EP0527134B1 - Vorrichtung zum abkühlen von schmelzgesponnenen filamenten - Google Patents

Vorrichtung zum abkühlen von schmelzgesponnenen filamenten Download PDF

Info

Publication number
EP0527134B1
EP0527134B1 EP91904645A EP91904645A EP0527134B1 EP 0527134 B1 EP0527134 B1 EP 0527134B1 EP 91904645 A EP91904645 A EP 91904645A EP 91904645 A EP91904645 A EP 91904645A EP 0527134 B1 EP0527134 B1 EP 0527134B1
Authority
EP
European Patent Office
Prior art keywords
tube
filaments
preparation
filament
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91904645A
Other languages
English (en)
French (fr)
Other versions
EP0527134A1 (de
Inventor
Hans Linz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uhde Inventa Fischer AG
Original Assignee
EMS Inventa AG
Inventa AG fuer Forschung und Patentverwertung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EMS Inventa AG, Inventa AG fuer Forschung und Patentverwertung filed Critical EMS Inventa AG
Publication of EP0527134A1 publication Critical patent/EP0527134A1/de
Application granted granted Critical
Publication of EP0527134B1 publication Critical patent/EP0527134B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes

Definitions

  • the present invention relates to a device for cooling, stabilizing and preparing melt-spun filaments, consisting of a blow candle arranged in the center of an annular filament bundle and a preparation device as is known from US Pat. No. 4,288,207.
  • porous blow candle which is inserted from below into the center of an annular bundle of fibrils and which passes through the fibril bundle with a gas stream in a radially symmetrical manner from the inside to the outside, CH-A-667676.
  • the requirements for the regularity of an endless multifilament are so high that, e.g. in the case of filaments made of polyethylene terephthalate, the value range for the optical birefringence should not be wider than 10% of the mean found.
  • the value range for the optical birefringence should not be wider than 10% of the mean found.
  • the object of the present invention is to cool and solidify a melt-spun multifilament in such a way that the molecular orientation within the individual filaments is uniform.
  • Another task lies in larger melt throughputs per fibril, or higher speeds, which is of particular interest for use in the production of continuous filaments.
  • a closed tube is arranged between the blow candle and the preparation device and has a length of 200 to 2000 mm.
  • the distance between the blow candle and the application device for the preparation agent is increased.
  • This has the advantage of cooling a melt-spun filament a longer period of time is available. This is all the more important the thicker the individual filaments and the higher the spinning take-off speed. It is therefore expedient that the location at which the freshly spun filament comes into mechanical contact with a thread guide member of any kind is located further from the spinneret, the larger the filament titer or the higher the take-off speed.
  • the titer that the filament has during the cooling phase is of importance here.
  • the distance between the start of the blowing and the location of the preparation order is at least 950 mm. Since the application device itself protrudes 220 mm beyond the point at which the preparation is actually applied, it is expedient to provide a tube of at least 200 mm in length between the blow candle and the preparation device.
  • the tube is surrounded by a conical jacket.
  • the cooling air is conducted quantitatively, continuously and without turbulence from the inside of the cylindrical fibril bundle to the outside.
  • the length of this tube should be between 200 and 2000 mm, in particular between 200 and 1780 mm, preferably between 200 and 1160 mm.
  • Coarser filament titers and higher spinning speeds require larger distances between the blow candle and the location of the preparation job than shorter distances. The same applies to substances with a higher heat content. This may lead to tube lengths at which the mechanical stabilization of the cylindrical fibril bundle becomes problematic. It is known to be a free bundle of fibrils The longer it is disturbed by external air influences.
  • the cooling conditions require certain minimum lengths
  • suitable measures must be taken to ensure that the disruptive influence of external air currents is eliminated or at least reduced to the required extent. It is therefore expedient to surround the blowing device with a stationary jacket, which in a preferred embodiment consists of a cylindrical perforated plate. This jacket extends from the lower edge of the spinneret pack or heating collar, if present, to the area of the preparation device. A defined distance from the spinneret package or heating collar or from the preparation device can be provided both at the upper and at the lower end of this jacket in order to create the possibility of a controlled air exchange with the surroundings.
  • the jacket is expediently designed so that both a part of it can be opened to the rear and a part to the front.
  • the former is necessary in order to enable the blow-on candle to travel the required distance that the device travels when it exits the operating position.
  • the latter is used to open the spinning shaft for the operating personnel, e.g. in the case of spinning the thread down from the spinning stick into the space below with the take-off device.
  • the product consists of the spinning speed v (in m / min) and the square root of the filament titer (in dtex) is between 5000 and 20,000, preferably between 5270 and 11,000.
  • melt-spun filaments are given sufficient time to cool down before they come into mechanical contact with the application device for the spin preparation.
  • the reference numeral 1 denotes a spinneret pack, which is arranged within a heating collar 2.
  • the spinneret pack and the heating collar 2 are surrounded by insulation 15.
  • a porous blow candle 4 is gas-tightly connected to a tube 5 of approximately the same diameter which is closed over its entire length.
  • annular preparation device 6 is arranged concentrically, which is used to apply a spin preparation to a filament bundle 3.
  • the blow candle 4, the closed tube 5 and the preparation device 6 are carried by a tube cone 9, which in turn is movably connected to the building in a manner not shown via a narrow connecting channel 10 and a further closed tube 11.
  • the entire device is arranged to be completely movable out of the thread path.
  • a mandrel 12 At the upper end of the blow candle 4 is a mandrel 12, which in the operating position of the device in a corresponding bore 13 in the center of the Spinneret pack 1 engages.
  • a spinning tube 8 At the upper end of which a convergence device 7 is attached.
  • the blow candle 4, the closed tube 5 and the preparation device 6 are surrounded by a jacket 14, which in a preferred embodiment is formed from a perforated plate.
  • the tube 5 can be surrounded by a conical jacket 16.
  • the blow candle 4 can, as far as this is technically possible, be positioned up to the immediate vicinity of the spinneret plate. Furthermore, for the purpose of controlled air exchange with the surroundings, a defined distance from the spinneret plate or heating collar or from the preparation device can be provided both at the upper and at the lower end of the jacket 14.
  • the blow candle 4 is supplied with the required cooling air via the pipeline 11, the connecting channel 10, the pipe cone 9, the preparation device 6 and the pipe 5, which air escapes radially symmetrically from the porous surface of the blow candle 4.
  • the preparation device 6 is supplied with the corresponding preparation via a line, not shown, which is laid within the tube 11, the connecting channel 10 and the tube cone 9.
  • the polymer melt to be spun is discharged in a known manner through spinneret bores arranged on concentric circles. It first passes in a free fall the heating collar zone 2 and then reaches the area of the blow candle 4, where it is cooled by the cooling air escaping and solidified into filaments 3.
  • the filaments 3 After passing a further distance defined by the closed tube 5, the filaments 3 are provided with a spin preparation by means of the preparation device 6. Then the individual filaments with the help of the convergence thread guide 7, conically combined into a closed filament bundle 3 'and fed through the spinning tube 8 to the thread take-off device, also not shown.
  • the emerging melt was cooled with the central blowing according to the invention using 600 cbm / h of air at 35 ° C.
  • the blow candle 4 was 530 mm long with a diameter of 95 mm.
  • the closed tube 5 between the blow candle 4 and the applicator 6 for the preparation was 200 mm long. As a result, the place for the application of the preparation was 420 mm below the blow candle.
  • the consolidated multifilament was withdrawn from the spinning shaft at a speed of 3100 m / min.
  • the melt throughput was chosen so that the individual filaments had a titer of 3.6 dtex.
  • the optical birefringence values measured on this multifilament were in the range between 0.048 and 0.053. The molecular orientation of the multifilament was therefore sufficiently regular that good further processing was possible.
  • Polyethylene terephthalate as in Example 1 was spun and cooled in the same manner.
  • the length of the tube 5 was 1160 mm, i.e. the application device for the spin preparation 6 was 1380 mm below the blow candle.
  • the melt throughput per spinneret bore was varied in such a way that multifilaments resulted with a take-off speed of 3100 m / min, the individual fibril titer of which was between 4.5 and 11.5 dtex. With these multifilaments, too, the values for the optical birefringence were within a narrow range of 0.006 units.
  • Polyethylene terephthalate was spun as in Example 1 and cooled and solidified under the same conditions.
  • the length of the tube 5 was 200 mm.
  • the take-off speed was 2000 m / min.
  • the melt throughput was chosen so that a multifilament with 8.5 dtex single fibril titer resulted.
  • the optical birefringence values found on these filaments were within a range between 0.024 and 0.045.
  • Polyethylene terephthalate was spun, cooled and solidified as in Example 1. However, a multifilament with 5.6 dtex single fibril titer was produced at 3100 m / min. Optical birefringence values were found which were within a range from 0.048 to 0.110.
  • Threads according to Examples 1-4 can be processed well, in particular drawn. With the threads according to Examples 5 and 6, an intolerable number of filament breaks occur during stretching.
  • thermoplastic polymers in particular with polyesters such as polyethylene terephthalate, polyamides such as polycaprolactam, polyhexamethylene adipic acid amide and similar polyamides, polyethylene, polypropylene and their relatives, polyacrylonitrile etc. used in the textile sector the invention on other polymer pipe lengths up to 2000 mm may be required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

In einer Vorrichtung zum Abkühlen von Filamentfäden durch Zentralanblasung mittels einer Blaskerze (4) ist zwischen der Blaskerze (4) und der Präparationseinrichtung (6) ein geschlossenes Rohr (5) mit einer Länge von 200 bis 2000 mm angeordnet. Durch die erfindungsgemässe Anordnung sind die Fibrillen so weit abgekühlt, dass die molekulare Orientierung innerhalb der einzelnen Filamente gleichmässig ist und ein sehr regelmässiges Filament resultiert.

Description

  • Die vorliegende Erfindung betrifft eine Vorrichtung zum Abkühlen, Stabilisieren und Präparieren von schmelzgesponnenen Filamenten, bestehend aus einer im Zentrum eines ringförmigen Filamentbündels angeordneten Blaskerze und einer Präparationseinrichtung, wie sie aus der US-A-4 288 207 bekannt ist.
  • Bekannt ist weiterhin eine poröse Blaskerze, die von unten in das Zentrum eines ringförmigen Fibrillenbündels eingefahren wird und die das Fibrillenbündel mit einem Gasstrom radialsymmetrisch von innen nach aussen durchsetzt, CH-A-667676. Dadurch wird die Wärme aus dem Schmelzestrahl hinreichend effizient abgeführt. Die Fibrillen können so unmittelbar unterhalb der Blaskerze mit einer Präparation beaufschlagt und anschliessend zu einem geschlossenen Bündel zusammengefasst werden. Verklebungen zwischen den einzelnen Fibrillen treten nicht auf.
  • Es hat sich jedoch gezeigt, dass diese bekannte Vorrichtung nicht für alle Fälle anwendbar ist. Beim Erspinnen von Multifilamentgarnen, z.B. aus PET, mit gröberem Einzelfasertiter, insbesondere bei Spinngeschwindigkeiten von 2000 m/min und mehr, werden Garne erhalten, welche sich nicht in der gewohnten Weise weiter-verarbeiten, insbesondere verstrecken lasen. Der Streckprozess wird durch das Auftreten von untolerierbar vielen Filamentbrüchen so stark gestört, dass kein Garn mit hinreichenden mechanischen Eigenschaften erzeugt werden kann.
  • Es hat sich gezeigt, dass die so ersponnenen Multifilamentgarne sehr grosse Unregelmässigkeiten in ihrer molekularen Struktur aufweisen. Die ermittelten Werte für die optische Doppelbrechung, als Mass für die molekulare Orientierung, sind sowohl von Fibrille zu Fibrille als auch längs der einzelnen Fibrillen ungewöhnlich grossen Streuungen unterworfen und decken jeweils einen sehr breiten Bereich ab.
  • Nun sind aber die Anforderung an die Regelmässigkeit eines endlosen Multifilaments so hoch, dass, z.B. im Falle von Filamenten aus Polyethylenterphthalat, der Wertebereich für die optische Doppelbrechung nicht breiter als 10 % vom gefundenen Mittelwert sein sollte. Beim Verstrecken von Filamenten mit mehr als 10 % treten untolerierbar viele Filamentbrüche auf. Im übrigen ergeben derartig unregelmassige Filamente für den textilen Einsatz beim Anfärben Anlass zu sehr unbefriedigender Farbegalität.
  • Es wurde gefunden, dass Unregelmässigkeiten in der molekularen Orientierung nicht auftreten, sofern das Produkt aus der Spinnabzugsgeschwindigkeit und der Quadratwurzel aus dem Fibrillentiter, v·SQR(dpf), einen bestimmten Wert nicht überschreitet.
  • Aufgabe der vorliegenden Erfindung ist es, ein schmelzgesponnenes Multifilament so abzukühlen und zu verfestigen, dass die molekulare Orientierung innerhalb der einzelnen Filamente gleichmässig ist.
  • Eine weitere Aufgabe liegt in grösseren Schmelzedurchsätzen pro Fibrille, bzw. höheren Geschwindigkeiten, was besonders für den Einsatz in der Produktion von Endlosfäden von erheblichem Interesse ist.
  • Die Aufgabe wird erfindungsgemäss nach Anspruch 1 dadurch gelöst, dass zwischen der Blaskerze und der Präparationseinrichtung ein geschlossenes Rohr angeordnet ist, das eine Länge von 200 bis 2000 mm aufweist.
  • Durch das Einfügen eines geschlossenen Rohres wird die Distanz zwischen der Blaskerze und der Auftragsvorrichtung für das Präparationsmittel erhöht. Das hat den Vorteil, dass für das Abkühlen eines schmelzgesponnenen Filamentes eine grössere Zeitspanne zur Verfügung steht. Dies ist umso wichtiger, je dicker die einzelnen Filamente und je höher die Spinnabzugsgeschwindigkeit ist. Es ist daher zweckmässig, dass der Ort, an welchem das frisch gesponnene Filament zum ersten Mal in mechanischen Kontakt mit einem Fadenleitorgan irgendwelcher Art kommt, umso weiter von der Spinndüse angeordnet ist, je grösser der Filamenttiter bzw. je höher die Abzugsgeschwindigkeit ist. Hierbei ist derjenige Titer von Bedeutung, den das Filament während der Abkühlphase besitzt.
  • Es ist von Vorteil, wenn die Distanz zwischen dem Beginn der Anblasung und dem Ort des Präparationsauftrags wenigstens 950 mm betragt. Da die Auftragseinrichtung aus konstruktiven Gründen selbst 220 mm über die Stelle hinausragt, an welcher die Präparation eigentlich aufgetragen wird, ist es zweckmässig, zwischen der Blaskerze und der Präparationseinrichtung ein Rohr von mindestens 200 mm Länge vorzusehen.
  • Es ist von Vorteil, wenn das Rohr von einem kegelförmigen Mantel umgeben ist. Dadurch wird die Kühlluft quantitativ, stetig und turbulenzfrei aus dem Innern des zylindrischen Fibrillenbündels nach aussen geleitet.
  • Je nach Art des Polymers, des Titers und der Geschwindigkeit des gesponnenen Filaments sollte die Länge dieses Rohres zwischen 200 bis 2000 mm, insbesondere zwischen 200 und 1780 mm, bevorzugt zwischen 200 und 1160 mm betragen.
  • Gröbere Filamenttiter und höhere Spinngeschwindigkeiten verlangen grössere Distanzen zwischen der Blaskerze und dem Ort des Präparationsauftrags als geringere. Das gleiche gilt für Substanzen mit höherem Wärmeinhalt. Dies führt u.U. zu Rohrlängen, bei welchen die mechanische Stabilisierung des zylinderförmigen Fibrillenbündels problematisch wird. Es ist bekannt, dass ein freies Fibrillenbündel umso stärker von äusseren Lufteinflüssen gestört wird, je länger es ist.
  • Da aber einerseits die Abkühlbedingungen gewisse Minimallängen erfordern, muss andererseits durch geeignete Massnahmen dafür gesorgt werden, dass der störende Einfluss von äusseren Luftströmungen eliminiert oder zumindest auf ein erforderliches Mass reduziert wird. Es ist daher zweckmässig, die Anblaseinrichtung mit einem ortsfesten Mantel zu umgeben, welcher in einer bevorzugten Ausführung aus einem zylindrischen Lochblech besteht. Dieser Mantel reicht von der Unterkante des Spinndüsenpakets oder Heizkragens, sofern vorhanden, bis in den Bereich der Präparationseinrichtung. Es kann sowohl am oberen als auch am unteren Ende dieses Mantels ein definierter Abstand zum Spinndüsenpaket oder Heizkragen oder zur Präparationseinrichtung vorgesehen werden, um die Möglichkeit zu einem kontrollierten Luftaustausch mit der Umgebung zu schaffen.
  • Der Mantel ist zweckmässig so ausgestaltet, dass sowohl ein Teil davon nach hinten als auch ein Teil nach vorn aufgeklappt werden kann. Ersteres ist erforderlich, um der Anblaskerze den erforderlichen Weg freizugeben, den die Einrichtung beim Ausfahren aus der Betriebsstellung zurücklegt. Letzteres dient zum öffnen des Spinnschachtes für das Bedienungspersonal, um z.B. im Falle des Anspinnens den Faden vom Spinnstock in den darunter befindlichen Raum mit der Abzugsvorrichtung hinunterzugeben.
  • Zur Durchführung des Verfahrens mit der erfindungsgemässen Vorrichtung ist es zweckmässig, dass das Produkt aus der Spinngeschwindigkeit v (in m/min) und der Quadratwurzel aus dem Filamenttiter (in dtex) zwischen 5000 und 20'000, bevorzugt zwischen 5270 und 11'000 liegt.
  • Das hat den Vorteil, dass die schmelzgesponnenen Filamente hinreichend Zeit zum Abkühlen erhalten, bevor sie in mechanischen Kontakt mit der Auftragseinrichtung für die Spinnpräparation gelangen.
  • Die erfindungsgemässe Vorrichtung soll anhand einer Zeichnung erläutert werden.
  • Es zeigen:
    • Fig. 1 ein Schema der Abkühlvorrichtung
    • Fig. 2 eine Variante des geschlossenen Rohres nach Fig. 1
  • In Fig. 1 ist mit dem Bezugszeichen 1 ein Spinndüsenpaket bezeichnet, welches innerhalb eines Heizkragens 2 angeordnet ist. Das Spinndüsenpaket und der Heizkragen 2 sind von einer Isolation 15 umgeben. Eine poröse Blaskerze 4 ist gasdicht mit einem über seine ganze Länge geschlossenen Rohr 5 mit annähernd gleichem Durchmesser verbunden.
  • Am unteren Ende des Rohrs 5 ist eine ringförmige Präparationseinrichtung 6 konzentrisch angeordnet, welche zum Auftragen einer Spinnpräparation auf ein Filamentbündel 3 dient. Die Blaskerze 4, das geschlossene Rohr 5 und die Präparationseinrrichtung 6 werden von einem Rohrkonus 9 getragen, welcher seinerseits über einen schmalen Anschlusskanal 10 und ein weiteres geschlossenes Rohr 11 mit dem Gebäude in einer nicht gezeichneten Weise beweglich verbunden ist. Die gesamte Einrichtung ist vollständig aus dem Fadenweg heraus fahrbar angeordnet.
  • Am oberen Ende der Blaskerze 4 befindet sich ein Dorn 12, welcher in der Betriebsstellung der Einrichtung in eine entsprechende Bohrung 13 im Zentrum des Spinndüsenpakets 1 eingreift. Unterhalb des Rohrkonus 9 befindet sich, ebenfalls in konzentrischer Anordnung, ein Spinnrohr 8, an dessen oberen Ende eine Konvergenzeinrichtung 7 angebracht ist. Die Blaskerze 4, das geschlossene Rohr 5 und die Präparationseinrichtung 6 sind von einem Mantel 14 umgeben, welcher in einer bevorzugten Ausführung aus einem Lochblech geformt ist. Das Rohr 5 kann in einer Variante von einem kegelförmigen Mantel 16 umgeben sein.
  • Die Blaskerze 4 kann auch, soweit dies technisch möglich ist, bis in die unmittelbare Nähe der Spinndüsenplatte positioniert werden. Ferner kann zum Zwecke eines kontrollierten Luftaustausches mit der Umgebung sowohl am oberen als auch am unteren Ende des Mantels 14 ein definierter Abstand zu Spinndüsenplatte bzw. Heizkragen oder zur Präparationseinrichtung vorgesehen werden.
  • Im Betrieb wird die Blaskerze 4 wird über die Rohrleitung 11, den Anschlusskanal 10, den Rohrkonus 9, durch die Präparationseinrichtung 6 und das Rohr 5 mit der erforderlichen Kühlluft versorgt, welche radial symmetrisch aus der porösen Oberfläche der Blaskerze 4 entweicht. Die Präparationseinrichtung 6 wird über eine nicht gezeigte Leitung, welche innerhalb des Rohres 11, des Anschlusskanals 10 und des Rohrkonus 9 verlegt ist, mit der entsprechenden Präparation versorgt.
  • Die zu verspinnende Polymerschmelze wird in bekannter Weise durch auf konzentrischen Kreisen angeordnete Spinndüsenbohrungen ausgetragen. Sie passiert zunächst in freiem Fall die Heizkragenzone 2 und gelangt dann in den Bereich der Blaskerze 4, wo sie durch die austretende Kühlluft abgekühlt und zu Filamenten 3 verfestigt wird.
  • Nach dem Passieren einer weiteren durch das geschlossene Rohr 5 definierten Strecke werden die Filamente 3 mittels der Präparationseinrichtung 6 mit einer Spinnpräparation versehen. Anschliessend werden die einzelnen Filamente mit Hilfe des Konvergenzfadenführers 7 kegelförmig zu einem geschlossenen Filamentbündel 3' vereinigt und durch das Spinnrohr 8 der ebenfalls nicht gezeigten Fadenabzugseinrichtung zugeführt.
  • Die Wirkungsweise der Erfindung soll anhand der folgenden Beispiele und den in der Tabelle aufgelisteten Resultaten erläutert werden. Diese Beispiele beziehen sich auf den Einsatz einer solchen Zentralanblasung beim Schmelzspinnen von Polyethylenterephthalat.
  • Beispiel 1
  • Polyethylenterephthalat Granulat mit einer Lösungsviskosität von 114 Einheiten, bestimmt nach ISO-Norm Nr. 1628/5-1986 (E), wurde in einem Extruder aufgeschmolzen und bei einer Schmelzetemperatur von 289 °C durch eine Spinndüse mit 128 auf zwei konzentrischen Kreisen angeordneten Bohrungen zu einem Multifilament versponnen.
  • Die austretende Schmelze wurde mit der erfindungsgemässen Zentralanblasung unter dem Einsatz von 600 cbm/h Luft von 35°C gekühlt. Die Blaskerze 4 war 530 mm lang bei einem Durchmesser von 95 mm. Das geschlossene Rohr 5 zwischen der Blaskerze 4 und der Auftragsvorrichtung 6 für die Präparation war 200 mm lang. Demzufolge befand sich der Ort für den Auftrag der Präparation 420 mm unterhalb der Blaskerze.
  • Das verfestigte Multifilament wurde mit einer Geschwindigkeit von 3100 m/min aus dem Spinnschacht abgezogen. Der Schmelzedurchsatz wurde so gewählt, dass die einzelnen Filamente einen Titer von 3.6 dtex aufwiesen. Die an diesem Multifilament gemessenen Werte der optischen Doppelbrechung lagen im Bereich zwischen 0.048 und 0.053. Die molekulare Orientierung des Multifilaments war somit hinreichend regelmässig, dass eine gute Weiterverarbeitung möglich war.
  • Beispiele 2 bis 4
  • Polyethylenterephthalat wie in Beispiel 1 wurde auf die gleiche Weise versponnen und abgekühlt. Jedoch betrug bei diesen Beispielen die Länge des Rohres 5 1160 mm, d.h. die Auftragseinrichtung für die Spinnpräparation 6 befand sich 1380 mm unterhalb der Blaskerze. Der Schmelzedurchsatz pro Spinndüsenbohrung wurde dergestalt variiert, dass bei einer Abzugsgeschwindigkeit von 3100 m/min Multifilamente resultierten, deren Einzelfibrillentiter zwischen 4.5 und 11.5 dtex lag. Auch bei diesen Multifilamenten lagen die Werte für die optische Doppelbrechung innerhalb eines schmalen Bereichs von 0.006 Einheiten.
  • Beispiel 5
  • Polyethylenterephthalat wurde wie in Beispiel 1 versponnen und unter den gleichen Bedingungen abgekühlt und verfestigt. Die Länge des Rohres 5 betrug 200 mm. Die Abzugsgeschwindigkeit lag bei 2000 m/min. Der Schmelzedurchsatz wurde so gewählt, dass ein Multifilament mit 8.5 dtex Einzelfibrillentiter resultierte. Die an diesen Filamenten gefundenen Werte für die optische Doppelbrechung lagen innerhab eines Bereichs zwischen 0.024 und 0.045.
  • Beispiel 6
  • Polyethylenterephthalat wurde wie in Beispiel 1 versponnen, abgekühlt und verfestigt. Jedoch wurde bei 3100 m/min ein Multifilament mit 5.6 dtex Einzelfibrillentiter produziert. Hierbei wurden Werte für die optische Doppelbrechung gefunden, welche innerhalb eines Bereichs von 0.048 bis 0.110 lagen.
  • Die Versuchsergebnisse der Beispiele sind in der folgenden Tabelle zusammengefasst. Tabelle
    Beispiel Nr. 1 2 3 4 5 6
    Spinngeshwindigkeit [m/min] 3100 3100 3100 3100 2000 3100
    Filamenttiter [dpf] 3.6 4.5 8.8 11.5 8.5 5.6
    Schmelzedurchsatz [g/min] 1.1 1.4 2.7 3.6 1.7 1.7
    v * SQR(dpf) 5881 6576 9196 10513 5831 7336
    Rohrlange [mm] 200 1160 1160 1160 200 200
    Distanz Blaskerze-
    Praparation [mm] 420 1380 1380 1380 420 420
    DB * 10⁻3 min 48 50.1 51.1 48.8 23.9 48.3
    max 53 55.5 55.6 55.1 45.8 110.2
  • Fäden gemäss den Beispielen 1-4 können gut weiterverarbeitet, insbesondere verstreckt werden. Bei den Fäden gemäss den Beispielen 5 und 6 treten beim Verstrecken untolerierbar viele Filamentbrüche auf.
  • Mit der erfindungsgemässen Vorrichtung ist es erstmals gelungen, Filamente aus PET bei Geschwindigkeiten von 2000 m/min und mehr mit einem Fibrillentiter von bis zu 11.5 dtex herzustellen, die so regelmässig sind, dass sie störungsfrei weiterverarbeitet werden können.
  • Das erfindungsgemässe Verfahren lässt sich mit allen bekannten thermoplastischen Polymeren durchführen, insbesondere mit Polyestern wie Polyethylenterephthalat, Polyamiden wie Polycaprolactam, Polyhexamethylenadipinsäureamid und änlichen im textilen Bereich verwendeten Polyamiden, Polyetylen, Polypropylen und deren Verwandten, Polyacrylnitril etc. Hierbei ist zu beachten, dass bei Anwendungen der Erfindung auf andere Polymere Rohrlängen bis 2000 mm erforderlich sein können.

Claims (4)

  1. Vorrichtung zum Abkühlen, Stabilisieren und Präparieren von schmelzgesponnenen Filamenten, bestehend aus einer im Zentrum eines ringförmigen Filamentbündels (3) angeordneten Blaskerze (4) und einer Präparationseinrichtung (6), dadurch gekennzeichnet, dass zwischen der Blaskerze (4) und der Präparationseinrichtung (6) ein geschlossenes Rohr (5) angeordnet ist, das eine Länge von 200 bis 2000 mm aufweist.
  2. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass das Rohr (5) von einem kegelförmigen Mantel (16) umgeben ist.
  3. Vorrichtung nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass die Blaskerze (4), das Rohr (5) und die Präparationseinrichtung (6) von einem Mantel aus einem zylindrischen Lochblech (14) umgeben sind.
  4. Verfahren zum Abkühlen mit der Vorrichtung gemäss den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass das Produkt aus der Spinnabzugsgeschwindigkeit v und der Quadratwurzel aus dem Filamenttiter, zwischen 5000 und 20'000 ( m/min · dtex 1/2) liegt.
EP91904645A 1991-03-04 1991-03-04 Vorrichtung zum abkühlen von schmelzgesponnenen filamenten Expired - Lifetime EP0527134B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH1991/000050 WO1992015732A1 (de) 1991-03-04 1991-03-04 Vorrichtung zum abkühlen von schmelzgesponnenen filamenten

Publications (2)

Publication Number Publication Date
EP0527134A1 EP0527134A1 (de) 1993-02-17
EP0527134B1 true EP0527134B1 (de) 1995-05-17

Family

ID=4547207

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91904645A Expired - Lifetime EP0527134B1 (de) 1991-03-04 1991-03-04 Vorrichtung zum abkühlen von schmelzgesponnenen filamenten

Country Status (7)

Country Link
EP (1) EP0527134B1 (de)
JP (1) JP2809878B2 (de)
BR (1) BR9106417A (de)
CH (1) CH678433A5 (de)
DE (1) DE59105531D1 (de)
ES (1) ES2075430T3 (de)
WO (1) WO1992015732A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536157A (en) * 1991-03-04 1996-07-16 Ems-Inventa Ag.G. Apparatus for cooling melt-spun filaments
DE19653451C2 (de) * 1996-12-20 1998-11-26 Inventa Ag Verfahren zur Herstellung eines Polyester-Multifilamentgarnes
DE19800636C1 (de) * 1998-01-09 1999-07-29 Inventa Ag Vorrichtung zum Abkühlen und Präparieren von schmelzgesponnenen Fäden
DE19821778B4 (de) * 1998-05-14 2004-05-06 Ems-Inventa Ag Vorrichtung und Verfahren zur Herstellung von Mikrofilamenten von hoher Titer-Gleichmäßigkeit aus thermoplastischen Polymeren
WO1999067450A1 (de) * 1998-06-22 1999-12-29 Barmag Ag Spinnvorrichtung zum spinnen eines synthetischen fadens
US6525127B1 (en) 1999-05-11 2003-02-25 3M Innovative Properties Company Alkylated fluorochemical oligomers and use thereof in the treatment of fibrous substrates
US6288157B1 (en) 1999-05-11 2001-09-11 3M Innovative Properties Company Alkylated fluorochemical oligomers and use thereof
DE10105440A1 (de) * 2001-02-07 2002-08-08 Neumag Gmbh & Co Kg Vorrichtung zum Schmelzspinnen und Kühlen einer Filamentschar
EP1491663A1 (de) * 2003-06-23 2004-12-29 Nan Ya Plastics Corporation Verfahren zur Herstellung von Polyester-Multifilamenten mit niedrigem Denier sowie Polyester-Multifilamentgarne mit niedrigem Denier
JP4760441B2 (ja) * 2006-02-23 2011-08-31 東レ株式会社 溶融紡糸装置および溶融紡糸方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL271547A (de) * 1960-11-18
GB957534A (en) * 1962-01-18 1964-05-06 British Nylon Spinners Ltd Improvements in or relating to melt-spinning synthetic polymer filaments
US4288207A (en) * 1980-06-30 1981-09-08 Fiber Industries, Inc. Apparatus for producing melt-spun filaments
JPS56169805A (en) * 1980-05-30 1981-12-26 Toray Ind Inc Melt spinning method
CH667676A5 (de) * 1985-09-18 1988-10-31 Inventa Ag Vorrichtung zum abkuehlen und praeparieren von schmelzgesponnenem spinngut.
DE3822571A1 (de) * 1988-07-04 1990-02-01 Hoechst Ag Spinnverfahren und vorrichtung zur durchfuehrung desselben

Also Published As

Publication number Publication date
ES2075430T3 (es) 1995-10-01
DE59105531D1 (de) 1995-06-22
WO1992015732A1 (de) 1992-09-17
JPH05505427A (ja) 1993-08-12
JP2809878B2 (ja) 1998-10-15
EP0527134A1 (de) 1993-02-17
BR9106417A (pt) 1993-05-04
CH678433A5 (de) 1991-09-13

Similar Documents

Publication Publication Date Title
EP0937791B1 (de) Verfahren und Vorrichtung zum Spinnen eines multifilen Fadens
EP0494852B1 (de) Verfahren zur Herstellung eines cellulosischen Formkörpers
EP0671492B1 (de) Verwendung einer Spinndüse zur Herstellung cellulosischer Fäden
DE19821778B4 (de) Vorrichtung und Verfahren zur Herstellung von Mikrofilamenten von hoher Titer-Gleichmäßigkeit aus thermoplastischen Polymeren
EP1102878B1 (de) Spinnvorrichtung und -verfahren zum spinnen eines synthetischen fadens
DE2115312A1 (de) Bikonischer Heizstrahler zum Herstellen von Fäden
EP1463850B1 (de) Spinnverfahren mit turbulenter kühlbeblasung
EP1079008A1 (de) Verfahren und Vorrichtung zum Spinnen eines multifilen Fadens
DE102011075924A1 (de) Schmelzspinnverfahren und -vorrichtung
EP0527134B1 (de) Vorrichtung zum abkühlen von schmelzgesponnenen filamenten
EP1045930B1 (de) Verfahren und vorrichtung zum herstellen eines hochorientierten fadens
DE4219658C3 (de) Verfahren zur Herstellung von Cellulosefasern -filamenten und -folien nach dem Trocken-Naßextrusionsverfahren
DE2201519A1 (de) Verfahren und Vorrichtung zum Schmelzspinnen
DE19653451C2 (de) Verfahren zur Herstellung eines Polyester-Multifilamentgarnes
EP0530652B1 (de) Vorrichtung zum Schnellspinnen von multifilen Fäden und deren Verwendung
EP0455897B1 (de) Vorrichtung zum Herstellen von Feinstfäden
DE10109838A1 (de) Vorrichtung zum Abkühlen einer synthetischen Filamentschar beim Schmelzspinnen
EP2171138B1 (de) Spinnverfahren
EP0826802A1 (de) Verfahren zum Spinnen eines multifilen Fadens
DE19716394C1 (de) Verfahren und Vorrichtung zur passiven verzögerten Abkühlung von Spinnfilamenten
WO2002053814A1 (de) Verfahren zum spinnstrecken von schmelzgesponnenen garnen
EP1521869B1 (de) Spinnverfahren
WO2001090450A1 (de) Verfahren zum extrudieren eines endlosformkörpers
WO2007023003A1 (de) Mehrfachspinndüsenanordnung und verfahren mit absaugung und beblasung
DE10025230A1 (de) Verfahren zum Extrudieren eines Endlosformkörpers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19930208

17Q First examination report despatched

Effective date: 19940311

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EMS-INVENTA AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 59105531

Country of ref document: DE

Date of ref document: 19950622

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950620

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2075430

Country of ref document: ES

Kind code of ref document: T3

ET1 Fr: translation filed ** revision of the translation of the patent or the claims
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980213

Year of fee payment: 8

Ref country code: FR

Payment date: 19980213

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980316

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990305

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000223

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000303

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010910

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20011001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050304