EP0546174B1 - Monozerstreute einfache und doppelte emulsionen und herstellungsverfahren - Google Patents

Monozerstreute einfache und doppelte emulsionen und herstellungsverfahren Download PDF

Info

Publication number
EP0546174B1
EP0546174B1 EP91911947A EP91911947A EP0546174B1 EP 0546174 B1 EP0546174 B1 EP 0546174B1 EP 91911947 A EP91911947 A EP 91911947A EP 91911947 A EP91911947 A EP 91911947A EP 0546174 B1 EP0546174 B1 EP 0546174B1
Authority
EP
European Patent Office
Prior art keywords
emulsion
particle size
porous glass
type
glass membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91911947A
Other languages
English (en)
French (fr)
Other versions
EP0546174A1 (de
EP0546174A4 (en
Inventor
Tadao 501 Oaza-Shioji Nakashima
Masataka 11074 Oaza-Shimanouchi Shimizu
Masato Ken-Kyosai-Juutaku Kukizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYAZAKI-KEN
Original Assignee
MIYAZAKI-KEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYAZAKI-KEN filed Critical MIYAZAKI-KEN
Priority claimed from PCT/JP1991/000882 external-priority patent/WO1993000156A1/ja
Publication of EP0546174A1 publication Critical patent/EP0546174A1/de
Publication of EP0546174A4 publication Critical patent/EP0546174A4/en
Application granted granted Critical
Publication of EP0546174B1 publication Critical patent/EP0546174B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/414Emulsifying characterised by the internal structure of the emulsion
    • B01F23/4144Multiple emulsions, in particular double emulsions, e.g. water in oil in water; Three-phase emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/4105Methods of emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • B01F25/31421Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction the conduit being porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/53Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is discharged from and reintroduced into a receptacle through a recirculation tube, into which an additional component is introduced

Definitions

  • This invention relates to monodisperse single and double emulsions and a method of producing the same.
  • % means “% by volume”, unless otherwise specified.
  • emulsions are generally produced by adding an emulsifying agent, such as a surfactant, and a liquid to be dispersed to a continuous phase liquid and stirring or frictionally mixing the resulting mixture by some mechanical means, such as a stirrer, homogenizer or colloid mill, to thereby comminute the dispersed phase.
  • an emulsifying agent such as a surfactant
  • some mechanical means such as a stirrer, homogenizer or colloid mill
  • emulsion particles dispersed phase particles in the emulsion prepared (hereinafter sometimes referred to as emulsion particles) are considerably ununiform in size, so that the emulsion is poor in stability.
  • emulsion particles dispersed phase particles in the emulsion prepared
  • surfactant when the dispersed phase concentration is high, a large amount of surfactant will be required for the improvement of emulsion stability.
  • two methods are known for the production of double emulsions of the o/w/o or w/o/w type.
  • One is the one-step emulsification method which utilizes phase inversion from w/o type emulsions to o/w type emulsions or from o/w type emulsions to w/o type emulsions and the other is the two-step emulsification method comprising dispersing with stirring a w/o or o/w type emulsion prepared in advance again in a continuous phase to obtain a w/o/w or o/w/o type emulsion.
  • JP-A-2 214 537 discloses a method for preparing high-quality w/o emulsions by partitioning the two phases with a porous membrane. To prevent reaggregation of the aqueous component at the pore outlet, the membrane surface is irradiated with ultrasonic waves.
  • JP-A-2 095 433 discloses the production of w/o and w/o/w emulsions by injecting a first phase into a second phase through membranes with micropores of uniform diameter.
  • the present inventors have now completed a novel method of producing monodisperse single emulsions and double emulsions, which method can make emulsion particles more uniform in size. It has also been found that said method can give double emulsion particles in high yield and, in addition, can effectively prevent the loss of a substance or substances added from the internal phase as resulting from disruption of emulsion particles.
  • the term "monodisperse emulsion" as used herein and in the claims means any emulsion showing a coefficient of particle size dispersion, ⁇ , of not more than 0.5, preferably not more than 0.3.
  • the content, in the emulsions of the invention, of smaller particles having a size less than 50% of the mean particle size is only about 1% or less, hence said emulsions can be said to be substantially free of smaller particles having a size less than 50% of the mean particle size.
  • critical pressure means a minimum pressure required for the introduction of a dispersed phase-forming liquid into a continuous phase-forming liquid through a porous glass membrane.
  • FIG. 1 the illustrations (a), (b) and (c) schematically show the mechanism of emulsion particle formation by the method of the invention in relation to the critical pressure.
  • the porous glass membrane 1 has a glass skeleton surface 2 more readily wettable with the continuous phase liquid 5 than with the dispersed phase-forming liquid 4. This wettability can be adjusted by physical surface treatment or chemical surface-modifying treatment, which is to be mentioned later herein. Under the circumstances shown in Fig.
  • the dispersed phase-forming liquid is introduced into the continuous phase liquid by causing it to pass through pores of a porous glass membrane under pressure conditions such that ⁇ P > P c and the pressure is 1 to 10 times (preferably 1 to 5 times) the critical pressure.
  • the pressure exerted on the dispersed phase-forming liquid is below 1 time the critical pressure, it is of course impossible to produce any emulsion.
  • said pressure is more than 10 times the critical pressure, the porous glass will be easily wetted with the dispersed phase-forming liquid so that monodisperse emulsions can hardly be obtained stably.
  • porous glass membrane to be used in the invention can be produced by utilizing the phenomenon of micro phase separation upon heat treatment of glass.
  • porous glass membrane there may be mentioned CaO-B 2 O 3 -SiO 2 -Al 2 O 3 -based porous glass disclosed in Examined Japanese Patent Publication No. 62-25618, and CaO-B 2 O 3 -SiO 2 -Al 2 O 3 -Na 2 O-based porous glass and CaO-B 2 O 3 -SiO 2 -Al 2 O 3 -Na 2 O-MgO-based porous glass disclosed in Examined Japanese Patent Publication No. 63-66777 and U.S. Patent No. 4,657,875.
  • porous glass species are characterized in that the pore size is controlled in a very narrow range and the pores are cylindrical in longitudinal section.
  • porous glass membranes having such characteristics, emulsions containing emulsion particles with a specific controlled particle size range corresponding to the pore size can be produced.
  • the thickness of the glass membrane is not critical but, considering its strength, the resistance in emulsion production and other factors, it is preferably about 0.4 to 2 mm.
  • porous glass membrane can be designed to have pores uniform in size within the range of 1 nm to 10 ⁇ m
  • the porous glass membrane to be used in the practice of the invention has a mean pore size within the range of 0.1 to 5 ⁇ m.
  • the emulsion particles produced under the above-mentioned pressure conditions will have a mean particle size about 3.25 times the mean pore size.
  • the pore outlet portion of the porous glass membrane which is to come into contact with the continuous phase-forming liquid, has a funnel-like shape so that the pore outlet diameter is twice the pore diameter, emulsion particles having a particle size about 7 to 8 times the mean pore size can be obtained by using such porous glass membrane and proceeding under the pressure conditions mentioned above.
  • the emulsions produced by the method of the invention show strict correspondence between the pore size distribution in the porous glass membrane used and the particle size distribution of emulsion particles in said emulsions.
  • a membrane with a sharp pore size distribution is used, emulsions with a sharp particle size distribution can be obtained whereas the use of a membrane with a broad pore size distribution results in emulsions with a broad particle size distribution.
  • the porous glass membrane to be used in accordance with the invention is hydrophilic by nature owing to the polar groups (-SiOH, -OH, etc.) occurring on the pore surface and is negatively charged in water, though weakly.
  • the porous glass membrane is surface-modified by various treatment methods. For example, introduction of an acid residue, such as a sulfo group, into the surface layer of the porous glass membrane can give a membrane having a stronger negative charge.
  • sulfo group introduction there may be mentioned, for example, treatment with benzyltrichlorosilane and SO 3 , treatment with benzyldimethylchlorosilane and SO 3 , and treatment with 1,3-propanesulfone.
  • an amino group or the like When an amino group or the like is introduced into the surface of the porous glass membrane, said membrane can be rendered positively charged.
  • the method of amino group introduction there may be mentioned, among others, treatment of a hydrophilic porous glass membrane with 2-aminoethylaminopropyltriethoxysilane, ⁇ -aminopropyltriethoxysilane, N-(2-amino)-3-aminopropylmethyldimethoxysilane, N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride or the like.
  • the surface of the porous glass membrane can be made hydrophobic by introducing a hydrocarbon group thereinto using various reagents or providing it with an organic coating composition. Unless the uniform porous structure of the porous glass membrane itself is damaged, any surface modification method may be employed without any particular limitation.
  • the porous glass membrane is preferably used in a negatively charged state.
  • the method of the present invention is carried out generally in the following manner.
  • an anionic surfactant and/or a nonionic surfactant and/or a dispersing agent is dissolved in the aqueous continuous phase liquid.
  • Fig. 3 schematically illustrates the behavior of surfactant molecules relative to the pore surface of a hydrophilic porous glass membrane.
  • a porous glass membrane having a negatively charged glass surface 7 is used and an anionic surfactant (8) is dissolved in the continuous phase liquid (aqueous phase), the glass surface 7 will not be wetted with the dispersed phase-forming liquid (oily phase) invading into the pores, whereby monodisperse o/w type single emulsions can be produced.
  • a cationic surfactant 9 when a cationic surfactant 9 is dissolved in the continuous phase liquid (aqueous phase), as shown in Fig. 3 (b), the cationic surfactant 9 is electrostatically adsorbed on the negatively charged glass surface 7 and the hydrophobic group of the cationic surfactant 9 is oriented toward the liquid phase side. As a result, the glass surface exhibits hydrophobicity and is wetted with the dispersed phase-forming oily liquid, so that any monodisperse emulsion cannot be produced.
  • the method of the invention makes it possible to produce monodisperse emulsions with the surfactant concentration being as low as about one thirtieth to one tenth the critical micelle concentration. This is because the surfactant is required only in small amounts for the stabilization of emulsion particles since the emulsion particles are uniform in size.
  • anionic surfactant, nonionic surfactant and dispersing agent to be added to the aqueous continuous phase liquid are not limited to any particular species if they are soluble in the aqueous continuous phase liquid. As examples, the following may be mentioned.
  • the porous glass membrane is rendered hydrophobic by surface treatment, and the same oil-soluble surfactant as mentioned above is dissolved in the continuous phase liquid (oily phase) in an amount of about 0.1 to 10% by weight, preferably about 0.5 to 2% by weight.
  • the continuous phase-forming liquid is not particularly limited and may include, organic solvents, petroleum-derived oils, and animal and vegetable oils.
  • a water-soluble substance may be added to the dispersed phase-forming liquid (aqueous phase).
  • the water-soluble substance is not particularly limited and may include inorganic salts, organic salts, saccharides and macromolecular substances.
  • the water-soluble substance is added in an amount within the range of 0.05% by weight based on the dispersed phase-forming liquid to saturation, preferably 0.5% on the same basis to saturation.
  • double emulsions can be obtained by introducing under pressure a w/o type single emulsion prepared in advance into a continuous phase liquid (aqueous phase) through a hydrophilic porous glass membrane. It is important that the pore size of the porous glass membrane is at least equal to, preferably at least about 1.5 times, the maximum particle size that the single emulsion shows. If the pore size of the porous glass membrane is less than the maximum single emulsion particle size, filtration of single emulsion particles will occur through the porous glass membrane.
  • the single emulsion particles adjusted to a particle concentration of about 1 to 70% pass through the membrane without meeting any resistance within the pores to form a double emulsion.
  • the size of emulsion particles in said double emulsion can be controlled within the range of 0.3 to 40 ⁇ m, as in the case of single emulsions.
  • an o/w type single emulsion prepared in advance is introduced under pressure into a continuous phase liquid (oily phase) through a porous glass membrane rendered hydrophobic by preliminary surface treatment.
  • a continuous phase liquid oil (oily phase)
  • a porous glass membrane rendered hydrophobic by preliminary surface treatment.
  • FIG. 4 An apparatus for carrying out the method of the invention is shown by way of example in Fig. 4.
  • the construction and operation of this apparatus may be summarized as follows.
  • a cylindrical porous glass membrane 10 is fixed inside a module 11.
  • a dispersed phase-forming liquid stored in a tank 12 is caused under pressure, namely by high pressure nitrogen gas from a cylinder 13, to fill a line 14, the outer side of the cylindrical porous glass membrane 10 in the module 11, and a line 16 fitted with a pressure gage 15.
  • a valve 17 is then closed, so that a pressure below the critical pressure is applied to the dispersed phase-forming liquid.
  • a continuous phase-forming liquid is circulated from a tank 18 containing the same through a pump 19, a line 20, the internal side of the cylindrical porous glass membrane 10 in the module 11, and a line 22 fitted with a pressure gage 21, to said tank.
  • the pressure on the dispersed phase-forming liquid is then increased to a level of or above the critical pressure to thereby cause the dispersed phase-forming liquid to pass through the pores of the porous glass membrane 10 and form emulsion particles.
  • the apparatus is continuingly operated until a desired dispersed phase concentration is attained. Monodisperse single emulsions are prepared in this way.
  • the apparatus shown in Fig. 4 can be used also for the production of double emulsions.
  • a w/o/w type emulsion prepared in advance is charged into the tank 12, while a continuous phase liquid (aqueous phase) is charged into the tank 18.
  • a continuous phase liquid aqueous phase
  • the same operation as mentioned above is performed to introduce the w/o type emulsion into the continuous phase liquid through the hydrophilic porous glass membrane 10 fixed inside the module 11, to give a w/o/w type emulsion.
  • FIG. 5 An example of the module to be used in the practice of the invention is schematically shown in section in Fig. 5.
  • a cylindrical porous glass membrane 27 alone is shown by appearance, not in section.
  • This module is composed of a tightening cap 23, a housing 24, a spacer 25, an O ring 26 and the cylindrical porous glass membrane 27.
  • a dispersed phase-forming liquid fed through an inlet 28 is introduced under pressure from the outside of the cylindrical porous glass membrane 27 into a continuous phase liquid flowing in the inside of said membrane.
  • emulsion particles uniform in particle size can be obtained and, in addition, the particle size can be controlled as desired.
  • the emulsions provided by the invention and comprising particles uniform in size contribute to markedly improve the performance characteristics of various materials produced by using said emulsions.
  • the emulsions markedly improve the quality of solid particles obtained therefrom.
  • the invention is very useful in the production of various materials which require emulsification treatment for their production, for example in the production of foods, medicines, cosmetics, pigments, functional plastic particles, functional inorganic material particles, raw materials for fine ceramics and so forth as well as in solvent extraction.
  • Example 15 Using the same porous glass membrane as used in Example 1 having a pore size of 0.56 ⁇ m, the state of charging in water (zeta potential) was examined at various pH levels. The results are as shown in Fig. 15.
  • the untreated hydrophilic porous glass membrane had a negative charge of -15 to -35 mV within the pH range of 2 to 8 [cf. curve (b)].
  • hydrophilic porous glass membrane treated with 2-aminoethylaminopropyltriethoxysilane showed a positive charge of +20 to +55 mV [cf. curve (a)].

Claims (7)

  1. Monodisperse einfache Emulsion vom o/w-Typ, dadurch gekennzeichnet, daß
    (a) die mittlere Teilchengröße der Emulsionsteilchen im Bereich von 0,3 bis 40 µm liegt;
    (b) der Gehalt an kleineren Teilchen mit einer Größe von weniger als 50% der mittleren Teilchengröße 1% oder geringer ist;
    (c) die Emulsion gemäß einem in einem der Ansprüche 4 - 6 definierten Verfahren hergestellt ist; und
    (d) der Koeffizient der Teilchengrößenverteilung 0,3 oder geringer ist (wenn die Teilchengrößenmessung unter Verwendung einer Teilchengrößenverteilungs-Meßvorrichtung vom Zentrifugalsedimentationstyp durchgeführt wird) oder 0,55 bis 0,6 oder geringer (wenn die Teilchengrößenmessung unter Verwendung einer Größenverteilungs-Meßvorrichtung vom Laserdiffraktionstyp durchgeführt wird).
  2. Doppelte Emulsion vom w/o/w-Typ, dadurch gekennzeichnet, daß
    (a) die mittlere Teilchengröße der Emulsionsteilchen im Bereich von 0,3 bis 40 µm liegt;
    (b) die Teilchenkonzentration der inneren Phase auf ein im wesentlichen konstantes Niveau im Bereich von 1 bis 70% reguliert wird; und
    (c) die Emulsion hergestellt wird, indem unter Druck eine monodisperse einfache Emulsion vom w/o-Typ durch eine hydrophile poröse Glasmembran mit einer mittleren Porengröße im Bereich von 0,1 bis 5 µm und mit der Größe von nicht weniger als der maximalen Teilchengröße der einfachen Emulsion bei einem Druck von mehr als dem kritischen Druck bis zum 10-fachen in eine kontinuierliche Phasenflüssigkeit eingebracht wird.
  3. Doppelte Emulsion vom o/w/o-Typ, dadurch gekennzeichnet, daß
    (a) die mittlere Teilchengröße der Emulsionsteilchen im Bereich von 0,3 bis 40 µm liegt;
    (b) die Teilchenkonzentration der inneren Phase auf ein im wesentlichen konstantes Niveau im Bereich von 1 bis 70% reguliert wird; und
    (c) die Emulsion hergestellt wird, indem unter Druck eine wie in Anspruch 1 definierte einfache Emulsion vom o/w-Typ durch eine hydrophile poröse Glasmembran mit einer mittleren Porengröße im Bereich von 0,1 bis 5 µm und mit der Größe von nicht weniger als der maximalen Teilchengröße der einfachen Emulsion bei einem Druck von mehr als dem kritischen Druck bis zum 10-fachen in eine kontinuierliche Phasenflüssigkeit (ölige Phase) eingebracht wird.
  4. Verfahren zur Herstellung einer wie in Anspruch 1 definierten monodispersen einfachen Emulsion vom o/w-Typ, welches das Einbringen unter Druck einer dispergierten phasenbildenden öligen Flüssigkeit durch eine hydrophile poröse Glasmembran, welche durch eine Oberflächenbehandlung positiv geladen ist und eine mittlere Porengröße im Bereich von 0,1 bis 5 µm besitzt, bei einem Druck von mehr als dem kritischen Druck bis zum 10-fachen in eine wäßrige kontinuierliche Phasenflüssigkeit, welche ein kationisches Tensid in einer Konzentration von 1/30 bis 1/10 der kritischen Mizellenkonzentration enthält, umfaßt.
  5. Verfahren zur Herstellung einer wie in Anspruch 1 definierten monodispersen einfachen Emulsion vom o/w-Typ, welches das Einbringen unter Druck einer dispergierten phasenbildenden öligen Flüssigkeit durch eine hydrophile poröse Glasmembran, welche durch eine Oberflächenbehandlung negativ geladen ist und eine mittlere Porengröße im Bereich von 0,1 bis 5 µm besitzt, bei einem Druck von mehr als dem kritischen Druck bis zum 10-fachen in eine wäßrige kontinuierliche Phasenflüssigkeit, welche ein anionisches Tensid und/oder ein nichtionisches Tensid und/oder ein Dispersionsmittel in einer Konzentration von 1/30 bis 1/10 der kritischen Mizellenkonzentration enthält, umfaßt.
  6. Verfahren zur Herstellung einer wie in Anspruch 1 definierten monodispersen einfachen Emulsion vom o/w-Typ, welches das Einbringen unter Druck einer dispergierten phasenbildenden öligen Flüssigkeit, welche 0,1 bis 10 Gew.-% eines öllöslichen Tensids enthält, durch eine hydrophile poröse Glasmembran, welche durch eine Oberflächenbehandlung negativ geladen ist und eine mittlere Porengröße im Bereich von 0,1 bis 5 µm besitzt, bei einem Druck von mehr als dem kritischen Druck bis zum 10-fachen in eine wäßrige kontinuierliche Phasenflüssigkeit, welche ein anionisches Tensid und/oder ein nichtionisches Tensid und/oder ein Dispersionsstabilisierungsmittel in einer Konzentration von 1/30 bis 1/10 der kritischen Mizellenkonzentration enthält, umfaßt.
  7. Verfahren zur Herstellung einer monodispersen einfachen Emulsion vom w/o-Typ, welches das Einbringen unter Druck einer dispergierten phasenbildenden wäßrigen Flüssigkeit durch eine poröse Glasmembran, welche durch eine Oberflächenbehandlung hydrophob gemacht wurde und eine mittlere Porengröße im Bereich von 0,1 bis 5 µm besitzt, bei einem Druck von mehr als dem kritischen Druck bis zum 10-fachen in eine ölige kontinuierliche Phasenflüssigkeit, welche 0,1 bis 10 Gew.-% eines öllöslichen Tensids enthält, umfaßt.
EP91911947A 1991-06-29 1991-06-29 Monozerstreute einfache und doppelte emulsionen und herstellungsverfahren Expired - Lifetime EP0546174B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP1991/000882 WO1993000156A1 (en) 1991-06-29 1991-06-29 Monodisperse single and double emulsions and production thereof
US07/906,282 US5326484A (en) 1991-06-29 1992-06-29 Monodisperse single and double emulsions and method of producing same

Publications (3)

Publication Number Publication Date
EP0546174A1 EP0546174A1 (de) 1993-06-16
EP0546174A4 EP0546174A4 (en) 1993-09-15
EP0546174B1 true EP0546174B1 (de) 1997-10-29

Family

ID=25422192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91911947A Expired - Lifetime EP0546174B1 (de) 1991-06-29 1991-06-29 Monozerstreute einfache und doppelte emulsionen und herstellungsverfahren

Country Status (2)

Country Link
EP (1) EP0546174B1 (de)
JP (1) JP2733729B2 (de)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9414318D0 (en) * 1994-07-15 1994-09-07 Dowelanco Ltd Preparation of aqueous emulsions
JP2975943B2 (ja) * 1996-02-20 1999-11-10 農林水産省食品総合研究所長 エマルションの製造方法及びエマルションの製造装置
GB9606738D0 (en) * 1996-03-29 1996-06-05 Disperse Tech Ltd Dispersion of immiscible phases
JP3081880B2 (ja) 1998-03-30 2000-08-28 農林水産省食品総合研究所長 マイクロスフィアの連続製造装置
FR2808703B1 (fr) * 2000-05-09 2002-08-02 Centre Nat Rech Scient Procede de preparation d'une emulsion double monodisperse
JP3511238B2 (ja) 2000-10-13 2004-03-29 独立行政法人食品総合研究所 マイクロスフィアの製造方法および製造装置
JP4659253B2 (ja) * 2001-03-30 2011-03-30 サンスター株式会社 エマルション組成物の製造方法
WO2003014196A1 (en) * 2001-08-03 2003-02-20 Akzo Nobel N.V. Process to make dispersions
JP4038585B2 (ja) * 2002-06-03 2008-01-30 宮崎県 固体脂マイクロカプセルおよびその製造方法
DE10351644A1 (de) * 2003-11-05 2005-06-09 Bayer Technology Services Gmbh Verfahren zur Herstellung von lagerstabilen multiplen Emulsionen
JP5079977B2 (ja) * 2004-09-16 2012-11-21 大日本塗料株式会社 単分散粒子の製造方法
JP4616602B2 (ja) * 2004-09-16 2011-01-19 大日本塗料株式会社 単分散粒子の製造方法
US7968287B2 (en) 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
JP4580801B2 (ja) 2005-03-29 2010-11-17 株式会社東芝 複合型微粒子の製造方法及び複合型微粒子の製造装置
JP2007106975A (ja) * 2005-10-11 2007-04-26 Spg Trading Kk Spg(シラス多孔質ガラス)エマルジョン燃料製造装置
JP4713397B2 (ja) 2006-01-18 2011-06-29 株式会社リコー 微小流路構造体及び微小液滴生成システム
JP2007204382A (ja) * 2006-01-31 2007-08-16 Kyoto Univ リポソームの製造方法
US20080014589A1 (en) 2006-05-11 2008-01-17 Link Darren R Microfluidic devices and methods of use thereof
US8293819B2 (en) 2006-11-24 2012-10-23 Canon Kabushiki Kaisha Method for producing particles and particles
WO2008097559A2 (en) 2007-02-06 2008-08-14 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US8592221B2 (en) 2007-04-19 2013-11-26 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
WO2008140081A1 (ja) 2007-05-14 2008-11-20 Konica Minolta Holdings, Inc. リポソームおよびリポソームの製造方法
JP5103191B2 (ja) * 2008-01-09 2012-12-19 日本たばこ産業株式会社 水中油型エマルジョンとその製造方法
JP5091784B2 (ja) * 2008-07-10 2012-12-05 積水化学工業株式会社 エマルジョン製造装置、単分散微粒子製造装置並びにエマルジョンの製造方法、単分散微粒子の製造方法
EP4047367A1 (de) 2008-07-18 2022-08-24 Bio-Rad Laboratories, Inc. Verfahren zum nachweis von zielanalyten unter verwendung von tropfenbibliotheken
WO2011062132A1 (ja) * 2009-11-20 2011-05-26 コニカミノルタホールディングス株式会社 W/o/wエマルションの製造方法およびこれを用いたリポソームの製造方法、並びにこれらの方法に用いられる孔膜
EP2534267B1 (de) 2010-02-12 2018-04-11 Raindance Technologies, Inc. Digitale analyse von analyten
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
EP3412778A1 (de) 2011-02-11 2018-12-12 Raindance Technologies, Inc. Verfahren zur bildung gemischter tröpfchen
EP2675819B1 (de) 2011-02-18 2020-04-08 Bio-Rad Laboratories, Inc. Zusammensetzungen und verfahren für molekulare etikettierung
DE202012013668U1 (de) 2011-06-02 2019-04-18 Raindance Technologies, Inc. Enzymquantifizierung
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
JP5415510B2 (ja) * 2011-11-01 2014-02-12 日本たばこ産業株式会社 水中油型エマルジョンの製造方法
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US9944977B2 (en) 2013-12-12 2018-04-17 Raindance Technologies, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
CN111315365A (zh) * 2017-09-26 2020-06-19 纳奥米有限公司 用于通过双乳液技术制备微粒的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082416B2 (ja) * 1988-09-29 1996-01-17 宮崎県 エマルションの製造方法
JP2847107B2 (ja) * 1989-02-16 1999-01-13 富士シリシア化学株式会社 エマルジョンの調製方法
EP0672351B1 (de) * 1990-04-11 2000-09-13 Morinaga Milk Industry Co., Ltd. Verfahren zur Herstellung von Emulsionen
JP2555475B2 (ja) * 1990-10-16 1996-11-20 工業技術院長 無機質微小球体の製造方法
JPH04219131A (ja) * 1990-12-20 1992-08-10 Fuji Davison Chem Ltd エマルション並びに球状シリカゲルの製法

Also Published As

Publication number Publication date
JPH05220382A (ja) 1993-08-31
JP2733729B2 (ja) 1998-03-30
EP0546174A1 (de) 1993-06-16
EP0546174A4 (en) 1993-09-15

Similar Documents

Publication Publication Date Title
EP0546174B1 (de) Monozerstreute einfache und doppelte emulsionen und herstellungsverfahren
US5326484A (en) Monodisperse single and double emulsions and method of producing same
EP0481892B1 (de) Verfahren zur Herstellung von feinkugeligen, gleichförmig grossen anorganischen Teilchen
JPH0295433A (ja) エマルションの製造方法
EP1727865B1 (de) Partikelstabilisierte emulsionen
Worthen et al. Carbon dioxide‐in‐water foams stabilized with nanoparticles and surfactant acting in synergy
Tadros Industrial applications of dispersions
Park et al. A microfluidic approach to chemically driven assembly of colloidal particles at gas–liquid interfaces
Lindberg et al. Preparation of silica particles utilizing the sol-gel and the emulsion-gel processes
Sugiura et al. Preparation characteristics of monodispersed water-in-oil emulsions using microchannel emulsification
Manga et al. Production of solid-stabilised emulsions through rotational membrane emulsification: influence of particle adsorption kinetics
Ramisetty et al. Effect of ultrasonication on stability of oil in water emulsions
AU2003285402B2 (en) Method and device for making a dispersion or an emulsion
EP1560641B1 (de) Verfahren zur herstellung von emulsionen
US5071635A (en) Method of preparing ceramic microspheres
JP2004008837A (ja) S/oサスペンション及びs/o/wエマルション並びにそれらの製造方法
GB2467925A (en) Membrane emulsification using oscillatory motion
Zabiegaj et al. Carbon soot–ionic surfactant mixed layers at water/air interfaces
Schmitt et al. Preparation of monodisperse particles and emulsions by controlled shear
DE102012014536B4 (de) Sphärische, magnetisierbare Polyvinylalkohol-Mikropartikel, Verfahren für deren Herstellung sowie deren Verwendung
Björkegren Functionalization and characterization of aqueous silica sols and their application in Pickering emulsions
Gholamipour-Shirazi et al. Controlled microfluidic emulsification of oil in a clay nanofluid: Role of salt for Pickering stabilization
Borkovec et al. Stabilization of aqueous colloidal dispersions: electrostatic and steric forces
EP3837033A1 (de) Silikonentschäumerzusammensetzung und verfahren zur herstellung einer silikonentschäumerzusammensetzung durch einstellung der verteilungsbreite eines zeta-potentials
Kukizaki et al. A comparative study of SPG membrane emulsification in the presence and absence of continuous-phase flow

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

A4 Supplementary search report drawn up and despatched

Effective date: 19930727

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB NL

17Q First examination report despatched

Effective date: 19940711

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 69128087

Country of ref document: DE

Date of ref document: 19971204

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050609

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050629

Year of fee payment: 15

Ref country code: GB

Payment date: 20050629

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050811

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060629

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630