EP0720560B1 - Dispositif et procede pour le controle d'une operation de plongee - Google Patents

Dispositif et procede pour le controle d'une operation de plongee Download PDF

Info

Publication number
EP0720560B1
EP0720560B1 EP94927526A EP94927526A EP0720560B1 EP 0720560 B1 EP0720560 B1 EP 0720560B1 EP 94927526 A EP94927526 A EP 94927526A EP 94927526 A EP94927526 A EP 94927526A EP 0720560 B1 EP0720560 B1 EP 0720560B1
Authority
EP
European Patent Office
Prior art keywords
pressure
diver
values
normalized
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94927526A
Other languages
German (de)
English (en)
Other versions
EP0720560A1 (fr
Inventor
Markus Mock
Ernst Völlm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uwatec AG
UWATEC INSTRUMENTS DEUTSCHLAND GmbH
Original Assignee
Uwatec AG
UWATEC INSTRUMENTS DEUTSCHLAND GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uwatec AG, UWATEC INSTRUMENTS DEUTSCHLAND GmbH filed Critical Uwatec AG
Publication of EP0720560A1 publication Critical patent/EP0720560A1/fr
Application granted granted Critical
Publication of EP0720560B1 publication Critical patent/EP0720560B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/32Decompression arrangements; Exercise equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C2011/021Diving computers, i.e. portable computers specially adapted for divers, e.g. wrist worn, watertight electronic devices for detecting or calculating scuba diving parameters

Definitions

  • the present invention relates to a device and a method for monitoring a dive, in which the diver uses a breathing apparatus, according to the preamble of claims 1 and 13.
  • a breathing apparatus usually consists of one or two metal bottles, which are arranged, for example, on the back of the diver and in which a highly compressed oxygen-gas mixture, hereinafter simply referred to as "air", is contained at a pressure of, for example, up to 350 bar.
  • the breathing air is supplied to the diver by means of hoses via appropriate reducing valves.
  • WO92 / 06889 a monitoring device for mobile breathing devices has become known, in which the air pressure prevailing in the diving bottle is detected and the data are fed to a computing device.
  • the computing device determines the time for which the air supply will probably still be sufficient and compares this time with the time required for the appearance, including the decompression stops, as a whole. From the difference between these two time values, the so-called remaining air time is formed, which is the time that the diver is still allowed to spend at the respective depth level before starting the reappearance process.
  • the well-known dive computers are primarily designed for recreational divers. If these devices are used by professional divers who work under water and have to do salvage or repair work, for example, the decompression stops determined by the known devices may be too short to enable the diver to emerge safely on the surface.
  • the method according to the invention is the subject of claim 13.
  • a performance characteristic value is derived from the successively measured and standardized pressure values of the diving bottle, which is a measure of the performance performed by the diver at the respective time.
  • a diver with an average constitution and physique has an air consumption of approximately 8 liters per minute when he is essentially at rest under water. With a work output of 50 watts, the air consumption already increases to 22.5 l / min. With heavy physical work, for example by performing a certain work process under water, or when swimming quickly, the air consumption increases further and reaches a capacity of 70 l with a power of 200 watts, which can usually only be achieved under water for a short time / min.
  • a performance characteristic value is determined from the values of the bottle pressure measured in chronological succession and then standardized, which is a measure of the physically performed performance and which is taken into account in the calculation of the decompression times.
  • the performance can be determined by determining the time interval between the successive breathing processes. If the diver's performance increases, the diver must breathe more frequently per unit of time, for example per minute, than in a state of rest. The performance characteristic is then derived from the respiratory rate, ie the number of breaths per minute.
  • the air quantity that the diver intakes is calculated from the successively measured and subsequently standardized pressure values.
  • the pressure measuring device cannot determine the air volume emitted per unit of time, but rather only the differential pressure before and after the breathing process.
  • the volume of the bottle must be known in addition to the ambient pressure and the temperature.
  • the problem can be solved by adapting the entire device or only the pressure measuring device to a certain bottle volume.
  • the Pressure measuring device then preferably with the respective pressure measured values or at the beginning or at the end of the measurement an additional, predetermined information from which the air volume emerges.
  • the pressure measuring device can be mounted on the bottle separately from the other parts of the device in a two-part embodiment, the pressure measuring device can be firmly connected to the bottle in this way, so that mix-ups are avoided.
  • an input device can be provided either on the pressure measuring device or on the other parts of the device, with which the user transfers information about the respective volume of the diving bottle to the device. This enables the same device or the same pressure measuring device to be used for different bottle volumes. On the other hand, it must be taken into account that if the user makes a mistake during the entry, incorrect air consumption values and thus incorrect decompression values are determined. Therefore, as with the other exemplary embodiments, it is recommended to additionally carry out a plausibility check.
  • the performance characteristic is determined by comparing the pressure values determined and standardized during a first time period with at least the pressure values determined and standardized during a second time period.
  • the performance value is derived from the change in the pressure values between the first and the second or each subsequent time period.
  • This procedure has the advantage that it enables a very precise determination of the performance value without the volume of the diving bottle having to be known.
  • the device can thus be used for different diving cylinders without modification and therefore without the possibility of error.
  • the decrease in the standardized pressure values is stored at the start of the dive. These values are then considered to be low performing services. This procedure is justified because the diver only has to do a small amount of work when entering the water.
  • the pressure difference values determined during this time are equated to a certain air consumption, for example a consumption of 20 l / min.
  • the air volume absorbed when the service is performed can then be determined from the comparison of the pressure measurements.
  • the performance characteristic value is derived by analyzing the fluctuations in the difference between the successive pressure values. It has been shown that the air intake during a unit of time becomes more uniform the higher the amount of air taken in and thus the output. The device thus determines how large the deviation of successive pressure values is, and from this the relative fluctuation in the amplitude, i.e. the fluctuation of the amplitude based on the respective absolute value. The performance characteristic value can then be derived from this value.
  • the amount of air absorbed by the diver is not only determined by the absolute value of the measured pressure or the difference between two absolute values depends, but also on the ambient pressure and the temperature of the air in the bottle.
  • the calculation must therefore take into account the ambient pressure, i.e. the hydrostatic pressure of the water at the corresponding depth, which is made up of the water pressure itself and the air pressure on it, and the temperature of the air in the bottle.
  • the device according to the invention can be constructed in one or two parts in all of the above-mentioned exemplary embodiments.
  • the pressure measuring device is arranged on the diving bottle and transmits a pressure measuring signal to a receiving device which is arranged at a distance therefrom, for example on the wrist of the diver or on the diving mask.
  • the transmission of the measured values from the pressure measuring device to the receiving device can take place wirelessly by means of electromagnetic waves or ultrasound, but there can also be a cable connection between the two parts.
  • the device is connected to the bottle via a high-pressure hose.
  • the device hangs on the bottle, for example integrated into a conventional console, and is gripped by the diver with his hands in order to be read.
  • Fig. 1 shows in a highly schematic manner the basic arrangement and structure of the device according to the invention.
  • the diving bottle 1 shown only partially is a conventional steel or aluminum bottle with a volume of e.g. 7 to 18 l and a maximum storage pressure of e.g. 350 bar, which must be closed by a manually operated shut-off valve 2.
  • the bottle pressure is reduced by an automatically operated pressure control valve 3, which is usually referred to as a regulator, to the pressure required for the diver.
  • the device according to the present invention which is denoted overall by 5, has a pressure measuring device, denoted overall by 7, which uses a pressure sensor 23 to measure the pressure in the high-pressure part of the breathing apparatus, and on the basis of this measured value generates a transmission signal which is transmitted via an antenna is transmitted wirelessly to a processing device 9 by means of electromagnetic radio waves.
  • the signal is processed in the processing device 9 and processed in a computing device.
  • the result of the calculation is shown to the diver on a display 10.
  • warning lamps such as light-emitting diodes or acoustic alarm devices, can also be provided.
  • a pressure sensor 23 and a temperature sensor are in a chamber of the reducing valve 3, which is in flow connection with the interior of the diving bottle when the shut-off valve 2 is open 24 arranged.
  • the signals from these sensors are transmitted to a microprocessor 28 via a signal conditioning device 26 (see FIG. 2).
  • the microprocessor 28 has a memory 30, in which a first memory area S1 is provided, which contains a program for controlling the microprocessor, and second, third to nth memory areas S3-SN, in which data are stored which are determined during the dive will.
  • the pressure measuring device furthermore has a timer 32, which delivers a fixed time clock, a signal processing device 34, which processes a signal 28 output by the microprocessor and feeds it to an antenna 36, and a battery 38, which supplies the pressure measuring device with electrical energy.
  • the computing and display device 50 which interacts with the pressure measuring device and together forms the device according to the invention, is shown in FIG. 3.
  • the device 50 hereinafter referred to as the processing device, has two dash-dotted partial areas, a first area 51, in which the signal received by the pressure measuring device is received and is prepared, and a second area 52, in which the calculation of the total ascent time of the decompression stops and the remaining air time takes place.
  • the reception area 51 has an antenna 54 which receives the signal emitted by the pressure measuring device and a signal conditioning device 55 which is connected to a microprocessor 56, which is referred to below as the second microprocessor.
  • a timer 59 specifies a fixed timing for the entire processing device.
  • the decompression computing device is supplied with data from the microprocessor 56 and has a microprocessor 62, which is referred to below as the third microprocessor.
  • the third microprocessor 62 is controlled by a program which is stored in a memory 63.
  • the third microprocessor 62 is connected to a sensor 66 and a sensor 67, by means of which the ambient pressure and the ambient temperature are measured and fed to the third microprocessor device 62 via a signal processing device 68.
  • the water depth is derived from the ambient pressure, which corresponds to the hydrostatic pressure prevailing at the respective depth.
  • a display 70 which is preferably an LCD display. Numbers and symbols can be shown on this display to give the diver an overview of the respective data of the dive.
  • the processing device is powered by a battery 72.
  • the battery 72 is a lithium battery, the energy of which is sufficient for several years of operation.
  • Both the pressure measuring device and the processing device are accommodated in a watertight housing 40 or 80, which is completely filled with oil, a gel or another suitable medium.
  • the housing 80 of the processing device 50 can be designed in such a way that it can be worn directly on the wrist like a conventional diving computer.
  • this device in a different way and to arrange only the display on the diver's wrist or also in the area of the diver's mask, so that the diver always has the display instruments in view.
  • the performance characteristic value is derived from the measured breathing frequency.
  • the pressure prevailing in the bottle is measured in the pressure measuring device at short time intervals, for example at intervals of 0.2 s.
  • a counted value K is incremented by the value 1. This count is controlled by timer 32 and microprocessor 28 for a predetermined period of time, for example for 30 or 60 s.
  • the measured respiratory rate is transmitted to the processing device 50 via the antennas 36 and 54. If the respiratory rate is low, it is assumed that the diver does only a small amount of work, and if the respiratory rate is high, a high amount of work is required.
  • a large number of comparison values are stored in the memory 63 of the processing device, in each of which a specific performance characteristic value is defined for a specific respiratory rate value. Corresponding values can be obtained experimentally on an ergometer, for example, as will be discussed below.
  • the determined performance characteristic is taken into account by the decompression computing device when calculating the required decompression stops and the total ascent time.
  • the measured and transmitted pressure measured values are used to calculate how long the breathing air will last. This is done by determining what time it takes, assuming the same air consumption, until the pressure in the bottle has dropped to a predetermined value, for example to 30 bar. This time period is referred to as the total diving time still available. The total ascent time is subtracted from this total ascent time, the difference is then the remaining air time, i.e. the time that the diver can remain at the appropriate depth level until the beginning of the ascent.
  • the compressibility of the air must be taken into account in these calculations. With increasing water depth and constant tidal volume, a larger amount of air is taken from the bottle per breath. In this and all other exemplary embodiments, the consumption is therefore converted to normal pressure at sea level, the temperature of the breathing air being taken into account.
  • the invention proposes to use an iterative method, which is explained below using an example.
  • the diver stayed at a certain depth level for 30 minutes.
  • the program now presupposes that the remaining air time has an initially fixed value of e.g. 40 min.
  • the duration of the individual decompression stops For a first decompression calculation it is assumed that the diver has been at this depth level for 70 minutes.
  • the total ascent time is 95 minutes. Taking into account the current air consumption, it is now calculated how high the residual pressure in the bottle is after this 95 min. This value is compared with a predetermined value, e.g. 30 bar, compared.
  • the calculated residual pressure is below 30 bar after 95 min, the assumed remaining air time of 40 min was too long and the value is reduced accordingly for a first repetition of the calculation, e.g. by 5 min. The calculation is then carried out again for the new assumed stay of 65 minutes.
  • the calculation leads to the result that the bottle pressure is higher than the predetermined value after this total time has elapsed, the remaining air time is extended, for example by 5 minutes, and the calculation is carried out again. This iteration is repeated until the difference between the assumed remaining air time and the remaining air time actually determined therefrom is below a predetermined limit value.
  • the invention proposes the following procedure:
  • the saturation and desaturation of 16 different tissue types are simulated in a decompression calculation model, as described in the work by Bühlmann (see also the literature information in the work).
  • This model is based on the knowledge that the different tissues of the body accumulate at different rates with inert gas.
  • a distinction is therefore made, for example, between the tissues of the brain, spinal cord, kidneys, heart, skeletal muscles, joints, bones, and skin and adipose tissue. If physical work is performed, the blood flow to the muscles increases. As a result of the increased heat transfer from the skin, the blood flow to the skin also increases.
  • the values of the tissue model which relate to the saturation rate of the muscular and skin tissues, are increased depending on the performance characteristic. This takes into account the increased blood flow and the resulting faster absorption of inert gas.
  • the display 70 shows the diving depth achieved, which is derived from the ambient pressure, the time elapsed since the beginning of the diving process, the remaining air time and the total diving time, and the first decompression stop with regard to the diving depth and duration.
  • the second exemplary embodiment differs from the first exemplary embodiment in that an input device 42 and a display 44 are provided in addition to the devices described.
  • the input device 42 consists, for example, of three switches in which one switch has a plus function, the second switch has a minus function and the third switch has a control function.
  • a volume value of the diving bottle shown in the display 44 is gradually increased, if the control switch and the minus switch are actuated, the volume value displayed is reduced accordingly.
  • the value entered in this way is stored in the memory 30 and used to calculate the air consumption.
  • this input device can also be arranged in the receiving device; in this case the display 70 can be used directly for the display.
  • the input of the bottle volume is only possible when the pressure sensor 23 does not indicate overpressure. In this way, the volume entered can no longer be changed as soon as the shut-off valve 2 is opened.
  • a number of volume values per unit of time and associated performance characteristics are stored in the memory 58.
  • a performance characteristic is determined and taken into account by the decompression computing device.
  • the pressure measuring device is constructed as shown in Fig. 2 and explained in relation to the first embodiment, i.e. the input device 41 and the display 44 are not provided.
  • the structure of the processing device corresponds to the representation as it was explained in relation to the first exemplary embodiment in connection with FIG. 3.
  • measured pressure values ⁇ p i , ⁇ p i + 1 are determined at the beginning of the dive at predetermined times t i , t i + 1 , which have a fixed time interval of ⁇ t from one another, and then normalized. From these values, the average normalized pressure decrease ⁇ p av0 per unit of time is determined by a statistical analysis, for example by weighted averaging, and stored in the memory 63.
  • the pressure difference values ⁇ p i are determined, standardized and compared with ⁇ p av0 .
  • the air consumption values determined in this way are converted into comparative values which are in the Memory 63 of the processing device are stored, the performance characteristic is derived and taken into account in the decompression calculation.
  • the structure of the pressure measuring device corresponds to the structure shown in FIG. 1, whereby here (as in the first and third exemplary embodiment) there is likewise no input keyboard and no display in the pressure measuring device for inputting the bottle volume.
  • the pressure measuring device is controlled by the program in the memory 30 such that pressure measured values p i and temperature measured values ⁇ ock air, i of the air are recorded at intervals of 0.5 s, from which a mean value p av and ⁇ air, av is formed.
  • the averaging extends over 40 values or 20 s. Every 20 s, the measured mean values are transmitted to the receiving device via the antenna 36.
  • the prevailing ambient pressure p amb is also determined in the decompression computing device .
  • the air consumption within this 20 second interval and taking into account the air temperature ⁇ air of the NPC (normalized pressure consumption) is determined, which gives the temperature-compensated consumption of "bottle pressure" during this interval to normal pressure at sea level. Since the volume of the scuba tank does not change during the dive, it is Normalized value, ie released from the influence of the ambient pressure and the temperature, proportional to the air consumption of the diver.
  • a predetermined number x of continuously recorded NPC values is subjected to averaging and the mean value NPC av of the pressure consumption for a predetermined period of time, for example for the last two, last three or last four minutes, is calculated therefrom.
  • NPC i NPC i - NPC i-1
  • ⁇ NPC av, i ((x-1) ⁇ NPC av, i-1 + NPC i ) / x
  • the performance characteristic value C work is then determined from this characteristic number using corresponding comparison values which are stored in the memory 63 of the processing device.
  • the mean value NPC av the performance characteristic C work and an initially assumed remaining stay time at this diving depth level, the remaining air time, are used to calculate how much pressure after the assumed remaining air time and the then required ascent time is in the bottle. If the pressure is above a predetermined limit value, 30 bar in the exemplary embodiment, the assumed remaining air time was too short, and a new longer remaining air time is assumed and the calculation is therefore repeated. This iterative calculation process is repeated until the deviation from the assumed remaining air time and the actually calculated remaining air time is within a predetermined amount.
  • test subjects who breathed breathing air from a conventional diving breathing apparatus performed performance measurements with different performance profiles on a bicycle ergometer.
  • the performance characteristic was determined and compared with the performance actually performed by the test subject, which was measured by a measuring device arranged on the ergometer. This resulted in a very good agreement between the performance values determined using the method and the performance actually achieved.
  • microprocessors there are two microprocessors in the processing device, namely the second microprocessor 58 in the reception area and the third microprocessor 62 are provided.
  • the function of these two microprocessors can also be summarized in a microprocessor.
  • the functions between the pressure measuring device and the processing device can also be divided differently in the case of a two-microprocessor version as well as in a version with a microprocessor.
  • the second unit referred to as the processing device, then only comprises the parts which are required to receive the data sent by the pressure measuring device and to display them on the display. Such a division is advantageous if the display e.g. to be integrated into a diving mask.
  • the pressure measuring device only comprises the devices that are required to record pressure measurements and the temperatures and to transmit these to the processing device.
  • a wireless transmission method is used, as described in WO92 / 06889.
  • a fixed cable connection can also be provided between the pressure measuring device and the processing device.
  • the corresponding cables can then be run along the body of the diver or directly as a cable connection be integrated into the diving suit.
  • the functions of the pressure measuring device and the processing device can also be combined in a single device.
  • the pressure measuring device is preferably not arranged on the bottle itself, but the pressure measuring device is arranged away from the bottle and connected to the bottle via a high-pressure hose.
  • the performance characteristic value is determined from a number of comparison values stored in table form with the respective input variables.
  • a mathematical function or some other type of calculation can be used to determine the performance characteristic from the input variables such as respiratory rate, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Electric Clocks (AREA)
  • Measuring Fluid Pressure (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

Dispositif et procédé pour le contrôle d'une opération de plongée, selon lequel on mesure la pression dans une bouteille de plongée d'un appareil de respiration et la pression environnante à laquelle le plongeur est exposé à toute profondeur. Au moyen d'une unité de calcul de décompression, on détermine quels arrêts de décompression le plongeur doit observer pour remonter à la surface et combien de temps au total durera la remontée à la surface. A partir de la variation, en fonction du temps, de la pression dans la bouteille de plongée, est déduite une valeur caractéristique du travail effectué, laquelle constitue une mesure pour l'effort physique fourni par le plongeur. Cette caractéristique du travail effectué est introduite dans le dispositif de calcul de décompression et prise en compte dans le calcul des arrêts de décompression et de la durée totale de la remontée à la surface.

Claims (14)

  1. Dispositif pour surveiller le déroulement d'une plongée, comprenant :
    - un premier capteur de pression, qui mesure la pression dans une bouteille de plongée d'un appareil respiratoire, avec lequel le plongeur est alimenté en air respiratoire;
    - un second capteur de pression, qui mesure la pression environnante, et qui représente une mesure de la profondeur atteinte par le plongeur dans l'eau ;
    - un temporisateur, avec lequel on peut déterminer le temps passé par le plongeur sous l'eau;
    - un dispositif de calcul relié à une première mémoire, au moyen duquel on peut calculer, en se basant sur les valeurs du temporisateur et du second capteur de pression, les arrêts de décompression que le plongeur doit observer lors de la remontée, et la durée totale du déroulement de la remontée, tel que dans le calcul de la décompression, le travail fourni par le plongeur est pris en compte, et pour la détermination de ce travail on utilise la diminution mesurée par unité de temps de la pression dans la bouteille de plongée;
    - un dispositif d'affichage avec un premier affichage sur lequel on peut afficher des paramètres importants du déroulement de la plongée;
    caractérisé en ce que :
    - il est prévu un dispositif de mesure de température, au moyen duquel on mesure la température de l'air respiratoire;
    - il est prévu un second dispositif de calcul, au moyen duquel on calcule, à partir des valeurs de pression mesurées par le premier capteur de pression et de la pression environnante détectée par le second capteur de pression, des valeurs de pression normalisées à la pression normale au niveau de la mer et à une température normale prédéterminée, en tenant compte de la température de l'air respiratoire mesurée par le capteur de température ;
    - il est prévu un second dispositif à mémoire dans lequel on mémorise les valeurs de pression mesurées en succession temporelle par le premier capteur de pression, sous forme de valeurs de pression normalisées ; et
    - dans le second dispositif de calcul, on dérive à partir de ces valeurs de pression normalisées mémorisées une caractéristique de performance, qui est une mesure pour le travail corporel dépensé par le plongeur, et cette caractéristique de performance est fournie au dispositif de calcul de décompression, et elle est prise en compte par ce dispositif de calcul lors du calcul des arrêts de décompression et du temps total de remontée.
  2. Dispositif selon la revendication 1, caractérisé en ce que la détection des valeurs de pression du premier capteur de pression a lieu à des intervalles temporels courts ;
    - en ce que l'on détermine à partir des valeurs de pression mesurées et ensuite normalisées, au moyen du second dispositif de calcul, la cadence de respiration du plongeur pendant une période de temps prédéterminée, et détermine à partir de cela la fréquence respiratoire;
    - en ce que l'on mémorise dans le dispositif à mémoire une règle de calcul, à partir de laquelle on dérive la caractéristique de performance à partir de la fréquence respiratoire calculée ; ou bien
    - en ce que l'on mémorise dans ce dispositif à mémoire une pluralité de valeurs de comparaison de fréquence respiratoire, à chacune desquelles est associée une caractéristique de performance prédéterminée, et en ce que le second dispositif de calcul recherche à partir de la fréquence respiratoire mesurée les valeurs de comparaison les plus proches pour la fréquence respiratoire, et détermine à partir de celles-ci la caractéristique de performance.
  3. Dispositif selon la revendication 1, caractérisé en ce que le second dispositif de calcul calcule, à partir des valeurs de pression mesurées et ensuite normalisées, et d'un volume prédéterminé et connu de la bouteille de plongée de l'appareil respiratoire, la consommation d'air du plongeur par unité de temps ;
    - en ce que l'on mémorise dans ledit dispositif à mémoire une règle de calcul au moyen de laquelle le second dispositif de calcul dérive ladite caractéristique de performance à partir de la consommation d'air du plongeur par unité de temps ; ou bien
    - en ce que l'on mémorise dans ledit dispositif à mémoire une pluralité de valeurs de comparaison de consommation d'air et des caractéristiques de performance associées, et en ce que ledit second dispositif de calcul détermine ladite caractéristique de performance à partir de la valeur mesurée de consommation d'air et à partir desdites valeurs de comparaison prédéterminées de consommation d'air.
  4. Dispositif selon la revendication 3, caractérisé en ce qu'il est prévu un dispositif de saisie, au moyen duquel on peut saisir par l'utilisateur et avant le début de la plongée le volume de la bouteille de plongée utilisée, et en ce qu'il est en outre prévu un affichage dans lequel est visible le volume de bouteille saisi.
  5. Dispositif selon la revendication 4, caractérisé en ce que ledit dispositif de saisie comporte au moins un dispositif de sécurité, au moyen duquel on empêche que cette valeur de volume saisie soit modifiée de façon involontaire.
  6. Dispositif selon la revendication 1, caractérisé en ce que, dans le dispositif à mémoire, les valeurs de pression mesurées par le premier capteur de pression pendant une première section temporelle et normalisées sont mémorisées, et sont comparées avec des valeurs de pression normalisées, qui sont déterminées pendant au moins une seconde section temporelle, et en ce que l'on dérive ladite caractéristique de performance à partir de la comparaison des valeurs de pression mesurées et normalisées pendant la première section temporelle et les valeurs de pression mesurées et normalisées pendant la seconde section temporelle.
  7. Dispositif selon la revendication 6, caractérisé en ce que ladite première section temporelle est une section temporelle qui est située au début de la plongée;
    - en ce que l'on détermine, à partir des valeurs de pression déterminées pendant cette première section temporelle et normalisées, une consommation de pression de base, et
    - en ce que l'on détermine, à partir des valeurs de pression déterminées pendant une seconde section temporelle et pendant chaque section temporelle suivante, et normalisées, une valeur de consommation de pression actuelle qui est comparée à la valeur de consommation de pression de base, et
    en ce que l'on dérive la caractéristique de performance à partir de cette comparaison.
  8. Dispositif selon la revendication 6, caractérisé en ce que l'on détermine, à partir de la valeur de pression NPCi-1 déterminée pendant une première section temporelle, et à partir de la valeur de pression NPCi déterminée pendant une section temporelle suivante, une valeur de différentielle de pression ΔNPC,
    - en ce que l'on détermine à partir de ces deux valeurs de pression, ainsi qu'à partir d'un certain nombre de valeurs de pression précédentes une consommation de pression différentielle moyenne ΔNPCav, et
    - en ce que l'on dérive ladite caractéristique de performance à partir de la variation de la valeur de pression actuelle ΔNPC par rapport a la valeur de pression moyenne ΔNPCav pour un certain nombre de valeurs de pression successives ΔNPCi-2,i-1,i.
  9. Dispositif selon l'une des revendications 1 à 8, caractérisé en ce que ledit premier capteur de pression au moins, un temporisateur, et un dispositif de traitement de signaux sont agencés dans un premier boîtier, lequel est fixé sur la bouteille de plongée ou à son voisinage;
    - en ce que ledit dispositif d'affichage au moins est agencé dans un second boîtier qui est éloigné du premier boîtier; et
    - en ce qu'il est prévu un dispositif de transmission de données qui transmet des données depuis ledit premier boîtier audit second boîtier.
  10. Dispositif selon la revendication 9, caractérisé en ce que ledit dispositif de transmission de données inclut un dispositif émetteur qui prépare des signaux dérivés de la mesure de ce premier capteur de pression et les émet au moyen d'une antenne, et en ce qu'il est prévu un dispositif récepteur agencé dans le second boîtier, ce dispositif récepteur comprenant une seconde antenne et recevant les signaux émis par le dispositif émetteur et les fournissant au moins audit premier affichage.
  11. Dispositif selon la revendication 9, caractérisé en ce que ledit premier boîtier et ledit second boîtier sont reliés physiquement l'un à l'autre par l'intermédiaire du dispositif de transmission de données, ledit dispositif de transmission de données transmettant des données par voie électrique ou optique
  12. Dispositif selon la revendication 1, caractérisé en ce que ledit dispositif de calcul de décompression et ledit second dispositif de calcul sont regroupés dans un dispositif à microprocesseur.
  13. Procédé pour surveiller le déroulement d'une plongée effectuée avec un appareil respiratoire mobile, comprenant les étapes de procédé suivantes :
    - on mesure la pression dans le réservoir d'air de l'appareil respiratoire;
    - on détermine une valeur caractéristique pour la consommation d'air du plongeur dans une période temporelle prédéterminée ;
    et l'on exécute simultanément les étapes de procédé suivantes :
    - on mesure la pression environnante du plongeur et l'on détermine la profondeur de plongée à laquelle se trouve le plongeur ;
    - on calcule la durée pendant laquelle le plongeur séjourne à cette profondeur d'eau ;
    - et l'on exécute ensuite les étapes de procédé suivantes :
    - on détermine une valeur caractéristique de performance à partir des valeurs caractéristiques de consommation d'air mesurée, qui sont une mesure pour le travail corporel fourni par le plongeur pendant une période déterminée;
    - on calcule les arrêts de décompression et la durée de remontée totale en tenant compte du temps pendant lequel le profondeur a séjourné au niveau de profondeur de plongée respectif et de la puissance de travail qu'il a fourni ; et
    - on affiche au moins une valeur caractéristique qui est déterminante pour les conditions de décompression, sur un premier affichage ;
    caractérisé par les opérations suivantes :
    - on mémorise des valeurs de pression mesurées en succession ;
    - on mesure la température de l'air respiratoire ;
    - on calcule des valeurs de pression normalisées à la pression normale au niveau de la mer et à une température normale prédéterminée, à partir des valeurs de pression mesurées et en tenant compte de la pression environnante et de la température de l'air respiratoire ;
    - on mémorise les valeurs de pression normalisées, et
    - on dérive la valeur caractéristique de performance à partir des valeurs de pression mémorisés et normalisées.
  14. Procédé selon la revendication 13, comprenant les opérations suivantes :
    - on détermine la durée pendant laquelle la réserve d'air va encore durer, de façon prévisionnelle, à partir des valeurs de pression mesurées et ensuite normalisées, et à partir d'une valeur limite prédéterminée pour la valeur de pression minimum dans le réservoir d'air ;
    - on soustrait la durée de remontée totale déterminée depuis cette durée ; et
    - on affiche le résultat comme étant le temps pendant lequel le plongeur peut encore séjourner en poursuivant la fourniture du travail et la consommation d'air, au niveau de profondeur de plongée correspondant.
EP94927526A 1993-09-23 1994-08-31 Dispositif et procede pour le controle d'une operation de plongee Expired - Lifetime EP0720560B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4332401 1993-09-23
DE4332401A DE4332401A1 (de) 1993-09-23 1993-09-23 Vorrichtung und Verfahren zum Überwachen eines Tauchganges
PCT/EP1994/002895 WO1995008471A1 (fr) 1993-09-23 1994-08-31 Dispositif et procede pour le controle d'une operation de plongee

Publications (2)

Publication Number Publication Date
EP0720560A1 EP0720560A1 (fr) 1996-07-10
EP0720560B1 true EP0720560B1 (fr) 1997-07-09

Family

ID=6498432

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94927526A Expired - Lifetime EP0720560B1 (fr) 1993-09-23 1994-08-31 Dispositif et procede pour le controle d'une operation de plongee

Country Status (7)

Country Link
US (1) US5806514A (fr)
EP (1) EP0720560B1 (fr)
JP (1) JPH09507184A (fr)
AU (1) AU689132B2 (fr)
DE (2) DE4332401A1 (fr)
ES (1) ES2107250T3 (fr)
WO (1) WO1995008471A1 (fr)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19547429C2 (de) * 1994-06-06 1999-01-07 Foerderverein Inst Fuer Medizi Verfahren und Atemgascontroller zur Ermittlung der Resteinsatzzeit von Atemschutzgeräten
DE19628356C2 (de) * 1996-07-13 2003-04-17 Detlef Tolksdorf Verfahren zur Normalisierung des Atemmusters von mit Atmungsgeräten ausgestatteten Personen, insbesondere von Sport- und Berufstauchern, sowie Einrichtung zur Durchführung des Verfahrens
DE19639394C2 (de) * 1996-09-25 2002-05-29 Redmer Sonia Sicherheitsvorrichtung für Taucher
US5915380A (en) 1997-03-14 1999-06-29 Nellcor Puritan Bennett Incorporated System and method for controlling the start up of a patient ventilator
US5924418A (en) * 1997-07-18 1999-07-20 Lewis; John E. Rebreather system with depth dependent flow control and optimal PO2 de
AUPQ481599A0 (en) * 1999-12-22 2000-02-03 Trickey, Helen Ann A diver accountability system
WO2003050768A1 (fr) * 2001-12-11 2003-06-19 Trickey, Helen, Ann Procede de surveillance de plongeurs
NZ519636A (en) * 2002-06-18 2005-02-25 Murray Valpy Kennett A communication apparatus having an transducer with an interface and a text generation means which uses short message service (SMS) text messaging as its input and/or output
GB0216600D0 (en) * 2002-07-17 2002-08-28 Apeks Marine Equipment Ltd A first stage breathing gas regulator
US7497216B2 (en) * 2004-08-30 2009-03-03 Forsyth David E Self contained breathing apparatus modular control system
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
US7784461B2 (en) 2006-09-26 2010-08-31 Nellcor Puritan Bennett Llc Three-dimensional waveform display for a breathing assistance system
DE102007047144A1 (de) * 2007-10-02 2009-04-09 Uemis Ag Anzeigeeinrichtung für einen Tauchcomputer
US8335992B2 (en) 2009-12-04 2012-12-18 Nellcor Puritan Bennett Llc Visual indication of settings changes on a ventilator graphical user interface
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
US9262588B2 (en) 2009-12-18 2016-02-16 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
AT510385B1 (de) 2010-09-13 2017-04-15 Ing Dr Arne Sieber Dipl Berührungssensitives display und methode zur bedienung eines tauchcomputers
US10803724B2 (en) * 2011-04-19 2020-10-13 Innovation By Imagination LLC System, device, and method of detecting dangerous situations
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
US9585564B2 (en) 2012-11-29 2017-03-07 Johnson Outdoors Inc. Wireless skin temperature measurements in diving
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
JP6705113B2 (ja) * 2016-03-04 2020-06-03 株式会社近江潜建 呼吸用空気監視装置及び監視機器
US10274390B2 (en) * 2017-01-12 2019-04-30 Johnson Outdoors Inc. Tank pressure transmitter with integrated breathing gas analyzer
US11672934B2 (en) 2020-05-12 2023-06-13 Covidien Lp Remote ventilator adjustment
CN115027647B (zh) * 2022-06-23 2023-06-16 中国人民解放军海军特色医学中心 一种基于水加压的模拟脱险平台

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2349128A1 (fr) * 1976-04-21 1977-11-18 Haneuse Louis Dispositif de mesure et d'indication de parametres utiles pour un plongeur,appareil de commande automatique de la remontee d'un plongeur et ensemble de plongee
US5049864A (en) * 1982-01-21 1991-09-17 Orca Ii, Inc. Display scheme for decompression data
FR2569158B1 (fr) * 1984-08-16 1986-12-19 Jullian Michel Decompressimetre numerique a perfusions variables
US4882678A (en) * 1987-01-14 1989-11-21 Oceanic Usa Data sensing and processing device for scuba divers
US5016483A (en) * 1988-01-11 1991-05-21 Budinger William D Method and apparatus for determination and display of critical gas supply information
US4970897A (en) * 1988-01-11 1990-11-20 Budinger William D Method and apparatus for determination and display of gas consumption time
US4926703A (en) * 1988-01-11 1990-05-22 Budinger William D Method and apparatus for determination and display of critical gas supply information
US4876903A (en) * 1988-01-11 1989-10-31 Budinger William D Method and apparatus for determination and display of critical gas supply information
DE4033292A1 (de) * 1990-10-19 1992-04-23 Uwatec Ag Ueberwachungsvorrichtung fuer mobile atemgeraete
US5503145A (en) * 1992-06-19 1996-04-02 Clough; Stuart Computer-controlling life support system and method for mixed-gas diving
JP3293245B2 (ja) * 1993-06-30 2002-06-17 カシオ計算機株式会社 減圧情報表示装置
US5617848A (en) * 1993-11-17 1997-04-08 Cochran; Michael J. Advanced dive computer that calculates and displays the user's breathing parameter and water salinity
US5570688A (en) * 1993-11-17 1996-11-05 Cochran Consulting, Inc. Advanced dive computer for use with a self-contained underwater breathing apparatus

Also Published As

Publication number Publication date
DE4332401A1 (de) 1995-03-30
DE59403324D1 (de) 1997-08-14
AU7692694A (en) 1995-04-10
JPH09507184A (ja) 1997-07-22
ES2107250T3 (es) 1997-11-16
US5806514A (en) 1998-09-15
EP0720560A1 (fr) 1996-07-10
WO1995008471A1 (fr) 1995-03-30
AU689132B2 (en) 1998-03-26

Similar Documents

Publication Publication Date Title
EP0720560B1 (fr) Dispositif et procede pour le controle d'une operation de plongee
EP0550649B2 (fr) Dispositif de surveillance d'appareils portatifs de respiration
DE19846982C2 (de) Verfahren und System zum Überwachen der Haltung eines Benutzers an einem Trainingsgerät
DE60222335T2 (de) Vorrichtung zur Messung des weiblichen Körpers
DE1960517A1 (de) Vorrichtung zum Aufrechterhalten der Konzentration eines Gases
EP1227751B1 (fr) Systeme mobile d'ergospirometrie
EP1358106B1 (fr) Dispositif de mesure de la frequence respiratoire
DE60305758T2 (de) Datenverarbeitungsvorrichtung für Taucher und Verfahren, Programm und Speicher dafür
DE69921947T2 (de) Anzeige von informationen für taucher
DE102004060970A1 (de) Armbandcomputer
DE19628356C2 (de) Verfahren zur Normalisierung des Atemmusters von mit Atmungsgeräten ausgestatteten Personen, insbesondere von Sport- und Berufstauchern, sowie Einrichtung zur Durchführung des Verfahrens
DE3920526A1 (de) Verfahren und vorrichtung zur ermittlung des konditionszustandes einer testperson
DE19953866B4 (de) Mobiles Ergospirometriesystem
DE4102031A1 (de) Verfahren zur steigerung der leistungsfaehigkeit des gehirns einer person und vorrichtung zur durchfuehrung des verfahrens
EP0314027A1 (fr) Méthode et dispositif d'actionnement et d'étalonnage de plusieurs capteurs de grandeurs biologiques et physiologiques
DE19547960C1 (de) Gerät zur Berechnung des Energieumsatzes beim Menschen
DE102004007986A1 (de) Tauchcomputer
EP0050628A1 (fr) Dispositif de securite, notamment pour plongeurs
DE9016970U1 (de) Vorrichtung zur Messung der Herzfrequenz
DE102021215102A1 (de) Verfahren zur indirekten Längenmessung, Verfahren zur Ermittlung und Ausgabe eines Messfehlers, Verfahren zur Kalibrierung und Längenmessgerät
WO2017092843A1 (fr) Dispositif de détection de métabolites gazeux
DE102006028085A1 (de) Tauchcomputer und Verfahren zum Bestimmen von Gasbildung
DE102013022397A1 (de) Vorrichtung zur Unterstützung eines Ersthelfers bei der Herzdruckmassage
DE102018101417A1 (de) Vorrichtung zur Unterstützung eines Ersthelfers bei der Herzdruckmassage
DE19733176C1 (de) Vorrichtung zum Messen des Blutdrucks und Verfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI

17Q First examination report despatched

Effective date: 19960709

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: AMMANN PATENTANWAELTE AG BERN

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59403324

Country of ref document: DE

Date of ref document: 19970814

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970903

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2107250

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: UWATEC INSTRUMENTS DEUTSCHLAND GMBH

Free format text: UWATEC AG#ENGENBUEHL 130#CH-5705 HALLWIL (CH) $ UWATEC INSTRUMENTS DEUTSCHLAND GMBH#MURGTALSTRASSE 28#D-79736 RICKENBACH-HOTTINGEN (DE) -TRANSFER TO- UWATEC INSTRUMENTS DEUTSCHLAND GMBH#MURGTALSTRASSE 28#D-79736 RICKENBACH-HOTTINGEN (DE) $ UWATEC AG#RIEDSTRASSE 368#5705 HALLWIL (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130828

Year of fee payment: 20

Ref country code: CH

Payment date: 20130828

Year of fee payment: 20

Ref country code: ES

Payment date: 20130826

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130819

Year of fee payment: 20

Ref country code: GB

Payment date: 20130827

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130823

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59403324

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59403324

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140830

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140901