EP0535029B1 - Zustandsmeldevorrichtung zur meldung eines vorgegebenen temperaturzustands, dafür geeigneter temperatursensor und verfahren zu dessen herstellung - Google Patents

Zustandsmeldevorrichtung zur meldung eines vorgegebenen temperaturzustands, dafür geeigneter temperatursensor und verfahren zu dessen herstellung Download PDF

Info

Publication number
EP0535029B1
EP0535029B1 EP91910757A EP91910757A EP0535029B1 EP 0535029 B1 EP0535029 B1 EP 0535029B1 EP 91910757 A EP91910757 A EP 91910757A EP 91910757 A EP91910757 A EP 91910757A EP 0535029 B1 EP0535029 B1 EP 0535029B1
Authority
EP
European Patent Office
Prior art keywords
output
status
reporting
alarm signal
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91910757A
Other languages
English (en)
French (fr)
Other versions
EP0535029A1 (de
Inventor
Heinz Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dylec Ltd
Original Assignee
Dylec Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dylec Ltd filed Critical Dylec Ltd
Publication of EP0535029A1 publication Critical patent/EP0535029A1/de
Application granted granted Critical
Publication of EP0535029B1 publication Critical patent/EP0535029B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station

Definitions

  • the invention relates to a condition reporting device of the type specified in the preamble of claim 1, a temperature sensor suitable therefor according to the preamble of claim 12 and a method for its production according to the preamble of claim 14.
  • Known status reporting devices of the above-mentioned type serve the purpose of emitting an alarm signal when an extreme temperature condition occurs and at the same time making it clear which of the temperature sensors involved has triggered the alarm signal (US-A-4,340,886, EP-A-0 004 911, GB -A-2 174 525, Electronics Weekly No. 778, August 13, 1975, Electronic Design, Volume 13, No. 1, January 10, 1985, DE-A-31 28 811).
  • the temperature is monitored e.g. for fire detection or temperature monitoring e.g. of motors, bearings, ovens or cooling systems.
  • Thermocouples, resistance temperature sensors, temperature-sensitive diodes, mercury switches or the like serve as temperature sensors, but also e.g. Common fire detectors or glass break detectors, all of which are characterized by relatively slow response times, low sensitivity and large dimensions.
  • the condition reporting device described at the outset should be suitable not only for temperature monitoring, but also for automatically triggering an extinguishing system, as is the case, for example, in aircraft, tanks, dangerous goods tankers or the like. because of the often explosive fires there is desirable and necessary.
  • the invention is therefore also based on the object of proposing a temperature sensor which is particularly suitable for such a status reporting device and a method for its production.
  • the invention has the advantage that it enables sensible use of thermistors and thereby their known advantages such as e.g. uses small dimensions, short response times and high sensitivity.
  • temperature sensors are proposed which enable a temperature measurement of the air surrounding them, but at the same time are kept very small and can nevertheless be effectively protected against mechanical damage and are therefore particularly suitable for use in confined spaces.
  • the method according to the invention creates a possibility of manufacturing such temperature sensors in such a way that the casting compound on the one hand also at temperatures to be measured of e.g.
  • condition reporting device in overheating or fire detection systems, such as in house installations, in the detection of tire overheating in trucks, in power plants or in shipping as well as automatic extinguishing systems in public and private buildings.
  • the status reporting device can also be used as part of a control system. In connection with the electronics, this results in further additional application options such as in the field of air conditioning or heating control.
  • thermistor 1 shows a temperature sensor according to the invention with a thermistor 1 in the form of a pearl thermistor (eg M 812 from Siemens AG, D-8000 Munich 80) there is a thermistor bead or a semiconductor bead 4 enclosed in a thin, short glass tube 2 and arranged at its tip 3, to which two connecting wires 5 are fastened, which lead out of the glass tube 2.
  • a thermistor 1 available on the market useful for the purposes of the invention, it is combined with a preferably cylindrical plug housing 6, which has an intermediate part 7, a hollow end section 8 attached to one side thereof and another on its other side attached, designed as a conventional, 2 or 3-pin connector base 9.
  • the connecting wires 5 are inserted into the hollow cylindrical ends of plugs 10 and firmly connected to the plugs 10 by crimping (crimping) in order to avoid that any soldering mass or the like that is used can melt and run away during the subsequent casting of the end section 8.
  • the plugs 10 are then inserted through bores which are formed in an insert (not shown) which fills the intermediate part 7 in such a way that the arrangement shown in FIG. 1 a results in which the free ends of the plugs 10 protrude into the hollow bottom 9.
  • the connectors 10 are preferably firmly locked in the insert by elements acting in the manner of a snap connection.
  • the glass tube 2 is preferably arranged so that it is arranged parallel and coaxially to the axis of the connector housing 6 and the thermistor bead 4 is arranged at the end of the end section 8 facing away from the intermediate part 7.
  • the hollow end section 8 is now filled with a casting compound 11 so that the entire glass tube 2, with the exception of its tip 3, is embedded in the casting compound 11.
  • the tip 3 with the semiconductor bead 4 protrudes out of the connector housing 6 or the potting compound 11, which on the one hand results in a mechanically stable sensor, and on the other hand creates a very sensitive and very quickly responding temperature sensor which detects the temperature of the surrounding air measures and reacts to temperature changes, the smaller the area of the semiconductor bead 4 to be heated is.
  • response times of the order of half a second can be achieved, which is particularly important for rapid fire detection and fighting.
  • the desired triggering temperature is in the range from 80 ° C. to 300 ° C. to approximately ⁇ 1 ° C. can be set.
  • a preferably cylindrical protective cap 12 can be screwed onto the end section of the connector housing 6, which is either open at the outer end and / or with a plurality of openings is provided so that the air, the temperature of which is to be monitored, can flow around the tip 3 and thus the semiconductor bead 4.
  • the thermistor bead 4 is arranged at a preselected location within the protective cap 12 and the sealing compound 11 is filled into the protective cap to such a height h that in turn only the tip 4 with the semiconductor bead 4 protrudes from the sealing compound 11 .
  • the protective cap 12 forms an inseparable unit with the plug housing 6.
  • the introduction of the sealing compound 11 into the end section 8 must be done with extreme caution. Otherwise the potting compound 11 will either be too soft with the result that it will be in the temperature range to be monitored, e.g. 80 ° C to 300 ° C flowable and thereby the mechanical stability of the sensor is impaired, or becomes too hard with the risk that the tip 3 of the glass tube 2 jumps off and the sensor becomes unusable.
  • Casting compounds which have been found to be useful are those which are produced from thermosetting epoxy resins and which have high thermal conductivity and a coefficient of thermal expansion comparable to that of copper.
  • the end section 8 must, however, be filled as follows when using this casting resin:
  • the sensor is first manufactured in the manner described.
  • a potting compound is then produced by mixing the sealant and the hardener in a mixing ratio (weight ratio) of 10: 1 to 10: 1.1.
  • the potting compound is then filled into the end section 8, which is preferably preheated to approximately 80 ° C., and preheated to 80 ° C. in a heating oven.
  • the subsequent curing takes place in three heating levels in the heating furnace, first for 16 hours at 80 ° C, then for 3 hours at 120 ° C and finally again for 3 hours at 180 ° C.
  • the heater is then reset to 80 ° C and switched off when this temperature is reached.
  • the ready-to-use temperature sensor with cast-in thermistor can be removed from the oven.
  • the sensor can be made of different materials.
  • the connector housing is preferably made of metal and the insert is made of an electrically non-conductive plastic with the required resistance to the temperatures that may occur.
  • a potting compound 11 made of a non-conductive material it also provides the necessary insulation.
  • the senor manufactured according to the method described above can be used anywhere for temperature measurement or temperature monitoring in a temperature range of approximately - 60 ° C to 900 ° C and can either function as a thermometer or thermostat.
  • An excellent application is described below using a fire detection system with a range of e.g. describes seven identical temperature sensors attached to different danger zones.
  • Fig. 2 shows the circuit of a power supply for operating the circuits shown in the following figures with a constant voltage V A of, for example, + 5 V ⁇ 1% according to the usual IC technology.
  • the input voltage can be selected between, for example, + 8 V and + 32 V, is applied to an input line 21 provided with a fuse Si 1 and, in the exemplary embodiment, is + 24 V.
  • a tens diode ZD 1 eg BZT 03 / D39
  • a capacitor C1 for smoothing larger voltage fluctuations.
  • Two in the lines 21 and 22 connected diodes D1 and D2 (eg 1 N 4007) serve as polarity protection.
  • Fig. 3 shows a transmitter unit 25, which contains seven thermistor temperature sensors Rs1 to Rs7 (eg M 812-100 k ⁇ 10%) in the exemplary embodiment, which are arranged at any desired locations of an aircraft, truck or the like, preferably 1 and are sensitive in the exemplary embodiment in the range from -55 ° C. to 350 ° C.
  • the ohmic resistance of the sensors Rs1 to Rs7 decreases with increasing temperature.
  • the sensors Rs1 to Rs7 therefore consist in the exemplary embodiment of resistors, one of whose connections are connected via a line 26 to the output line 23 of the power supply (FIG. 2).
  • the other connections are connected via resistors R14 to R20 (e.g.
  • a tens diode ZD2 to ZD8 (for example ZPD 6 V 2) is placed in order to subsequently secure the voltages at the outputs of the sensors Rs1 to Rs7 Limit circuits to 6.2 V.
  • the transmitter unit 25 in which the transmitter unit 25 is only shown schematically, its outputs 27 to 33 are each connected to an input of an evaluation circuit which can emit an alarm signal on an output line 35. In the exemplary embodiment, this always appears when the output signal at any output 27 to 33 of the transmitter unit 25 exceeds a preselected critical variable in the positive or negative direction as desired.
  • the evaluation device contains a single threshold switch IC51 in the form of an IC chip (eg LT 1017 IN8), the output (7) of which is connected to line 35.
  • This threshold switch IC51 is connected at its inverting input (6) with two adjustable resistors R6 (eg 10 k) and R7 (eg 20 k), by means of which a positive voltage can be set as a threshold at the inverting input (6).
  • the non-inverting input (5) is connected by means of a line 36 to which a resistor R5 (for example 1.62 k) connected to its other terminal is connected to the output (3) of an interrogation device IC3 in the form of another IC -Block (e.g. HEF 4051 BP) connected, which has seven inputs (1, 2, 5, 12 - 14) connected to an output 27 to 33 each and an input (4) connected to ground.
  • IC -Block e.g. HEF 4051 BP
  • a connected to the line 36 filter capacitor C4 serves to avoid voltage peaks.
  • the interrogation device IC3 are assigned means by means of which the inputs (1, 2, 5, 12-14) mentioned can be connected individually in succession and periodically to the output (3).
  • These means preferably consist of an oscillator in the form of a further IC module (eg HEF 4060 BP), which has three outputs (4, 5, 7), which are connected to three further inputs (9-11) of the interrogation device IC3 which clock signals appear with three different clock frequencies.
  • the oscillator IC2 is provided with an external circuit (e.g. R3, C3) according to the data sheet.
  • the input (13) of the interrogation device IC3 connected to the line 27 of the transmitter unit 25 is connected to its output (3), then the resistance of the sensor Rs1 and the resistors R14, R5 form a voltage divider.
  • the voltages and resistances are chosen so that at normal temperatures at the non-inverting input (5) a smaller voltage than at the inverting input (6) of the threshold switch IC51 appears, which is set to + 2.5 V, for example.
  • an output signal of 0 V is therefore emitted.
  • the setting can be selected so that the threshold is exceeded at a critical temperature of 180 ° C or any other temperature.
  • the alarm signal appears periodically whenever one of the sensors Rs1 to Rs7 is exposed to a temperature which is higher than the set threshold, and this alarm signal is retained until the next sensor by means of the interrogator IC3 the threshold switch IC51 is placed.
  • the line 35 of the evaluation device IC3 is connected to Fig. 4 with an input (4) of a monoflop IC6 (eg HFF 4538 BP), the output (10) via a series resistor R12 (eg 10 k) and an output line 37 of the evaluation device with the Circuit breaker T1 according to Fig. 5 is connected.
  • the monoflop IC6 is set by the appearance of each alarm signal at its output (10) for a preselected period of time, which can be set by means of an external circuit at other inputs (1, 2, 14, 15) according to the data sheet. This ensures that a sufficiently long signal to control the alarm and / or security device 20 is formed in the output line 37 even at a preferably very high polling frequency.
  • the line 35 is grounded via a high resistance R20 (e.g. 1 M). This ensures that the Monoflop IC6 in an extreme disturbance situation, e.g. in the event of a voltage drop due to a disconnected battery, is set to zero at the output (10) and does not inadvertently emit an output signal signaling an alarm state.
  • R20 e.g. 1 M
  • the interrogation device IC3 is a test device connected in parallel, which checks the proper functioning of the interrogation device IC3, in particular the sensors Rs1 to Rs bei and emits a further alarm signal if it does not function properly.
  • This test device contains a further interrogation device IC4 (eg HEF 4051 BP) corresponding to the interrogation device IC3 and one connected to its output (3) another threshold switch IC52 (eg LT 1017 IN 8), which is preferably combined with the threshold switch IC51 in a common housing, which has a further output (1) and two further inputs (2,3), which are assigned to the threshold switch IC52.
  • a further interrogation device IC4 eg HEF 4051 BP
  • another threshold switch IC52 eg LT 1017 IN 8
  • Analog to the interrogation device IC3 are inputs (1, 2, 4, 5, 12, 13, 15) of the interrogation device IC4 with the output lines 27 to 33 of the transmitter unit 25 and further inputs (9-11) with the outputs of an agent corresponding to the agent IC2 , preferably connected to the same oscillator IC2, so that the inputs (1, 2, 4, 5, 12, 13, 15) are connected accordingly to the output 3.
  • the output (3) of the interrogation device IC4 is connected to a line 38 leading to the non-inverting input (3) of the threshold switch IC ,2, to which a comparatively large resistor R5 (eg 46.4 k ) and a filter capacitor C5 are connected.
  • the voltage normally lying at the non-inverting input (2) of the threshold switch IC auf2 is set to a larger value than the voltage lying at the inverting input by means of resistors R und, R9, and the threshold switch IC52 with an operational sensor unit 25 and interrogation device IC3 has an output signal of e.g. + 5 V gives regardless of whether the monitored temperature corresponds to the preselected room temperature or the temperature preselected with the threshold value of the threshold switch IC51.
  • the voltage at the non-inverting input of the threshold switch IC52 falls to zero, with the result that an alarm signal of 0 V appears at the output (1), which is fed to a display device 39.
  • the further alarm signal therefore always appears when a defective sensor Rs1 to Rs7 is connected to the output (3) of the further interrogation device IC4 or another defect, e.g. Power failure, is present.
  • Each of the monoflop IC6 for a period of, for example, a few seconds on line 37 maintains the alarm signal in accordance with FIG. 5 through the circuit breaker T 1, for example a field effect transistor, at whose input (3) the 24 V voltage of the power supply (FIG. 2 ) is applied, which passes through the switching process to a control line 40 which leads to the alarm and / or security device 20.
  • the circuit breaker T 1 for example a field effect transistor
  • the alarm and / or security device 20 contains e.g. a warning lamp L1 connected via a diode D5 (e.g. IN 4007), which lights up when the alarm signal appears as long as the monoflop IC6 is set at the output (10).
  • a warning lamp L2 can be connected to the control line 40 via a further, corresponding diode D6, a resistor R21 (e.g. 220 k) and a third diode D8 (e.g. also IN 4007).
  • This is assigned a holding circuit which contains a switch T2 designed as a field effect transistor, the control input (2) of which is connected via a resistor R22 (eg 3 k) to the output of the diode D6 and via a Zener diode ZD9 to ground and whose voltage input ( 3) via a hand switch 41 on the line 24 coming from the power supply.
  • the output (5) of this switch T2 is on the one hand at the warning lamp L2 and on the other hand is fed back via the resistors R21 and R22 to the control input (2).
  • the warning lamp L2 therefore lights up continuously after triggering the switch T2, which e.g. has the advantage that a driver who has currently left his vehicle equipped with the condition reporting device described can determine on his return whether an alarm signal has meanwhile appeared or not. By briefly pressing the hand switch 41 to open the holding circuit, the alarm lamp L2 can be extinguished again.
  • the alarm and / or security device 20 can be used as security elements e.g. have at least two fire extinguisher bottles HR 1 and HR 2, which are provided with trigger capsules customary in fire protection systems.
  • the voltage input of the fire extinguishing bottle HR1 is e.g. via a diode D3 (e.g. 1N 4007) directly on the control line 40, while the voltage input of the fire extinguisher bottle HR2 is via a normally open switch 22 on line 24 of the power supply.
  • the fire extinguisher bottle HR1 is automatically triggered when an alarm signal appears to initiate a deletion process, while the fire extinguisher bottle HR2 can be operated manually or additionally by actuating the hand switch 42 when the fire extinguisher bottle HR1 is used up.
  • the diodes D3 to D8 are each polarized so that the currents flow only in the directions shown in Fig. 5 and no undesirable effects on uninvolved circuit parts can occur.
  • the display device 39 is e.g. constructed as follows:
  • a ground switch IC7 (eg CD 4099 BF), whose input (3) is connected to the output (1) of the threshold switch IC52, while three further inputs (5 - 7) of the ground switch IC7 with the outputs ( 4, 5, 7) of a means are connected, which periodically and individually activates the outputs (1, 9, 11 - 15) of the ground switch IC7.
  • the outputs (1, 9, 11 - 15) of the ground switch IC7 are each connected to an input of a keyboard 43 which is only schematically indicated in FIG. 4.
  • Each of these inputs leads over a push button switch TS 1 to TS 7 to the cathode of a control device 44 with its anode connected to the operating voltage, for example a light-emitting diode. If any of the push buttons TS 1 to TS 7 is pressed, then the cathode of the control device 44 is connected to the associated output of the ground switch IC7 via this push button switch.
  • the control device 44 would therefore always have to respond to the clock determined by the interrogation frequency of the oscillator IC2, for example light up when the output of the ground switch IC7 assigned to the actuated key switch is activated. If the control device 44 does not respond, then there is a defect because the associated output of the ground switch ICesch is not periodically connected to ground.
  • the alarm and / or security device 20 and the test device with the display device 39 assigned to them result in the advantage that a functional check can be carried out continuously while the entire system is in operation.
  • FIG. 7 shows a particularly preferred embodiment of the status reporting device according to the invention.
  • This consists of a standardized plug-in card or circuit board, which is soldered to an IC socket and on which all IC components, cabling and circuits are permanently mounted with the exception of those parts that should be individually changeable.
  • the IC components IC2 to IC4, IC51 and IC52, IC6 and IC7 are combined into a single IC component IC8, the inputs (1, 4, 5, 33, 34, 39, 51, 52) for connecting the Resistors R3 and R5 to R10 and the capacitors C3 to C5, further inputs (10, 20, 35 - 37) for applying the operating voltages or ground, further inputs (13 - 19) for applying the encoder unit 25 and outputs (54 - 62) for connecting the keyboard 43 or the like.
  • the IC module IC8 is used for a multiple number of different status messages or monitoring and can be combined with any encoder units and keyboards or other display devices. Depending on the sensors and display devices used in the individual case, it is only necessary to adapt some external switching elements shown in FIG. 7 accordingly.
  • IC module IC8 is otherwise preferably with that for Pour the sealant described temperature sensors and then cured for 16 hours at 80 ° C and 3 hours at 120 ° C. The rest of the procedure can then be carried out as when the temperature sensor is hardening. Due to the universal structure of such a module, it is possible to solve a multitude of monitoring tasks with almost identical means and by means of an optimized device that takes up little space.
  • the invention is not restricted to the exemplary embodiments described, which can be modified in many ways. This applies in particular to the temperature sensors used, in their place other temperature sensors and also sensors for completely different purposes, e.g. Cold conductors, strain gauges, infrared and other light sensors, voltmeters or the like can be used. It is only necessary to convert the measurement signals obtained in detail into usable signals for the electrical circuits described and to adjust the thresholds set at the threshold switches IC51 and IC52 accordingly. Furthermore, it goes without saying that other alarm and / or security devices and other display devices can be provided, the design of which largely depends on the type of the monitored states. In addition to visual displays, acoustic or other displays can of course also be provided.
  • sensors of different types or sensors for monitoring different types of states can be provided, although it is of course also possible to apply sensors of different types or sensors for monitoring different types of states to the circuit described, in particular the IC module IC8 according to FIG. 7, wherein only their output signals would have to be adjusted accordingly.
  • the invention is not limited to the use of the individually specified IC modules, which were only mentioned for example.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)
  • Alarm Systems (AREA)
  • Selective Calling Equipment (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

  • Die Erfindung betrifft eine Zustandsmeldevorrichtung der im Oberbegriff des Anspruchs 1 angegebenen Gattung, einen dafür geeigneten Temperatursensor nach dem Oberbegriff des Anspruchs 12 und ein Verfahren zu dessen Herstellung nach dem Oberbegriff des Anspruchs 14.
  • Bekannte Zustandsmeldevorrichtungen der oben genannten Art dienen dem Zweck, beim Auftreten eines extremen Temperaturzustands ein Alarmsignal abzugeben und gleichzeitig erkennbar zu machen, welcher der beteiligten Temperatursensoren das Alarmsignal ausgelöst hat (US-A-4 340 886, EP-A-0 004 911, GB-A-2 174 525, Electronics Weekly Nr. 778, 13. August 1975, Electronic Design, Band 13, Nr. 1, 10. Januar 1985, DE-A-31 28 811). Die Temperaturüberwachung erfolgt dabei z.B. zum Zwecke der Brandmeldung oder zur Überwachung der Temperatur z.B. von Motoren, Lagern, Öfen oder Kühlanlagen. Als Temperatursensoren dienen Thermoelemente, Widerstands-Temperaturfühler, temperaturempfindliche Dioden, Quecksilberschalter od. dgl., aber auch z.B. übliche Brandmelder oder Glasbruchdetektoren, die sich sämtlich durch verhältnismäßig langsame Ansprechzeiten, geringe Empfindlichkeiten und große Abmessungen auszeichnen.
  • Nach einer Aufgabe der Erfindung soll die eingangs bezeichnete Zustandsmeldevorrichtung nicht nur zur Temperaturüberwachung, sondern auch zur automatischen Auslösung einer Löschanlage geeignet sein, wie dies beispielsweise in Flugzeugen, Panzern, Gefahrgut-Tankwagen od.dgl. wegen der dort häufig explosionsartig auftretenden Brände erwünscht und erforderlich ist. Für diesen Anwendungszweck müssen daher nicht nur sehr kleine und daher sehr schnell ansprechende, mit hohen Frequenzen abtastbare Temperatursensoren, sondern auch Verfahren zur Verfügung stehen, mittels derer derartige Temperatursensoren mit einer so hohen mechanischen und thermischen Stabilität hergestellt werden können, daß sie auch in hochsensiblen Branderkennungs- und Brandbekämpfungsanlagen an bewegten Fahrzeugen angewendet werden können, ohne daß die Gefahr von mechanischen oder thermischen Beschädigungen besteht. Der Erfindung liegt daher auch die Aufgabe zugrunde, einen für eine solche Zustandsmeldevorrichtung besonders geeigneten Temperatursensor und ein Verfahren zu dessen Herstellung vorzuschlagen.
  • Zur Lösung dieser Aufgabe dienen die kennzeichnenden Merkmale der Ansprüche 1, 12 und 14.
  • Die Erfindung bringt den Vorteil mit sich, daß sie eine sinnvolle Anwendung von Heißleitern ermöglicht und dadurch deren an sich bekannte Vorteile wie z.B. kleine Abmessungen, kurze Ansprechzeiten und hohe Empfindlichkeit nutzt. Außerdem werden Temperatursensoren vorgeschlagen, die eine Temperaturmessung der sie umgebenden Luft ermöglichen, gleichzeitig aber sehr klein gehalten und dennoch wirksam vor mechanischen Beschädigungen geschützt werden können und daher besonders zur Anwendung bei beengten Raumverhältnissen geeignet sind. Das erfindungsgemäße Verfahren schließlich schafft eine Möglichkeit, derartige Temperatursensoren so zu fertigen, daß die Vergußmasse einerseits auch bei zu messenden Temperaturen von z.B. 300 - 900° C nicht flüssig wird, andererseits aber auch nicht so hart wird, daß das entscheidende Sensorteil, nämlich die Heißleiterperle, infolge innerer Spannungen bei der Herstellung oder beim Gebrauch platzt und damit unbrauchbar wird. Da schließlich beim erfindungsgemäßen Temperatursensor die Heißleiterperle trotz ihres mechanischen Schutzes unmittelbar der Luft ausgesetzt bleibt, ergeben sich hohe Reaktionsgeschwindigkeiten der gesamten Temperaturmeldevorrichtung mit der Folge, daß kritische Temperaturüberschreitungen, Brände od. dgl. nicht erst verzögert, sondern bereits nach Bruchteilen von Sekunden gemeldet werden.
  • Angesichts der oben beschriebenen Vorteile und Leistungen des neuen Sensors, aber auch angesichts der erheblichen Kostenvorteile ergeben sich für die erfindungsgemäße Zustandsmeldevorrichtung auch zusätzliche Anwendungsmöglichkeiten in Überhitzungs- oder Branderkennungsanlagen wie z.B. bei Hausinstallationen, bei der Erkennung von Reifenüberhitzungen bei Lastkraftwagen, bei Kraftwerken oder in der Schiffahrt sowie bei automatischen Löschanlagen in öffentlichen und privaten Gebäuden.
  • Außer für die Warnfunktion kann die Zustandsmeldevorrichtung aber auch als Teil einer Regelanlage verwendet werden. Hieraus ergeben sich dann in Verbindung mit der Elektronik weitere zusätzliche Anwendungsmöglichkeiten wie z.B. im Bereich der Klimatechnik oder der Heizungsregelung.
  • Weitere vorteilhafte Merkmale der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • Die Erfindung wird nachfolgend in Verbindung mit der beiliegenden Zeichnung am speziellen Ausführungsbeispiel einer Branderkennungsanlage näher erläutert. Es zeigen:
    • Fig. 1 einen erfindungsgemäßen Temperatursensor etwa im Maßstab 1 : 1 in einer auseinandergezogenen Vorderansicht;
    • Fig. 1a den Temperatursensor nach Fig. 1 im gefügten Zustand und in einer teilweise geschnittenen Vorderansicht;
    • Fig. 2 ein Netzteil für die erfindungsgemäße Zustandsmeldevorrichtung;
    • Fig. 3 eine Sensoreinheit für die Zustandsmeldevorrichtung;
    • Fig. 4 eine einen Schwellwertschalter aufweisende Auswerteeinrichtung und eine ihr parallel geschaltete Prüfeinrichtung für die Zustandsmeldevorrichtung;
    • Fig. 5 eine Alarm- und/oder Sicherheitseinrichtung für die Zustandsmeldevorrichtung;
    • Fig. 6 einen Teil einer Anzeigeeinrichtung für die Prüfeinrichtung nach Fig. 5; und
    • Fig. 7 eine standardisierte, an unterschiedliche Sensoren anpaßbare Steckkarte für die erfindungsgemäße Zustandsmeldevorrichtung.
  • Fig. 1 zeigt einen erfindungsgemäßen Temperatursensor mit einem Heißleiter 1 in Form eines Perlen-Heißleiters (z.B. M 812 der Fa. Siemens AG, D-8000 München 80), der aus einer in ein dünnes, kurzes Glasröhrchen 2 eingeschlossenen und an dessen Spitze 3 angeordneten Heißleiter-Perle bzw. einem Halbleiter-Kügelchen 4 besteht, an dem zwei aus dem Glasröhrchen 2 herausgeführte Anschlußdrähte 5 befestigt sind. Um einen solchen, auf dem Markt erhältlichen Heißleiter 1 für die Zwecke der Erfindung brauchbar zu machen, wird er mit einem vorzugsweise zylindrischen Steckergehäuse 6 kombiniert, das ein Zwischenteil 7, einen an dessen einer Seite angebrachten, hohlen Endabschnitt 8 und einen an dessen anderer Seite angebrachten, als übliche, 2- oder 3-polige Steckverbindung ausgebildeten Boden 9 aufweist. Die Anschlußdrähte 5 werden in die hohlzylindrisch ausgebildeten Enden von Steckern 10 eingeführt und durch Crimpen (Quetschen) fest mit den Steckern 10 verbunden, um zu vermeiden, daß eine etwa verwendete Lötmasse od. dgl. beim nachfolgenden Vergießen des Endabschnitts 8 schmelzen und weglaufen kann. Die Stecker 10 werden dann derart durch Bohrungen gesteckt, die in einem nicht dargestellten, das Zwischenteil 7 ausfüllenden Einsatzstück ausgebildet sind, daß sich die in Fig. 1a dargestellte Anordnung ergibt, in der die freien Enden der Stecker 10 in den hohlen Boden 9 ragen. Dabei sind die Stecker 10 vorzugsweise durch nach Art einer Schnappverbindung wirkende Elemente fest in dem Einsatzstück eingerastet. Im übrigen wird das Glasröhrchen 2 vorzugsweise so angeordnet, daß es parallel und koaxial zur Achse des Steckergehäuses 6 angeordnet und das Heißleiter-Kügelchen 4 an dem vom Zwischenteil 7 abgewandten Ende des Endabschnitts 8 angeordnet ist.
  • Um eine mechanisch stabile Konstruktion für den äußerst empfindlichen Perlen-Heißleiter 1 zu erhalten, wird der hohle Endabschnitt 8 nun so weit mit einer Vergußmasse 11 ausgefüllt, daß das gesamte Glasröhrchen 2 mit Ausnahme seiner Spitze 3 in die Vergußmasse 11 eingebettet ist. Nach dem Vergießen ragt daher nur die Spitze 3 mit dem Halbleiter-Kügelchen 4 aus dem Steckergehäuse 6 bzw. der Vergußmasse 11 heraus, wodurch sich einerseits ein mechanisch stabiler Sensor ergibt, andererseits ein sehr sensibler und sehr schnell ansprechender Temperaturfühler entsteht, der die Temperatur der umgebenden Luft mißt und um so schneller auf Temperaturänderungen reagiert, je kleiner die Fläche des zu erwärmenden Halbleiter-Kügelchens 4 ist. Bei Anwendung von auf dem Markt angebotenen Heißleitern 1 der beschriebenen Art lassen sich Ansprechzeiten in der Größenordnung von einer halben Sekunde erzielen, was insbesondere für die schnelle Branderkennung und -bekämpfung wichtig ist. Außerdem ergibt sich der Vorteil,, daß bei derartigen Heißleitern 1 mittels Schaltungen, die nachfolgend anhand der Fig. 4 beschrieben werden, im Bereich von 80 °C und 300 °C die gewünschte Auslösetemperatur auf ca. ± 1 °C festgelegt werden kann.
  • Um die Spitze 3 des Heißleiters 1 vor mechanischen Beschädigungen, beispielsweise bei der Montage des Steckergehäuses 6 am Anwendungsort, zu schützen, kann auf den Endabschnitt des Steckergehäuses 6 noch eine vorzugsweise zylindrische Schutzkappe 12 aufgeschraubt werden, die entweder am äußeren Ende offen und/oder mit einer Mehrzahl von Öffnungen versehen ist, damit die Luft, deren Temperatur überwacht werden soll, die Spitze 3 und damit das Halbleiter-Kügelchen 4 umströmen kann. In diesem Fall wird das Heißleiter-Kügelchen 4 an einer vorgewählten Stelle innerhalb der Schutzkappe 12 angeordnet und die Vergußmasse 11 bis zu einer solchen Höhe h in die Schutzkappe gefüllt, daß wiederum nur die Spitze 4 mit dem Halbleiter-Kügelchen 4 aus der Vergußmasse 11 herausragt. Nach dem Vergießen bildet die Schutzkappe 12 mit dem Steckergehäuse 6 eine untrennbare Einheit.
  • Das Einbringen der Vergußmasse 11 in den Endabschnitt 8 muß mit äußerster Vorsicht geschehen. Andernfalls wird die Vergußmasse 11 entweder zu weich mit der Folge, daß sie im zu überwachenden Temperaturbereich von z.B. 80 °C bis 300 °C fließfähig und dadurch die mechanische Stabilität des Sensors beeinträchtigt wird, oder zu hart wird mit der Gefahr, daß die Spitze 3 des Glasröhrchens 2 abspringt und der Sensor unbrauchbar wird.
  • Als Vergußmassen haben sich solche als brauchbar erwiesen, die aus wärmehärtenden Epoxidharzen hergestellt werden und eine hohe thermische Leitfähigkeit und einen mit Kupfer vergleichbaren thermischen Ausdehnungskoeffizienten aufweisen. Als besonders geeignet hat sich ein Zweikomponenten-Epoxid-Gießharz erwiesen, das von der Firma Grace Electronics Materials Emerson & Cuming (D-6900 Heidelberg) unter der Bezeichnung "Stycast 2762 FT" (= Dichtungsmasse) und "Catalyst 17" (= Härter) vertrieben wird. Die Füllung des Endabschnitts 8 muß bei Anwendung dieses Gießharzes allerdings wie folgt vorgenommen werden:
  • Es wird zunächst der Sensor auf die beschriebene Weise hergestellt. Sodann wird eine Vergußmasse hergestellt, indem die Dichtungsmasse und der Härter im Mischungsverhältnis (Gewichtsverhältnis) 10 : 1 bis 10 : 1,1 miteinander vermischt werden. Die Vergußmasse wird dann in den vorzugsweise auf ca. 80 °C vorgewärmten Endabschnitt 8 gefüllt und in einem Heizofen auf 80 °C vorgewärmt. Die anschließende Aushärtung erfolgt in drei Heizstufen im Heizofen, und zwar zunächst während 16 Stunden bei 80 °C, dann während 3 Stunden bei 120 °C und schließlich noch einmal während 3 Stunden bei 180 °C. Anschließend wird der Heizofen auf 80 °C zurückgestellt und beim Erreichen dieser Temperatur ausgeschaltet. Nach Abkühlung des Ofens auf eine Raumtemperatur von z.B. 20 °C kann der betriebsfertige Temperatursensor mit eingegossenem Heißleiter aus dem Ofen genommen werden. Der Sensor kann aus verschiedenen Materialien hergestellt sein. Vorzugsweise besteht das Steckergehäuse aus Metall und das Einsatzstück aus einem elektrisch nicht-leitenden Kunststoff mit der jeweils erforderlichen Beständigkeit bei den möglicherweise auftretenden Temperaturen. Durch Anwendung einer Vergußmasse 11 aus einem nichtleitenden Material wird durch sie gleichzeitig für die erforderliche Isolierung gesorgt.
  • Der nach dem oben beschriebenen Verfahren hergestellte Sensor kann je nach Heißleitertyp überall zur Temperaturmessung bzw. Temperaturüberwachung in einem Temperaturbereich von etwa - 60 °C bis 900 °C eingesetzt werden und seine Funktion entweder als Thermometer oder Thermostat ausüben. Eine vorzügliche Anwendung wird nachfolgend anhand einer Branderkennungsanlage mit einer Reihe von z.B. sieben gleichartigen, an verschiedenen Gefahrenzonen angebrachten Temperatursensoren beschrieben.
  • Fig. 2 zeigt die Schaltung eines Netzteils zur Bedienung der in den nachfolgenden Figuren gezeigten Schaltungen mit einer konstanten Spannung VA von z.B. + 5 V ± 1 % entsprechend der üblichen IC-Technik. Die Eingangsspannung ist wählbar zwischen z.B. + 8 V und + 32 V, wird an eine mit einer Sicherung Si₁ versehene Eingangsleitung 21 angelegt und beträgt im Ausführungsbeispiel + 24 V. Zwischen die Eingangsleitung 21 und eine Masseleitung 22 sind eine Zehnerdiode ZD₁ (z.B. BZT 03/D39), welche die Eingangsspannung unabhängig von etwaigen Spannungsspitzen auf 39 V begrenzt, und ein Kondensator C₁ zur Glättung größerer Spannungsschwankungen geschaltet. Zwei in die Leitungen 21 und 22 geschaltete Dioden D₁ und D₂ (z.B. 1 N 4007) dienen als Polungsschutz.
  • Mit den Leitungen 21 und 22 sind die Eingänge (1 und 2) eines Spannungsreglers IC₁ (z.B. MC 78 MO5 BT) verbunden, dessen Ausgang (3) mit einer Ausgangsleitung 23 verbunden ist, an der die konstante Spannung VA erscheint, die mittels eines weiteren Siebkondensators C₂ geglättet wird. Dabei sind zwischen die Leitungen 22 und 23 verschiedene, nachfolgend beschriebene IC-Bausteine IC₂ bis IC₆ mit ihren Eingängen 8 und 16 und ein IC-Baustein IC₅ mit seinen Eingängen 4 und 8 geschaltet, wobei diesen Eingängen zusätzlich die Kondensatoren C₈ (Fig. 3) und C₉ bis C₁₂ entsprechend den jeweiligen Datenblättern parallel geschaltet sind, um die IC-Bausteine vor kleineren Streuspannungen zu schützen. Diese Kondensatoren sind allerdings nur in Fig. 2 bzw. 3 dargestellt.
  • Eine mit der Eingangsleitung 21 verbundene, mit einer Sicherung Si₂ versehene Leitung 24 führt zu einer aus Fig. 5 ersichtlichen Alarm- und/oder Sicherheitseinrichtung 20 und zu einem ebenfalls aus Fig. 5 ersichtlichen Leistungsschalter T₁. Die IC-Bausteine IC₂ bis IC₆ und IC₅ gehören dagegen zur Auswerteeinrichtung nach Fig. 4.
  • Fig. 3 zeigt eine Gebereinheit 25, die im Ausführungsbeispiel sieben Heißleiter-Temperatur-Sensoren Rs₁ bis Rs₇ (z.B. M 812-100 k ± 10 %) enthält, die an beliebigen zu überwachenden Orten eines Flugzeugs, Lastkraftwagens od. dgl. angeordnet, vorzugsweise entsprechend Fig. 1 ausgebildet und im Ausfährungsbeispiel im Bereich von - 55° C bis 350° C empfindlich sind. Dabei nimmt der ohmsche Widerstand der Sensoren Rs₁ bis Rs₇ mit steigender Temperatur ab. Die Sensoren Rs₁ bis Rs₇ bestehen daher im Ausführungsbeispiel aus Widerständen, deren eine Anschlüsse über eine Leitung 26 an die Ausgangsleitung 23 des Netzteils (Fig. 2) angeschlossen sind. Die anderen Anschlüsse sind dagegen über Widerstände R₁₄ bis R₂₀ (z.B. 56 Ω) mit Ausgängen 27 bis 33 verbunden, die Ausgangssignale abgeben, deren Größen von den von den Sensoren Rs₁ bis Rs₇ überwachten Temperaturen abhängen. Zwischen diese Ausgänge 27 bis 33 und eine mit der Masseleitung 22 (Fig. 2) verbundene Leitung 34 ist je eine Zehnerdiode ZD₂ bis ZD₈ (z.B. ZPD 6 V 2) gelegt, um die Spannungen an den Ausgängen der Sensoren Rs₁ bis Rs₇ zur Sicherung nachfolgender Schaltungen auf 6,2 V zu begrenzen.
  • Nach Fig. 4, in der die Gebereinheit 25 nur schematisch dargestellt ist, sind deren Ausgänge 27 bis 33 mit je einem Eingang einer Auswerteschaltung verbunden, die an einer Ausgangsleitung 35 ein Alarmsignal abgeben kann. Dieses erscheint im Ausführungsbeispiel immer dann, wenn das Ausgangssignal an irgendeinem Ausgang 27 bis 33 der Gebereinheit 25 eine vorgewählte kritische Größe in je nach Wunsch positiver oder negativer Richtung überschreitet.
  • Erfindungsgemäß enthält die Auswerteeinrichtung nach Fig. 4 einen einzigen Schwellwertschalter IC₅₁ in Form eines IC-Bausteins (z.B. LT 1017 IN8), dessen Ausgang (7) mit der Leitung 35 verbunden ist. Dieser Schwellwertschalter IC₅₁ ist an seinem invertierenden Eingang (6) mit zwei regelbaren Widerständen R₆ (z.B. 10 k) und R₇ (z.B. 20 k) verbunden, mittels derer am invertierenden Eingang (6) eine positive Spannung als Schwelle eingestellt werden kann. Der nicht invertierende Eingang (5) ist dagegen mittels einer Leitung 36, an die ein mit seinem anderen Anschluß an Masse liegender Widerstand R₅ (z.B. 1,62 k) angeschlossen ist, mit dem Ausgang (3) einer Abfrageeinrichtung IC₃ in Form eines weiteren IC-Bausteins (z.B. HEF 4051 BP) verbunden, die sieben mit je einem Ausgang 27 bis 33 verbundene Eingänge (1, 2, 5, 12 - 14) und einen an Masse liegenden Eingang (4) aufweist. Ein mit der Leitung 36 verbundener Siebkondensator C₄ dient zur Vermeidung von Spannungsspitzen.
  • Der Abfrageeinrichtung IC₃ sind Mittel zugeordnet, mittels derer die genannten Eingänge (1, 2, 5, 12 - 14) einzeln nacheinander und periodisch wiederkehrend mit dem Ausgang (3) verbunden werden können. Diese Mittel bestehen vorzugsweise aus einem Oszillator in Form eines weiteren IC-Bausteins (z.B. HEF 4060 BP), der drei Ausgänge (4, 5, 7) aufweist, die mit drei weiteren Eingängen (9 - 11) der Abfrageeinrichtung IC₃ verbunden sind, an denen Taktsignale mit drei unterschiedlichen Taktfrequenzen erscheinen. Diese steuern einerseits den inneren Takt der Abfrageeinrichtung IC₃ und legen andererseits fest, mit welcher Folgefrequenz die Eingänge (1, 2, 5, 12 - 15) einzeln nacheinander mit dem Ausgang (3) verbunden werden bzw. wie schnell sich diese Abfragezyklen wiederholen sollen. Zur Einstellung dieser Taktfrequenzen ist der Oszillator IC₂ mit einer externen Beschaltung (z.B. R₃, C₃) laut Datenblatt versehen.
  • Ist zu irgendeinem Zeitpunkt z.B. der mit der Leitung 27 der Gebereinheit 25 verbundene Eingang (13) der Abfrageeinrichtung IC₃ mit deren Ausgang (3) verbunden, dann bilden der Widerstand vom Sensor Rs₁ und die Widerstände R₁₄, R₅ einen Spannungsteiler. Dabei sind die Spannungen und Widerstände so gewählt, daß bei normalen Temperaturen am nicht invertierenden Eingang (5) eine kleinere Spannung als am invertierenden Eingang (6) des Schwellwertschalters IC₅₁ erscheint, die z.B. auf + 2,5 V eingestellt ist. Am Ausgang (7) des Schwellwertschalters IC₅₁ wird daher ein Ausgangssignal von 0 V abgegeben. Steigt dagegen die Spannung in der Leitung 36 aufgrund eines kritischen Temperaturanstiegs im Bereich des Sensors Rs₁, dann wird der Spannungsabfall in der Leitung 36 immer größer, bis er schließlich die eingestellte Schwelle überschreitet und größer als die Spannung am invertierenden Eingang (6) wird. Folglich wird der Schwellwertschalter IC₅₁ durchgeschaltet, so daß an seinem Ausgang (7) das z.B. 5 V betragende Alarmsignal (= logisch "1") erscheint. Dabei kann die Einstellung z.B. so gewählt sein, daß die Schwelle bei einer kritischen Temperatur von 180° C oder irgendeiner anderen Temperatur überschritten wird.
  • Für die anderen Sensoren Rs₂ bis Rs₇ gilt sinngemäß dasselbe, da sie, wenn sie gerade über die Abfrageeinrichtung IC₃ mit deren Ausgang (3) verbunden sind, stets zusammen mit einem der Widerstände R₁₅ bis R₂₀ und dem Widerstand R₅ einen Spannungsteiler bilden, der die Eingangsspannung am nicht invertierenden Eingang (5) des Schwellwertschalters IC₅₁ beeinflußt. In der Leitung 35 erscheint daher periodisch immer dann das Alarmsignal, wenn einer der Sensoren Rs₁ bis Rs₇ einer Temperatur ausgesetzt ist, die höher ist, als der eingestellten Schwelle entspricht, und dieses Alarmsignal bleibt solange erhalten, bis mittels der Abfrageeinrichtung IC₃ der nächste Sensor an den Schwellwertschalter IC₅₁ gelegt wird.
  • Die Leitung 35 der Auswerteeinrichtung IC₃ ist nach Fig. 4 mit einem Eingang (4) eines Monoflop IC₆ (z.B. HFF 4538 BP) verbunden, dessen Ausgang (10) über einen Vorwiderstand R₁₂ (z.B. 10 k) und eine Ausgangsleitung 37 der Auswerteeinrichtung mit dem Leistungsschalter T₁ nach Fig. 5 verbunden ist. Das Monoflop IC₆ wird durch das Erscheinen jedes Alarmsignals an seinem Ausgang (10) für eine vorgewählte Zeitspanne gesetzt, die mittels einer externen Beschaltung an weiteren Eingängen (1, 2, 14, 15) nach Datenblatt eingestellt werden kann. Dadurch wird sichergestellt, daß in der Ausgangsleitung 37 selbst bei einer bevorzugt sehr hohen Abfragefrequenz ein ausreichend langes Signal zur Steuerung der Alarm- und/oder Sicherheitseinrichtung 20 gebildet wird. Außerdem ist die Leitung 35 über einen hohen Widerstand R₂₀ (z.B. 1 M) geerdet. Dadurch wird sichergestellt, daß das Monoflop IC₆ bei einer extremen Störsituation, z.B. bei Spannungsabfall aufgrund einer abgeklemmten Batterie, am Ausgang (10) auf Null gesetzt wird und nicht ungewollt ein einen Alarmzustand signalisierendes Ausgangssignal abgibt.
  • Der Abfrageeinrichtung IC₃ ist eine Prüfeinrichtung parallel geschaltet, die die ordnungsgemäße Funktion der Abfrageeinrichtung IC₃, insbesondere der Sensoren Rs₁ bis Rs₇ überprüft und bei nicht ordnungsgemäßer Funktion ein weiteres Alarmsignal abgibt. Diese Prüfeinrichtung enthält eine weitere Abfrageeinrichtung IC₄ (z.B. HEF 4051 BP) entsprechend der Abfrageeinrichtung IC₃ und einen mit deren Ausgang (3) verbundenen weiteren Schwellwertschalter IC₅₂ (z.B. LT 1017 IN 8), der vorzugsweise mit dem Schwellwertschalter IC₅₁ in einem gemeinsamen Gehäuse zusammengefaßt ist, das einen weiteren Ausgang (1) und zwei weitere Eingänge (2,3) aufweist, die dem Schwellwertschalter IC₅₂ zugeordnet sind.
  • Analog zur Abfrageeinrichtung IC₃ sind Eingänge (1, 2, 4, 5, 12, 13, 15) der Abfrageeinrichtung IC₄ mit den Ausgangsleitungen 27 bis 33 der Gebereinheit 25 und weitere Eingänge (9 - 11) mit den Ausgängen eines dem Mittel IC₂ entsprechenden Mittels, vorzugsweise mit demselben Oszillator IC₂ verbunden, so daß die Eingänge (1, 2, 4, 5, 12, 13, 15) entsprechend mit dem Ausgang 3 verbunden werden.
  • Im Unterschied zur Abfrageeinrichtung IC₃ ist der Ausgang (3) der Abfrageeinrichtung IC₄ mit einer zum nicht invertierenden Eingang (3) des Schwellwertschalters IC₅₂ führenden Leitung 38 verbunden, an die ein mit dem anderen Anschluß geerdeter, vergleichsweise großer Widerstand R₅ (z.B. 46,4 k) und ein Siebkondensator C₅ angeschlossen sind. Dadurch wird die normalerweise am nicht invertierenden Eingang (2) des Schwellwertschalters IC₅₂ liegende Spannung auf einen größeren Wert als die mittels Widerständen R₈, R₉ am invertierenden Eingang liegende Spannung eingestellt und erreicht, daß der Schwellwertschalter IC₅₂ bei funktionsfähiger Sensoreinheit 25 und Abfrageeinrichtung IC₃ ein Ausgangssignal von z.B. + 5 V unabhängig davon abgibt, ob die überwachte Temperatur der vorgewählten Raumtemperatur oder der mit dem Schwellwert des Schwellwertschalters IC₅₁ vorgewählten Temperatur entspricht.
  • Ist dagegen einer der Sensoren Rs₁ bis Rs₇ defekt, dann fällt die Spannung am nicht invertierenden Eingang des Schwellwertschalters IC₅₂ auf Null mit der Folge, daß am Ausgang (1) ein Alarmsignal von 0 V erscheint, das einer Anzeigevorrichtung 39 zugeführt wird. Das weitere Alarmsignal erscheint daher immer dann, wenn gerade ein defekter Sensor Rs₁ bis Rs₇ mit dem Ausgang (3) der weiteren Abfrageeinrichtung IC₄ verbunden ist oder ein anderer Defekt, z.B. Spannungsausfall, vorliegt.
  • Jedes vom Monoflop IC₆ für eine Zeitdauer von z.B. einigen Sekunden an der Leitung 37 aufrechterhaltene Alarmsignal schaltet gemäß Fig. 5 den z.B. als Feldeffekt-Transistor ausgebildeten Leistungsschalter T₁ durch, an dessen Eingang (3) die 24 V-Spannung des Netzteils (Fig. 2) anliegt, die durch den Schaltvorgang auf eine Steuerleitung 40 gelangt, die zur Alarm- und/oder Sicherheitseinrichtung 20 führt.
  • Im einfachsten Fall enthält die Alarm- und/oder Sicherheitseinrichtung 20 z.B. eine über eine Diode D₅ (z.B. IN 4007) angeschlossene Warnlampe L₁, die bei Erscheinen des Alarmsignals solange aufleuchtet, wie das Monoflop IC₆ am Ausgang (10) gesetzt ist. Alternativ oder zusätzlich kann über eine weitere, entsprechende Diode D₆, einen Widerstand R₂₁ (z.B. 220 k) und eine dritte Diode D₈ (z.B. ebenfalls IN 4007) eine Warnlampe L₂ an die Steuerleitung 40 angeschlossen sein. Dieser ist ein Haltekreis zugeordnet, der einen als Feldeffekt-Transistor ausgebildeten Schalter T₂ enthält, dessen Steuereingang (2) über einen Widerstand R₂₂ (z.B. 3 k) mit dem Ausgang der Diode D₆ und über eine Zenerdiode ZD₉ mit Masse verbunden ist und dessen Spannungseingang (3) über einen Handschalter 41 an der vom Netzteil kommenden Leitung 24 liegt Der Ausgang (5) dieses Schalters T₂ liegt einerseits an der Warnlampe L₂ und ist andererseits über die Widerstände R₂₁ und R₂₂ zum Steuereingang (2) zurückgeführt. Die Warnlampe L₂ leuchtet daher nach Auslösung des Schalters T₂ dauernd auf, was z.B. den Vorteil mit sich bringt, daß ein Fahrer, der sein mit der beschriebenen Zustandsmeldevorrichtung ausgerüstetes Fahrzeug momentan verlassen hat, bei seiner Rückkehr feststellen kann, ob inzwischen ein Alarmsignal erschienen ist oder nicht. Durch kurzzeitige Betätigung des Handschalters 41 zur Öffnung des Haltekreises kann die Alarmlampe L₂ wieder zum Erlöschen gebracht werden.
  • Als Sicherheitselemente kann die Alarm- und/oder Sicherheitseinrichtung 20 z.B. wenigstens zwei Feuerlöschflaschen HR₁ und HR₂ aufweisen, die mit bei Brandschutzanlagen üblichen Auslösekapseln versehen sind. Der Spannungseingang der Feuerlöschflasche HR₁ liegt dazu z.B. über einer Diode D₃ (z.B. 1N 4007) direkt an der Steuerleitung 40, während der Spannungseingang der Feuerlöschflasche HR₂ über einen normalerweise geöffneten Schalter 22 an der Leitung 24 des Netzteils liegt. Daher wird die Feuerlöschflasche HR₁ beim Erscheinen eines Alarmsignals automatisch ausgelöst, um einen Löschvorgang einzuleiten, während die Feuerlöschflasche HR₂ zusätzlich oder dann durch Betätigung des Handschalters 42 manuell betätigt werden kann, wenn die Feuerlöschflasche HR₁ verbraucht ist.
  • Zur Funktionsüberprüfung der Alarm- und/oder Sicherheitseinrichtung 20 dienen schließlich noch zwei Anzeigelampen L₃ und L₄, die zwischen die Spannungseingänge der Feuerlöschflaschen HR₁ und HR₂ und einen zweiten Festkontakt des Handschalters 41 geschaltet sind, und zwei Dioden D₄ und D₇, die zwischen den zweiten Festkontakt des Handschalters 41 und die Anschlußpunkte zwischen den Dioden D₅ bzw. D₈ und den zugehörigen Alarmlampen L₁ bzw. L₂ geschaltet sind. Bei einer Umschaltung des Handschalters 41 von seiner aus Fig. 4 ersichtlichen Normalstellung auf den zweiten Festkontakt werden daher die Alarmlampen L₁, L₂ an die 24 V-Leitung 24 gelegt und dadurch getestet. Bei dieser Stellung des Handschalters 41 sollen aber auch die Anzeigelampen L₃ und L₄ aufleuchten. Zu diesem Zweck sind ihre Betriebsspannungen so gewählt, daß sie bei intakten Feuerlöschflaschen HR₁, HR₂ zwar über deren Zündkapseln an Masse gelegt werden, über diese Zündkapseln aber keine automatische Selbstzündung der Feuerlöschflachen HR₁ und HR₂ erfolgt. Ist dagegen irgendeine Zündkapsel defekt, kann die zugehörige Anzeigelampe nicht über diese Zündkapsel geerdet werden und daher nicht aufleuchten.
  • Im übrigen sind die Dioden D₃ bis D₈ jeweils so gepolt, daß die Ströme nur in den aus Fig. 5 ersichtlichen Richtungen fließen und keine unerwünschten Rückwirkungen auf unbeteiligte Schaltungsteile auftreten können.
  • Zur Funktionsüberprüfung der Sensoren Rs₁ bis Rs₇ ist die Anzeigevorrichtung 39 z.B. wie folgt aufgebaut:
  • Nach Fig. 4 enthält sie einerseits einen Masseschalter IC₇ (z.B. CD 4099 BF), dessen Eingang (3) mit dem Ausgang (1) des Schwellwertschalters IC₅₂ verbunden ist, während drei weitere Eingänge (5 - 7) des Masseschalters IC₇ mit den Ausgängen (4, 5, 7) eines Mittels verbunden sind, das periodisch und einzeln nacheinander die Ausgänge (1, 9, 11 - 15) des Masseschalters IC₇ aktiviert. Dabei wird dieses Mittel zweckmäßig wiederum durch den Oszillator IC₂ gebildet. Das Aktivieren der Ausgänge (1, 9, 11 - 15) hat die Wirkung, daß diese beim Anliegen der üblichen Ausgangsspannung von + 5 V (= logisch "1") am Ausgang (2) des Schwellwertschalters IC₅₂ über einen geerdeten Ausgang (4) an Masse gelegt werden. Ist dagegen ein Sensor defekt, fällt die Spannung aus, ist ein Kabel gebrochen od. dgl., dann wird der betreffende Ausgang auf (1, 9, 11 - 15), wenn er gerade über den Oszillator IC₂ aktiviert ist, nicht an Masse gelegt, die in diesem Fall am Ausgang des Schwellwertschalters IC₅₂ eine Spannung von 0V (= logisch "0") liegt.
  • Die Ausgänge (1, 9, 11 - 15) des Masseschalters IC₇ sind mit je einem Eingang einer in Fig. 4 nur schematisch angedeuteten Tastatur 43 verbunden. Jeder dieser Eingänge führt über einen Tastschalter TS 1 bis TS 7 zur Katode einer mit ihrer Anode an der Betriebsspannung liegenden Kontrollvorrichtung 44, z.B. einer Leuchtdiode. Wird irgendeiner der Tastschalter TS 1 bis TS 7 gedrückt, dann ist die Katode der Kontrollvorrichtung 44 über diesen Tastschalter mit dem zugehörigen Ausgang des Masseschalters IC₇ verbunden. Die Kontrollvorrichtung 44 müßte daher in dem von der Abfragefrequenz des Oszillators IC₂ bestimmten Takt immer dann ansprechen, z.B. aufleuchten, wenn der dem betätigten Tastschalter zugeordnete Ausgang des Masseschalters IC₇ aktiviert wird. Reagiert die Kontrollvorrichtung 44 dagegen nicht, dann liegt ein Defekt vor, weil der zugehörige Ausgang des Masseschalters IC₇ nicht periodisch an Masse gelegt wird.
  • Insgesamt ergibt sich durch die Alarm - und/oder Sicherheitseinrichtung 20 und die Prüfeinrichtung mit der ihr zugeordneten Anzeigevorrichtung 39 somit der Vorteil, daß während des laufenden Betriebs der Gesamtanlage ständig eine Funktionskontrolle durchgeführt werden kann.
  • Fig. 7 zeigt eine besonders bevorzugte Ausführungsform der erfindungsgemäßgen Zustandsmeldevorrichtung. Diese besteht aus einer standardisierten Steckkarte oder Platine, die auf einen IC-Sockel gelötet ist und auf der alle IC-Bausteine, Verkabelungen und Schaltungen mit Ausnahme derjenigen Teile fest montiert sind, die individuell veränderbar sein sollen. Im Ausführungsbeispiel sind dabei die IC-Bausteine IC₂ bis IC₄, IC₅₁ und IC₅₂, IC₆ und IC₇ zu einem einzigen IC-Baustein IC₈ zusammengefaßt, der Eingänge (1, 4, 5, 33, 34, 39, 51, 52) zum Anschluß der Widerstände R₃ und R₅ bis R₁₀ und der Kondensatoren C₃ bis C₅, weitere Eingänge (10, 20, 35 - 37) zum Anlegen der Betriebsspannungen oder der Masse, ferner weitere Eingänge (13 - 19) zum Anlegen der Gebereinheit 25 sowie Ausgänge (54 - 62) zum Anschluß der Tastatur 43 od. dgl. sowie einen Ausgang (2) zur Abgabe des am Ausgang (7) des Schwellwertschalters IC₅₁ erscheinenden Warnsignals oder des am Ausgang (10) des Monoflop IC₆ erscheinenden Signals aufweist. Dadurch ergibt sich der wesentliche Vorteil, daß der IC-Baustein IC₈ für eine vielfache Anzahl unterschiedlicher Zustandsmeldungen bzw. -überwachungen verwendet und mit an sich beliebigen Gebereinheiten und Tastaturen oder anderen Anzeigevorrichtungen kombiniert werden kann. In Abhängigkeit von den im Einzelfall verwendeten Sensoren und Anzeigevorrichtungen ist es lediglich erforderlich, einige äußere, aus Fig. 7 ersichtliche Schaltelemente entsprechend anzupassen.
  • Der aus Fig. 7 ersichtliche IC-Baustein IC₈ wird im übrigen vorzugsweise mit der für die Temperatursensoren beschriebenen Dichtungsmasse vergossen und anschließend 16 Stunden bei 80 °C und 3 Stunden bei 120 °C ausgehärtet. Der weitere Ablauf kann dann wie beim Aushärten des Temperatursensors erfolgen. Aufgrund des universellen Aufbaus eines solchen Bausteins ist es möglich, eine Vielzahl von Überwachungsaufgaben mit nahezu identischen Mitteln und mittels einer optimierten, nur wenig Raum in Anspruch nehmenden Vorrichtung zu lösen.
  • Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt, die sich auf vielfache Weise abwandeln lassen. Dies gilt zunächst insbesondere für die verwendeten Temperatursensoren, an deren Stelle andere Temperatursensoren und auch Sensoren für ganz andere Anwendungszwecke, z.B. Kälteleiter, Dehnungsmeßstreifen, Infrarot- und andere Lichtsensoren, Spannungsmesser od. dgl., verwendet werden können. Es ist lediglich erforderlich, die im einzelnen erhaltenen Meßsignale in für die beschriebenen elektrischen Schaltungen brauchbare Signale umzuformen und die an den Schwellwertschaltern IC₅₁ und IC₅₂ eingestellten Schwellen entsprechend anzupassen. Weiter versteht sich, daß andere Alarm- und/oder Sicherheitseinrichtungen sowie andere Anzeigevorrichtungen vorgesehen werden können, deren Ausgestaltung weitgehend von der Art der überwachten Zustände abhängt. Außer optischen Anzeigen können natürlich auch akustische oder andere Anzeigen vorgesehen werden. Weiter können mehr oder weniger als die beschriebenen sieben Sensoren vorgesehen werden, wobei es selbstverständlich auch möglich ist, an die beschriebene Schaltung, insbesondere den IC-Baustein IC₈ nach Fig. 7, auch Sensoren unterschiedlicher Art oder zur Überwachung unterschiedlicher Zustandsarten bestimmte Sensoren anzulegen, wobei lediglich deren Ausgangssignale entsprechend anzupassen wären. Schließlich ist die Erfindung nicht auf die Anwendung der einzeln angegebenen IC-Bausteine beschränkt, die nur beispielsweise genannt wurden.

Claims (14)

  1. Zustandsmeldevorrichtung zur Meldung eines vorgegebenen Temperaturzustands mit einer Mehrzahl von Temperatursensoren (Rs₁-Rs₇), die Ausgangssignale abgeben, deren Größen von einem von den Sensoren überwachten Zustand abhängen, und mit einer an die Sensoren angeschlossenen Auswerteeinrichtung, die beim Erreichen einer vorgewählten Größe der Ausgangssignale unter Abgabe eines Alarmsignals anspricht und einen das Alarmsignal erzeugenden Schwellwertschalter (IC₅₁) aufweist, der mit dem Ausgang (3) einer Abfrageeinrichtung (IC₃) verbunden ist, die mehrere, an je einen Sensor (Rs₁-Rs₇) angeschlossene Eingänge (1,2,5,12-15) und Mittel (IC₂) aufweist, die die Eingänge (1,2,5,12-15) periodisch und nacheinander mit dem Ausgang (3) verbinden, dadurch gekennzeichnet, daß die Temperatursensoren (Rs₁-Rs₇) aus Perlen-Heißleitern bestehen, die in Gehäusen (6) derart in eine Vergußmasse (11) eingebettet sind, daß ihre die Halbleiter-Kügelchen (6) tragenden Spitzen (3) aus der Vergußmasse herausragen, daß die Gehäuse (6) Endabschnitte (8) mit Schutzkappen (12) aufweisen, die wenigstens eine zur Aufrechterhaltung einer Luftströmung an der Spitze (3) bestimmte Öffnung aufweisen, und daß die Vergußmasse (11) auch teilweise die Schutzkappe (12) ausfüllt.
  2. Zustandsmeldevorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß ein Ausgang (7) des Schwellwertschalters (IC₅₁) mit einem zur vorübergehenden Speicherung des Alarmsignals bestimmten Monoflop (IC₆) verbunden ist.
  3. Zustandsmeldevorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Ausgang des Monoflop (IC₆) mit dem Steuereingang (2) eines an eine Alarm- und/oder Sicherheitseinrichtung (20) angeschlossenen Leistungsschalters (T₁) verbunden ist.
  4. Zustandsmeldevorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Alarm- und/oder Sicherheitseinrichtung (20) eine durch das Alarmsignal auslösbare Löscheinrichtung (22) enthält.
  5. Zustandsmeldevorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Alarm- und/oder Sicherheitseinrichtung (20) eine durch das Alarmsignal und für desen Dauer einstellbare Warneinrichtung (L₁) und eine durch das Alarmsignal permanent einschaltbare Warneinrichtung (L₂) enthält.
  6. Zustandsmeldevorrichtung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß der Alarm- und/oder Sicherheitseinrichtung (20) eine Prüfeinrichtung (41,L₃,L₄) zur Funktionsüberprüfung zugeordnet ist.
  7. Zustandsmeldevorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Auswerteeinrichtung eine ihre ordnungsgemäße Funktion überprüfende Prüfeinrichtung parallel geschaltet ist, die auf nicht ordnungsgemäße Funktionen unter Abgabe eines weiteren Alarmsignals anspricht.
  8. Zustandsmeldevorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Prüfeinrichtung einen weiteren, das weitere Alarmsignal abgebenden Schwellwertschalter (IC₅₂) aufweist, der mit dem Ausgang (3) einer weiteren Abfrageeinrichtung (IC₄) verbunden ist, die mehrere, an je einen Sensor (Rs₁-Rs₇) angeschlossene Eingänge (1,2,4,5,12,13,15) und Mittel (IC₂) aufweist, die die Eingänge (1,2,4,5,12,13,15) periodisch und nacheinander mit dem Ausgang (3) verbinden.
  9. Zustandsmeldevorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Ausgang (1) des weiteren Schwellwertschalters (IC₅₂) an eine Anzeigevorrichtung (39) angeschlossen ist.
  10. Zustandsmeldevorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Anzeigevorrichtung (39) eine mit wenigstens einer Kontrollvorrichtung (44) verbundene Tastatur (43) enthält, mittels derer die Sensoren (Rs₁-Rs₇) einzeln durch Tastenbetätigung überprüfbar sind.
  11. Zustandsmeldevorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Abfrageeinrichtungen (IC₃,IC₄), die Schwellwertschalter (IC₅₁,IC₅₂) und die Mittel (IC₂) zu einer standardisierten Steckkarte (IC₈) zusammengefaßt sind, die Eingangsanschlüsse für individuell wählbare Heißleiter und in Abhängigkeit von diesen wählbare oder verstellbare Einstellorgane, Anzeigevorrichtungen, Betriebsspannungen od. dgl. sowie wenigstens einen Ausgang (2) zur Abgabe der von der Auswerteeinrichtung abgegebenen Alarmsignale aufweist.
  12. Temperatursensor mit einem Gehäuse, das einen einen Stecker aufweisenden Boden und einen von diesem abgewandten, hohlen Endabschnitt aufweist, in dem ein Heißleiter angeordnet ist, dessen Anschlußdrähte mit den Steckern verbunden sind, und der im übrigen mit einer aus Epoxid-Gießharz bestehenden Vergußmasse ausgefüllt ist, dadurch gekennzeichnet, daß der Endabschnitt (8) an seinem freien Ende offen ist und der Heißleiter (1) aus einem Perlen-Heißleiter besteht, der so in dem Endabschnitt (8) angeordnet und in die Vergußmasse (11) eingebettet ist, daß seine das Halbleiter-Kügelchen (4) tragende Spitze (3) aus der Vergußmasse (11) herausragt, daß der Endabschnitt (8) mit einer Schutzkappe (12) versehen ist, die wenigstens eine, zur Aufrechterhaltung einer Luftströmung an der Spitze (3) bestimmte Öffnung aufweist, und daß die Vergußmasse (11) auch teilweise die Schutzkappe (12) ausfüllt.
  13. Verfahren zur Herstellung eines Temperatursensors nach Anspruch 12, bei dem die Einzelteile des Temperatursensors zunächst mechanisch zusammengefügt werden und dann der hohle Endabschnitt mit einem Zweikomponenten-Epoxid-Gießharz ausgefüllt wird, das aus einer Dichtungsmasse und einem Härter besteht, dadurch gekennzeichnet, daß zunächst die Dichtungsmasse und der Härter im Mischungsverhältnis (Gewichtsverhältnis) 10 : 1 bis 10 : 1,1 unter Herstellung einer Vergußmasse miteinander vermischt werden, die Vergußmasse dann in den hohlen, vorzugsweise auf etwa 80° C vorgewärmten Endabschnitt (8) des Steckerteils (6) eingefüllt wird, bis nur noch die das Heißleiter-Kügelchen (4) tragende Spitze (3) des Heißleiters (1) aus der Vergußmasse herausragt, danach die Aushärtung in einem Heizofen erfolgt, indem dieser für zunächst etwa 16 Stunden auf etwa 80°C, danach etwa 3 Stunden auf etwa 120°C und dann etwa 3 Stunden auf etwa 180°C eingestellt wird, und daß der Temperatursensor abschließend der Abkühlung auf Raumtemperatur überlassen wird.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß als Vergußmasse eine Mischung aus Stycast 2762 FT und Catalyst 17 verwendet wird.
EP91910757A 1990-06-19 1991-06-19 Zustandsmeldevorrichtung zur meldung eines vorgegebenen temperaturzustands, dafür geeigneter temperatursensor und verfahren zu dessen herstellung Expired - Lifetime EP0535029B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4019542 1990-06-19
DE4019542 1990-06-19
PCT/DE1991/000507 WO1991020065A2 (de) 1990-06-19 1991-06-19 Zustandsmeldevorrichtung

Publications (2)

Publication Number Publication Date
EP0535029A1 EP0535029A1 (de) 1993-04-07
EP0535029B1 true EP0535029B1 (de) 1994-09-14

Family

ID=6408676

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91910757A Expired - Lifetime EP0535029B1 (de) 1990-06-19 1991-06-19 Zustandsmeldevorrichtung zur meldung eines vorgegebenen temperaturzustands, dafür geeigneter temperatursensor und verfahren zu dessen herstellung

Country Status (10)

Country Link
US (1) US5463375A (de)
EP (1) EP0535029B1 (de)
JP (1) JPH06500873A (de)
AT (1) ATE111621T1 (de)
AU (1) AU8084291A (de)
CA (1) CA2085872A1 (de)
DE (2) DE4120126A1 (de)
DK (1) DK0535029T3 (de)
ES (1) ES2064107T3 (de)
WO (1) WO1991020065A2 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9306174U1 (de) * 1993-04-23 1994-05-19 Kolter, Heinrich, 50374 Erftstadt Meßgerät zur Bestimmung der Intensität der im Sonnenspektrum enthaltenen ultravioletten Strahlung
US6210036B1 (en) * 1996-09-06 2001-04-03 Gerald P. Eberle Connector thermal sensor
GB2320681B (en) * 1996-11-12 2003-05-28 Don Henry Dawson Fire extinguishing system
US6083587A (en) 1997-09-22 2000-07-04 Baxter International Inc. Multilayered polymer structure for medical products
JP4121104B2 (ja) * 1999-07-16 2008-07-23 松下電器産業株式会社 二次電池
US6894254B2 (en) 2000-04-20 2005-05-17 Mks Instruments, Inc. Heater control system with combination modular and daisy chained connectivity and optimum allocation of functions between base unit and local controller modules
JP3739084B2 (ja) * 2001-09-28 2006-01-25 ホーチキ株式会社 火災熱感知器
US6971790B2 (en) * 2002-10-11 2005-12-06 Welch Allyn, Inc. Thermometry probe calibration method
US6918696B2 (en) * 2003-01-15 2005-07-19 Denso Corporation Temperature sensor and method for manufacturing the same
US7802472B1 (en) * 2007-08-21 2010-09-28 Fluke Corporation Ruggedized sensor probe
DE102007054717B4 (de) * 2007-11-14 2010-09-30 Inor Process Ab Transmitter und Verfahren zur Herstellung eines Transmitters
US8794829B2 (en) * 2009-12-31 2014-08-05 Welch Allyn, Inc. Temperature-measurement probe
US9162095B2 (en) 2011-03-09 2015-10-20 Alan E. Thomas Temperature-based fire detection
US9341518B2 (en) * 2013-08-27 2016-05-17 Innovative Control Technologies, LLC Method and apparatus for remotely monitoring liquid food products
DE102015106251A1 (de) * 2015-04-23 2016-10-27 Phoenix Contact E-Mobility Gmbh Steckverbinderteil mit einer Temperaturüberwachungseinrichtung
CN109959771A (zh) * 2019-04-28 2019-07-02 南开大学 一种农业灌溉用水适宜性快速检测装置与评价方法
CN113763663B (zh) * 2021-07-05 2022-12-13 深圳市望硕科技有限公司 一种智慧园区智能安防报警器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0004991A1 (de) * 1978-04-18 1979-10-31 THE PROCTER & GAMBLE COMPANY Verfahren und Vorrichtung zur Reinigung und Desinfektion einer Spültoilette

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1204604A (en) * 1968-03-29 1970-09-09 Clifford Edwards Ltd Improvements in or relating to detection apparatus
US3987899A (en) * 1975-04-25 1976-10-26 Edwin L. Spangler, Jr. Disposable thermometer cap and method of making same
DE2817089B2 (de) * 1978-04-19 1980-12-18 Siemens Ag, 1000 Berlin Und 8000 Muenchen Gefahrenmeldeanlage
US4340886A (en) * 1978-07-03 1982-07-20 Dickey-John Corporation Bearing and motor temperature monitor
US4223302A (en) * 1979-03-05 1980-09-16 Marvel Engineering Company Conditions monitoring device
DE3128811A1 (de) * 1981-07-21 1983-02-10 Esser Sicherheitstechnik GmbH & Co KG, 4040 Neuss Multiplex-gefahrenmeldeanlage
JPS5855727A (ja) * 1981-09-29 1983-04-02 Toshiba Corp 熱電対装置
JPS59202038A (ja) * 1983-05-01 1984-11-15 Tdk Corp 温度センサの製造方法
GB8508384D0 (en) * 1985-03-30 1985-05-09 Giles P R Temperature sensing alarm
US4832599A (en) * 1987-03-12 1989-05-23 Abiomed, Inc. Periodontal probe
DD260127A1 (de) * 1987-04-29 1988-09-14 Zi F Apothekenw U Medizintechn Messfuehler fuer ein elektronisches temperaturmessgeraet
JPS6455696A (en) * 1987-08-26 1989-03-02 Hochiki Co Fire judging device
JPH0755674Y2 (ja) * 1988-02-02 1995-12-20 ニッタン株式会社 火災感知器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0004991A1 (de) * 1978-04-18 1979-10-31 THE PROCTER & GAMBLE COMPANY Verfahren und Vorrichtung zur Reinigung und Desinfektion einer Spültoilette

Also Published As

Publication number Publication date
WO1991020065A2 (de) 1991-12-26
JPH06500873A (ja) 1994-01-27
DE59102963D1 (de) 1994-10-20
DK0535029T3 (da) 1995-01-09
EP0535029A1 (de) 1993-04-07
DE4120126A1 (de) 1992-01-02
AU8084291A (en) 1992-01-07
ES2064107T3 (es) 1995-01-16
CA2085872A1 (en) 1991-12-20
US5463375A (en) 1995-10-31
ATE111621T1 (de) 1994-09-15
WO1991020065A3 (de) 1992-03-05

Similar Documents

Publication Publication Date Title
EP0535029B1 (de) Zustandsmeldevorrichtung zur meldung eines vorgegebenen temperaturzustands, dafür geeigneter temperatursensor und verfahren zu dessen herstellung
DE69217961T2 (de) Schaltung zur messung und anzeige einer übertemperatur
EP1019934B1 (de) Schaltungsanordnung und verfahren zum betreiben eines sicherungselements
DE10049071B4 (de) Sicherungsvorrichtung für einen Stromkreis insbesondere in Kraftfahrzeugen
EP1117107B1 (de) Überspannungsableiter
EP0024370A2 (de) Rauch- und temperaturempfindlicher Brandmelder
DE102018213522B4 (de) Schmelzsicherung, Sicherungskörper, System und Verfahren
EP1040495B1 (de) Elektrische sicherung
EP2815627A1 (de) Fahrzeugheizung und verfahren zur überwachung einer fahrzeugheizung
DE19527997C2 (de) Sicherungsvorrichtung für einen Stromkreis in Fahrzeugen
DE2051428A1 (de) Elektronische Einrichtung zur Temperaturüberwachung
DD239298A5 (de) Schmelzsicherungseinsatz mit optoelektrischer anzeigeeinrichtung
DE69300752T2 (de) Nachweis- und Signalisierungsvorrichtung eines Fehlerstroms in einem Überspannungsableiter oder einem Isolator.
DE3710879A1 (de) System zur abfuehlung von uebertemperaturen an stromkabeln
DE2917256C2 (de)
DE19525475A1 (de) Sicherungsvorrichtung für eine Stromleitung in Fahrzeugen
EP2159935A1 (de) Opto-elektronische Vorrichtung mit einer eingebauten Sicherungsvorrichtung
DE3041148C2 (de)
DE3527873A1 (de) Flaechenschutz gegen sabotage an einer einbruchmeldezentrale
DE19827374C2 (de) Sicherungselement für elektrische Anlagen
DE2830963C2 (de) Bei Überlastung infolge überhöhter Temperatur und/oder überhöhtem Strom den Stromfluß unterbrechende elektrische Sicherung
DE4232245C2 (de) Schaltung, Abschlußschaltung und Einrichtung zur Temperaturüberwachung
DE3148938A1 (de) Glatteis-warneinrichtung an strassen
DE2001033A1 (de) Schmelzsicherung mit UEberwachungseinrichtung zur Signalisierung des Belastungszustandes auf fotoelektrischem Wege,insbesondere fuer Halbleitergleichrichteranlagen
DE3737861A1 (de) Elektronisches leuchtelement mit optimierter lichtausbeute, verfahren zu seiner herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19931021

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 111621

Country of ref document: AT

Date of ref document: 19940915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59102963

Country of ref document: DE

Date of ref document: 19941020

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3013825

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941201

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2064107

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 91910757.3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970619

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970624

Year of fee payment: 7

Ref country code: DK

Payment date: 19970624

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19970626

Year of fee payment: 7

Ref country code: FR

Payment date: 19970626

Year of fee payment: 7

Ref country code: AT

Payment date: 19970626

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970630

Year of fee payment: 7

Ref country code: ES

Payment date: 19970630

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19970701

Year of fee payment: 7

Ref country code: BE

Payment date: 19970701

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970703

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980619

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980619

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980620

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

BERE Be: lapsed

Owner name: DYLEC LTD

Effective date: 19980630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980619

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990226

EUG Se: european patent has lapsed

Ref document number: 91910757.3

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010331

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050619