laitteet
DE102014104131A1 (de) 2014-03-25 2015-10-01 Msa Europe Gmbh Überwachungsvorrichtung und Überwachungssystem
FI126491B (en) 2014-09-09 2017-01-13 Suunto Oy A system and method for opening a wireless device to communicate with a laptop computer via an inductive connection
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
US20190035253A1 (en) * 2016-02-12 2019-01-31 Detcon, Inc Wireless Gas Detection Sensor
US10274390B2 (en) * 2017-01-12 2019-04-30 Johnson Outdoors Inc. Tank pressure transmitter with integrated breathing gas analyzer
JP7057716B2 (ja) * 2018-05-25 2022-04-20 エア・ウォーター防災株式会社 警報システム、情報処理装置、情報処理方法、および、情報処理プログラム
US10358199B1 (en) 2018-09-19 2019-07-23 Garmin Switzerland Gmbh Scuba tank air pressure monitor system
US10611445B1 (en) 2018-09-19 2020-04-07 Garmin Switzerland Gmbh Wearable electronic device for detecting diver respiration
US11672934B2 (en) 2020-05-12 2023-06-13 Covidien Lp Remote ventilator adjustment

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3517316A (en) * 1966-03-22 1970-06-23 Res Instr & Controls Inc Surveillance equipment and system
FR2040580A5 (fr) * 1969-04-03 1971-01-22 Inst Francais Du Petrole
US3668617A (en) * 1969-06-09 1972-06-06 Gen Time Corp Underwater communication system
US3696384A (en) * 1971-07-08 1972-10-03 Recognition Devices Ultrasonic tracking and locating system
US3764966A (en) * 1972-03-08 1973-10-09 Us Navy Underwater earphone
US4020449A (en) * 1974-05-22 1977-04-26 Hitachi, Ltd. Signal transmitting and receiving device
US4101873A (en) * 1976-01-26 1978-07-18 Benjamin Ernest Anderson Device to locate commonly misplaced objects
FR2454655A1 (fr) * 1979-04-20 1980-11-14 Marsollier Bruno Console extensible multifonctions d'assistance au plongeur
US4305143A (en) * 1979-08-08 1981-12-08 Simms Larry L Automatic man overboard sensor and rescue system
US4636791A (en) * 1982-07-28 1987-01-13 Motorola, Inc. Data signalling system
US4563758A (en) * 1982-09-29 1986-01-07 Paternostro Charles J Underwater communicator
US4549169A (en) * 1982-12-06 1985-10-22 Kelmar Marine Inc. Personal ocean security system
US4583073A (en) * 1983-01-31 1986-04-15 Hazeltine Corporation Remote monitoring system transmitter and power supply therefor
US4658358A (en) * 1984-06-13 1987-04-14 Battelle Memorial Institute Underwater computer
US4577333A (en) * 1984-09-13 1986-03-18 Gridcomm Inc. Composite shift keying communication system
US4634043A (en) * 1984-09-20 1987-01-06 At&T Technologies, Inc. Engaging second articles to engaged first articles
GB8530772D0 (en) * 1985-12-13 1986-01-22 Gradwell Paul Stephen Communication system
DE3625016A1 (de) * 1986-07-24 1988-02-04 Deutsche Forsch Luft Raumfahrt Tieftauch-atemgarnitur
DE3871661T2 (de) * 1987-03-03 1993-02-04 Comerford Ernest Anzeigevorrichtung fuer tauchparameter.
FR2636911B1 (fr) * 1988-09-23 1990-11-02 Thomson Csf Systeme assurant la securite d'une personne tombee a la mer
DE4033292A1 (de) * 1990-10-19 1992-04-23 Uwatec Ag Ueberwachungsvorrichtung fuer mobile atemgeraete
US5191317A (en) * 1991-09-09 1993-03-02 Undersea Industries, Inc. Low air warning system for scuba divers
US5185725A (en) * 1992-04-03 1993-02-09 Dynamics Technology, Inc. Diver locator system

Also Published As

Publication number Publication date
US5392771A (en) 1995-02-28
WO1992006889A1 (fr) 1992-04-30
EP0550649A1 (fr) 1993-07-14
JPH06504245A (ja) 1994-05-19
DE59101589D1 (de) 1994-06-09
DE4033292A1 (de) 1992-04-23
US5738092A (en) 1998-04-14
EP0550649B1 (fr) 1994-05-04
ES2056662T5 (es) 2000-07-16
ES2056662T3 (es) 1994-10-01

Similar Documents

Publication Publication Date Title
EP0550649B2 (fr) Dispositif de surveillance d'appareils portatifs de respiration
EP0720560B1 (fr) Dispositif et procede pour le controle d'une operation de plongee
DE19822412B4 (de) System zur Überwachung von Atemschutzgeräteträgern
DE1960517A1 (de) Vorrichtung zum Aufrechterhalten der Konzentration eines Gases
DE102013020098B3 (de) System aus einem Kreislaufatemschutzgerät und einer Überwachungsvorrichtung dafür
DE102007014136A1 (de) Vorrichtung zur medizinischen Versorgung eines Patienten in einem Notfall
AT507438A4 (de) Notrufgerät
DE102015011085A1 (de) Vorrichtung und Verfahren zum Schutz vor Badeunfällen, insbesondere zum frühzeitigen Erkennen von Ertrinkenden, und dergleichen
EP1227751B1 (fr) Systeme mobile d'ergospirometrie
DE102010031260A1 (de) Arbeitsschutzsystem und Arbeitsschutzverfahren
DE102015214542A1 (de) Verbandskasten
EP0984414B1 (fr) Procédé et dispositif pour la transmission d'un appel d'urgence
DE19628356C2 (de) Verfahren zur Normalisierung des Atemmusters von mit Atmungsgeräten ausgestatteten Personen, insbesondere von Sport- und Berufstauchern, sowie Einrichtung zur Durchführung des Verfahrens
EP0892505A2 (fr) Appareil de communication portable pour système utilisant des satellites
DE19953866A1 (de) Mobiles Ergospirometriesystem
EP2378496A2 (fr) Appareil d'appel d'urgence
EP2907551B1 (fr) Détecteur et procédé de fonctionnement d'un détecteur
DE3016383C2 (de) Sicherheitsvorrichtung für einen Aufenthalt einer Person bei einem nichtatmosphärischen Druck, insbesondere für Taucher
EP2907552A1 (fr) Détecteur et procédé de fonctionnement d'un détecteur
DE102021100061A1 (de) Kommunikationsgerät und Kommunikationssystem zum Überwachen einer Atmung
DE102015111346A1 (de) Gerätekonfiguration zur Unterstützung bei einer Herz-Lungen-Wiederbelebung
DE2600642A1 (de) Verfahren und vorrichtung zur aeusseren pneumokardialen wiederbelebung
DE10317167A1 (de) Verfahren zur Überwachung von zumindest zwei Personen mit externer Atemluftversorgung
DE102018101417A1 (de) Vorrichtung zur Unterstützung eines Ersthelfers bei der Herzdruckmassage
DE102012100679A9 (de) Unterwasserwarnvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UWATEC AG

17Q First examination report despatched

Effective date: 19930823

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI

REF Corresponds to:

Ref document number: 105246

Country of ref document: AT

Date of ref document: 19940515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59101589

Country of ref document: DE

Date of ref document: 19940609

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940815

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2056662

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BEUCHAT DEUTSCHLAND GMBH

Effective date: 19950203

Opponent name: COCHRAN CONSULTING INC.

Effective date: 19950203

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BEUCHAT DEUTSCHLAND GMBH * 950203 COCHRAN CONSULTI

Effective date: 19950203

R26 Opposition filed (corrected)

Opponent name: BEUCHAT DEUTSCHLAND GMBH * 950203 COCHRAN CONSULTI

Effective date: 19950203

PLAC Information related to filing of opposition modified

Free format text: ORIGINAL CODE: 0008299OPPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20000301

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT CH DE ES FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

ITF It: translation for a ep patent filed
ET3 Fr: translation filed ** decision concerning opposition
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 20000601

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: UWATEC AG

Free format text: UWATEC AG#ENGENBUEHL 130#5705 HALLWIL (CH) -TRANSFER TO- UWATEC AG#RIEDSTRASSE 368#5705 HALLWIL (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101104

Year of fee payment: 20

Ref country code: AT

Payment date: 20101014

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101022

Year of fee payment: 20

Ref country code: CH

Payment date: 20101025

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101021

Year of fee payment: 20

Ref country code: IT

Payment date: 20101026

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20101025

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59101589

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59101589

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20111017

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 105246

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111019

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111019