EP0489247A2 - RDS-Rundfunkempfänger mit erweiterter Speicherkapazität zur Erfassung alternativer Frequenzen - Google Patents

RDS-Rundfunkempfänger mit erweiterter Speicherkapazität zur Erfassung alternativer Frequenzen Download PDF

Info

Publication number
EP0489247A2
EP0489247A2 EP91117802A EP91117802A EP0489247A2 EP 0489247 A2 EP0489247 A2 EP 0489247A2 EP 91117802 A EP91117802 A EP 91117802A EP 91117802 A EP91117802 A EP 91117802A EP 0489247 A2 EP0489247 A2 EP 0489247A2
Authority
EP
European Patent Office
Prior art keywords
rds
alternative frequencies
memory
bit
program
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91117802A
Other languages
English (en)
French (fr)
Other versions
EP0489247B1 (de
EP0489247A3 (en
Inventor
Gottfried Gundig E.M.V. Max Grundig Kagerbauer
Mathias Gundig E.M.V. Max Grundig Kalmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundig EMV Elektromechanische Versuchsanstalt Max Grundig GmbH
Original Assignee
Grundig EMV Elektromechanische Versuchsanstalt Max Grundig GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundig EMV Elektromechanische Versuchsanstalt Max Grundig GmbH filed Critical Grundig EMV Elektromechanische Versuchsanstalt Max Grundig GmbH
Publication of EP0489247A2 publication Critical patent/EP0489247A2/de
Publication of EP0489247A3 publication Critical patent/EP0489247A3/de
Application granted granted Critical
Publication of EP0489247B1 publication Critical patent/EP0489247B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/27Arrangements for recording or accumulating broadcast information or broadcast-related information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/20Arrangements for broadcast or distribution of identical information via plural systems
    • H04H20/22Arrangements for broadcast of identical information via plural broadcast systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H2201/00Aspects of broadcast communication
    • H04H2201/10Aspects of broadcast communication characterised by the type of broadcast system
    • H04H2201/13Aspects of broadcast communication characterised by the type of broadcast system radio data system/radio broadcast data system [RDS/RBDS]

Definitions

  • the invention relates to an RDS radio receiver which has a program memory for the spontaneous call-up of various programs, in the individual memory levels of which a special program is assigned not only a mother frequency but also a large number of alternative frequencies.
  • the applicant's patent application P 39 20 220.8 discloses an RDS radio receiver, in particular an RDS car radio, in which the inventory of alternative frequencies in the program memory is expanded empirically as soon as new RDS transmitter frequencies are obtained during operational or routine tuning of the receiver recognized as worthy of reception.
  • the program memory of an RDS car radio contains, over time, all that are worth receiving in the area of action of the motor vehicle Detected alternative frequencies of the different programs, so that when a program is called up spontaneously from home, alternative frequencies from the current reception area are immediately available for tuning the receiver without first having to start a search or waiting for the evaluation of the alternative frequencies transmitted by wave propagation .
  • microprocessor with integrated memories so-called one-chip microcomputer
  • the storage of a high number of alternative frequencies is difficult because of the limited memory capacity of such modules.
  • the RDS radio shown in FIG. 1 converts in a known manner the RF signals received by the antenna in the synthesizer tuner 1 into an intermediate frequency which is selectively amplified and demodulated in the IF amplifier 2.
  • the demodulated multiplex signal is broken down in the stereo decoder 3 into the two LF signals for the left and right stereo channel and these are fed to the two loudspeakers after amplification in the stereo amplifier 4.
  • a measured variable for determining the signal field strength is taken from the IF amplifier 2 in accordance with the IF signal level and fed to the microprocessor 8a as a control signal via the level detector 5.
  • a control signal for the microprocessor 8a for detecting multipath reception interference is obtained from the multiplex signal via the multipath detector 6.
  • the multiplex signal is also fed into the RDS demodulator 7. After a 57 kHz bandpass filtering, this demodulates the quadrature-amplitude-modulated RDS signal and supplies the digital data obtained after biphase and differential decoding to the microprocessor 8a, which takes over the RDS data evaluation.
  • the microprocessor 8a generates the tuning signal for the synthesizer tuner 1 and controls the display 13 with which, among other things. the station names obtained from the PS code of the RDS data signal are displayed alphanumerically.
  • the microprocessor 8a receives its control commands for all manual operating functions from the operating part 12.
  • the operating program of the microprocessor 8a is fixed in the ROM memory 10.
  • the RAM memory 9 serves as a working memory which contains the PI code, data of the available alternative frequencies and the PS code for displaying the station name for the currently received program.
  • the data of different programs are stored in the individual memory levels 11a-11d of the EEPROM memory for an optional program call.
  • the basic composition of this data consisting of PI code, AF codes and PS code, corresponds to the configuration in the working memory 9.
  • the memory elements 9, 10, 11 shown as separate components together with the microprocessor 8a form the microcomputer 8. If all elements are integrated together on one chip, the unit is referred to as a one-chip microcomputer.
  • the use of such highly integrated components enables very inexpensive and compact device designs.
  • it is disadvantageous that due to the technological structure of the integrated circuit, only limited storage capacities can be realized. This disadvantage is particularly noticeable when alternative frequencies are stored in the program memory levels 11a-11d.
  • the data stored in the working memory 9 for a currently received program are transmitted by a microprocessor 8a to one of the memory levels 11a-11d upon a key command.
  • the program data in the working memory 9 include, in addition to the PI code with a word length of 2 bytes, a series of data of alternative frequencies each with 1 byte (8 bit) word length and the PS code with a word length of 8 bytes. This corresponds to the data format with which the data transmitted via wave propagation in the RDS signal are supplied from the RDS decoder 7 to the microprocessor 8a.
  • the 8-bit-wide frequency code is converted by the microprocessor 8a into a bit vector marked by 1-bit during the transfer from the working memory 9 to the program memory 11.
  • the 8-bit long AF codes identify channel numbers in the 100 kHz grid of the FM frequency range.
  • the following definition applies:
  • the first alternative frequency (out of a total of 26 possible) stored has, for example, the binary code 10001111, which means that the frequency in the 153rd channel of the 100 kHz channel grid is between 87.5 and 108 MH, ie, a frequency of 102, Corresponds to 8 MHz.
  • the 153rd bit is activated in the AF memory area of the program memory 11a, ie, because the cells of the EEPROM memory have a high potential in the erased state, the 153rd bit is set to logic 0.
  • the remaining 207 bits remain at logical 1. This means that when the bit sequence is read out later in series, the 153rd channel can be determined again and the frequency of 102.8 MHz can be determined.
  • the AF codes are converted back into an 8-bit wide frequency code by the microprocessor 8a during the transfer into the main memory 9. This ensures that the data structure matches the AF data that also arrives in the RDS signal via wave propagation. Since the field strength available on site is immediately checked during the transmission of the AFs into the working memory 9 by briefly tuning the tuner 1 to the respective transmitter, only a limited selection of alternative frequencies reaches the working memory 9 from the program memory 11 the storage capacity in the working memory 9 reduced to 26 possible AFs is not disadvantageously noticeable compared to the storage volume of a maximum of 208 AFs offered in the program storage levels 11a-11d.
  • the invention described above makes it possible to build up "unlimited lists" of alternative frequencies in the individual program memory levels, since all frequencies in the frequency range between 87.5 and 108 MHz can be stored in a given channel grid of 100 kHz.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

Die im RDS-Datenstrom enthaltenen alternativen Frequenzen werden durch 8 Bit breite AF-Codes gekennzeichnet. Um bei begrenzter Speicherkapazität der Programmspeicher in einem RDS-Rundfunkempfänger, insbesondere in einem RDS-Autoradio, sämtliche möglichen alternativen Frequenzen erfassen zu können, werden die 8 Bit breiten AF-Codes bei der Übertragung vom Arbeits- in den jeweiligen Programmspeicher so umcodiert, daß zum Abspeichern der jeweiligen alternativen Frequenz aufgrund des im UKW-Frequenzbereich vorgegebenen Kanalrasters nur 1 Bit benötigt wird. <IMAGE>

Description

  • Die Erfindung betrifft einen RDS-Rundfunkempfänger, der zum spontanen Abruf verschiedener Programme einen Programmspeicher besitzt, in dessen einzelnen, jeweils einem speziellen Programm zugeordneten Speicherebenen nicht nur eine Mutterfrequenz, sondern auch eine Vielzahl alternativer Frequenzen abgelegt sind.
  • In der Patentanmeldung P 39 20 220.8 der Anmelderin ist ein RDS-Rundfunkempfänger, insbesondere ein RDS-Autoradio, offenbart, bei dem der Bestand an alternativen Frequenzen im Programmspeicher empirisch erweitert wird, sobald bei einer betriebs- oder routinemäßigen Abstimmung des Empfängers neue RDS-Senderfrequenzen als empfangswürdig erkannt werden. Auf diese Weise beinhaltet der Programmspeicher eines RDS-Autoradios im Laufe der Zeit sämtliche im Aktionsbereich des Kraftfahrzeuges als empfangswürdig erkannte alternative Frequenzen der verschiedenen Programme, so daß bei einem spontanen Programmaufruf fern vom Heimatort sofort für die Abstimmung des Empfängers alternative Frequenzen aus dem aktuellen Empfangsgebiet zur Verfügung stehen, ohne daß zunächst ein Suchlauf gestartet oder die Auswertung der per Wellenausbreitung übertragenen alternativer Frequenzen abgewartet werden muß.
  • Dieser Vorteil des schnellen Zugriffs auf ein neues Programm ist jedoch in Gebieten außerhalb des gewohnten Aktionsbereiches des Kraftfahrzeuges mit der vorstehend beschriebenen Speicherbelegung nicht gegeben. Soll auch in zuvor nicht befahrenen Gebieten ein spontaner Programmabruf möglich sein, so ist es notwendig, sämtliche zu einem bestimmten Programm vorhandenen alternativen Frequenzen im Programmspeicher abzulegen. Im Ausland (z.B. in Finnland) gibt es jedoch z. T. Programmketten, die aus bis zu 52 Sendestationen bestehen. Hinzu kommt, daß durch den neu geplanten bzw. in einzelnen Ländern schon realisierten RDS-Service "EON" (Enhanced Other Networks) eine große Zahl alternativer Frequenzen aus anderen Programmen angeboten werden. Über EON erhält der Empfänger fortlaufend Informationen über empfangsrelevante Daten anderer Programme des jeweils aktuellen Empfangsgebietes, dabei auch über deren alternative Frequenzen. So ist es z.B. auch möglich, beim Empfang eines Programms ohne Verkehrsmeldungen automatisch auf eine aktuelle Verkehrsnachricht in einem anderen Programm umzuschalten.
  • Wird zur Steuerung und Signalverarbeitung im Empfangsgerät ein Mikroprozessor mit integrierten Speichern (sog. Ein-Chip-Microcomputer) verwendet, so bereitet die Abspeicherung einer hohen Zahl alternativer Frequenzen wegen der begrenzten Speicherkapazität solcher Bausteine Schwierigkeiten.
  • Es ist deshalb Aufgabe der vorliegenden Erfindung, ein RDS-Empfangsgerät, insbesondere ein RDS-Autoradio, derart auszubilden, daß trotz einer begrenzten Speicherkapazität sämtliche möglichen alternativen Frequenzen im Empfangsfrequenzbereich zwischen 87,5 und 108 MHz (d.h. bei einem Kanalraster von 100 kHz: max. 205 AFs) in den einzelnen, jeweils einem speziellen Programm zugeordneten Ebenen des Programmspeichers abgelegt werden können.
  • Diese Aufgabe wird bei dem im Oberbegriff des Anspruchs 1 definierten Empfangsgerät durch die im kennzeichnenden Teil des Anspruchs 1 genannten Merkmale gelöst. Eine weitere Ausgestaltung der Erfindung ist im Unteranspruch 2 offenbart.
  • Anhand der zugehörigen Zeichnungen wird die Erfindung nachfolgend näher erläutert.
  • Es zeigen:
  • Fig. 1
    das Blockschaltbild für ein Ausführungsbeispiel des erfindungsgemäßen RDS-Rundfunkempfängers
    Fig. 2
    Struktur der im Arbeitsspeicher und im Programmspeicher abgelegten Daten
  • Das in Fig. 1 dargestellte RDS-Rundfunkgerät wandelt in bekannter Weise die von der Antenne empfangenen HF-Signale im Synthesizer-Tuner 1 in eine Zwischenfrequenz, die im ZF-Verstärker 2 selektiv verstärkt und demoduliert wird. Das demodulierte Multiplexsignal wird im Stereodecoder 3 in die beiden NF-Signale für den linken und rechten Stereokanal aufgeschlüsselt und diese werden nach Verstärkung im Stereoverstärker 4 den beiden Lautsprechern zugeführt.
  • Zur Beurteilung der Empfangsqualität wird dem ZF-Verstärker 2 nach Maßgabe des ZF-Signalpegels eine Meßgröße zur Feststellung der Signalfeldstärke entnommen und über den Pegeldetektor 5 als Steuersignal dem Mikroprozessor 8a zugeleitet. Gleichzeitig wird aus dem Multiplexsignal über den Mehrwegedetektor 6 ein Steuersignal für den Mikroprozessor 8a zur Erkennung von Mehrwegeempfangsstörungen gewonnen.
  • Zur Demodulation und Decodierung des RDS-Datensignals wird das Multiplexsignal außerdem in den RDS-Demodulator 7 eingespeist. Dieser demoduliert nach einer 57 kHz-Bandpaßfilterung das in Quadratur amplitudenmodulierte RDS-Signal und liefert die nach einer Biphase- und Differential-Decodierung gewonnenen digitalen Daten an den Mikroprozessor 8a, der die RDS-Datenauswertung übernimmt.
  • Der Mikroprozessor 8a erzeugt das Abstimmsignal für den Synthesizer-Tuner 1 und steuert das Display 13 an, mit dem u.a. die aus dem PS-Code des RDS-Datensignals gewonnenen Sendernamen alphanumerisch angezeigt werden. Seine Steuerbefehle für sämtliche manuellen Bedienfunktionen erhält der Mikroprozessor 8a vom Bedienteil 12.
  • Das Betriebsprogramm des Mikroprozessor 8a ist im ROM-Speicher 10 fixiert. Der RAM-Speicher 9 dient als Arbeitsspeicher, der für das aktuell empfangene Programm den PI-Code, Daten der verfügbaren alternativen Frequenzen und den PS-Code zur Anzeige des Sendernamens enthält. In den einzelnen Speicherebenen 11a-11d des EEPROM-Speichers sind für einen wahlweisen Programmabruf die Daten unterschiedlicher Programme abgelegt. Die grundsätzliche Zusammensetzung dieser Daten, bestehend aus PI-Code, AF-Codes und PS-Code, stimmt mit der Konfiguration im Arbeitsspeicher 9 überein.
  • Die als separate Bausteine dargestellten Speicherelemente 9, 10, 11 zusammen mit dem Mikroprozessor 8a bilden den Mikrocomputer 8. Sofern alle Elemente gemeinsam auf einem Chip integriert sind, bezeichnet man die Einheit als Ein-Chip-Mikrocomputer. Der Einsatz solcher hochintegrierten Bauelemente ermöglicht sehr preiswerte und kompakte Gerätekonstruktionen. Nachteilig ist jedoch, daß aufgrund des technologischen Aufbaus der integrierten Schaltung nur begrenzte Speicherkapazitäten realisiert werden können. Dieser Nachteil macht sich besonders bei der Abspeicherung alternativer Frequenzen in den Programmspeicherebenen 11a-11d bemerkbar.
  • Zur Programmspeicherbelegung werden die im Arbeitsspeicher 9 zu einem aktuell empfangenen Programm gespeicherten Daten auf Tastenbefehl hin vom Mikroprozessor 8a in eine der Speicherebenen 11a-11d übertragen. Wie das Strukturschema in Fig. 2 zeigt, gehören zu den Programmdaten im Arbeitsspeicher 9 neben dem PI-Code mit einer Wortlänge von 2 Bytes eine Reihe von Daten alternativer Frequenzen mit je 1 Byte (8 Bit) Wortlänge und der PS-Code mit einer Wortlänge von 8 Bytes. Dies entspricht dem Datenformat, mit dem die über Wellenausbreitung im RDS-Signal übertragenen Daten vom RDS-Decoder 7 dem Mikroprozessor 8a geliefert werden. Da die Listen der alternativen Freqenzen in den jeweiligen Programmspeicherebenen fortlaufend ergänzt werden sollen, sobald einem bestimmten PI-Code zugeordnete, noch nicht abgespeicherte alternative Frequenzen über das RDS-Datensignal eines aktuell empfangenen Programms oder über den EON-Service angeboten werden, wäre die Kapazität des Programmspeichers 11 bei Übertragung der vollen Wortlänge von 8 Bits für die AF-Codes sehr schnell erschöpft. Bei dem Beispiel in Fig. 2 wird im Arbeitsspeicher 9, ebenso wie in jeder Speicherebene 11a-11d des Programmspeichers eine Speicherkapazität für alternative Frequenzen von 26 Bytes bzw. 208 Bits angenommen. Um in jeder der Programmspeicherebenen 11a-11d statt 26 insgesamt 208 alternative Frequenzen ablegen zu können, wird bei der Übertragung vom Arbeitsspeicher 9 in den Programmspeicher 11 der 8 Bit breite Frequenz-Code vom Mikroprozessor 8a in einen durch 1 Bit markierten Bitvektor gewandelt.
  • Wie aus der EH 50 067 zur Spezifikation des Radio-Daten-Systems bekannt ist, kennzeichnen die 8 Bit langen AF-Codes Kanalnummern im 100 kHz-Raster des UKW-Frequenzbereiches. Es gilt folgende Festlegung:
    Figure imgb0001
  • Fig. 2 beschreibt vereinfachend anhand einer einzigen im Arbeitsspeicher 9 abgelegten alternativen Frequenz den Umcodierungsvorgang bei der Übertragung des Frequenzcodes in den Programmspeicher 11a. Die als erste (von insgesamt 26 möglichen) gespeicherte alternative Frequenz trägt z.B. den Binärcode 10001111, der besagt, daß die Frequenz im 153. Kanal des 100 kHz breiten Kanalrasters zwischen 87,5 und 108 MH liegt, d.h. also, einer Frequenz von 102,8 MHz entspricht. Nach der Umcodierung durch den Mikroprozessor 8a wird im AF-Speicherbereich des Programmspeichers 11a nur das 153. Bit aktiviert, d.h., da die Zellen des EEPROM-Speichers im gelöschten Zustand High-Potential aufweisen, wird das 153. Bit auf logisch 0 gesetzt. Die restlichen 207 Bits verbleiben auf logisch 1. Dadurch kann beim späteren seriellen Auslesen der Bitfolge wieder der 153. Kanal ermittelt und die Frequenz von 102,8 MHz bestimmt werden.
  • Beim spontanen Abruf eines bestimmten Programms aus einer der Programmspeicherebenen 11a-11d werden die AF-Codes bei der Übertragung in den Arbeitsspeicher 9 vom Mikroprozessor 8a wieder in einen 8 Bit breiten Frequenzcode zurückgewandelt. Dadurch ist die Übereinstimmung der Datenstruktur mit den auch über Wellenausbreitung im RDS-Signal eintreffenden AF-Daten gewährleistet. Da bei der Übertragung der AFs in den Arbeitsspeicher 9 sofort die vor Ort zur Verfügung stehende Feldstärke durch kurzzeitiges Abstimmen des Tuners 1 auf den jeweiligen Sender geprüft wird, gelangt nur eine begrenzte Auswahl alternativer Frequenzen aus dem Programmspeicher 11 in den Arbeitsspeicher 9. Dadurch macht sich die auf 26 mögliche AFs reduzierte Speicherkapazität im Arbeitsspeicher 9 gegenüber dem in den Programmspeicherebenen 11a-11d gebotenen Speichervolumen von maximal 208 AFs nicht nachteilig bemerkbar.
  • Durch die vorstehend beschriebene Erfindung ist es möglich, in den einzelnen Programmspeicherebenen "unbegrenzte Listen" alternativer Frequenzen aufzubauen, da bei einem vorgegebenen Kanalraster von 100 kHz sämtliche im Frequenzbereich zwischen 87,5 und 108 MHz liegenden Frequenzen abgespeichert werden können.

Claims (2)

  1. RDS-Rundfunkempfänger, insbesondere RDS-Autoradio, mit einer Einrichtung zum Decodieren und Abspeichern der im RDS-Datensignal enthaltenen alternativen Frequenzen,
    dadurch gekennzeichnet, daß die mit einer Wortlänge von jeweils 8 Bit übertragenen alternativen Frequenzen unter Zugrundelegung des im UKW-Frequenzbereich vorgegebenen Kanalrasters von 100 kHz in Form eines Bitvektors mit jeweils 1 Bit im Programmspeicher (11) abgelegt werden und daß die Umcodierung der vom RDS-Demodulator (7) gelieferten Frequenzdaten beim Übertragen aus dem Arbeitsspeicher (9) in eine der Programmspeicherebenen (11a-11d) durch den Mikroprozessor (8a) erfolgt.
  2. RDS-Rundfunkempfänger nach Anspruch 1,
    dadurch gekennzeichnet, daß die zur Abstimmung des Synthesizer-Tuners (1) dem Programmspeicher (11) entnommenen Daten alternativer Frequenzen bei der Übertragung in den Arbeitsspeicher (9) vom Mikroprozessor (8a) in einen 8 Bit breiten AF-Code rückgewandelt werden.
EP91117802A 1990-12-04 1991-10-18 RDS-Rundfunkempfänger mit erweiterter Speicherkapazität zur Erfassung alternativer Frequenzen Expired - Lifetime EP0489247B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4038597 1990-12-04
DE4038597A DE4038597A1 (de) 1990-12-04 1990-12-04 Rds-rundfunkempfaenger mit erweiterter speicherkapazitaet zur erfassung alternativer frequenzen

Publications (3)

Publication Number Publication Date
EP0489247A2 true EP0489247A2 (de) 1992-06-10
EP0489247A3 EP0489247A3 (en) 1993-03-03
EP0489247B1 EP0489247B1 (de) 1997-05-02

Family

ID=6419539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91117802A Expired - Lifetime EP0489247B1 (de) 1990-12-04 1991-10-18 RDS-Rundfunkempfänger mit erweiterter Speicherkapazität zur Erfassung alternativer Frequenzen

Country Status (2)

Country Link
EP (1) EP0489247B1 (de)
DE (2) DE4038597A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4239759C2 (de) * 1992-11-26 2001-08-16 Atmel Germany Gmbh Verfahren zum Umschalten auf eine empfangswürdige Alternativfrequenz eines RDS-Empfängers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3506161A1 (de) * 1985-02-22 1986-08-28 Blaupunkt-Werke Gmbh, 3200 Hildesheim Verfahren zur identifikation von rundfunksendern
DE3917236C1 (de) * 1989-05-26 1990-08-02 Blaupunkt-Werke Gmbh, 3200 Hildesheim, De

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3835870C1 (de) * 1988-10-21 1990-01-18 Blaupunkt-Werke Gmbh, 3200 Hildesheim, De
DE3920220A1 (de) * 1989-06-21 1991-01-03 Grundig Emv Rds-rundfunkempfaenger mit empirisch wachsendem speicherinhalt seiner programmspeicher

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3506161A1 (de) * 1985-02-22 1986-08-28 Blaupunkt-Werke Gmbh, 3200 Hildesheim Verfahren zur identifikation von rundfunksendern
DE3917236C1 (de) * 1989-05-26 1990-08-02 Blaupunkt-Werke Gmbh, 3200 Hildesheim, De

Also Published As

Publication number Publication date
DE4038597A1 (de) 1992-06-11
EP0489247B1 (de) 1997-05-02
EP0489247A3 (en) 1993-03-03
DE59108692D1 (de) 1997-06-05
DE4038597C2 (de) 1992-11-12

Similar Documents

Publication Publication Date Title
DE69114238T2 (de) Verfahren zur Auswahl der Empfangsfrequenz für einen RDS-Empfänger.
DE69124764T2 (de) Automatische Rundfunkwellen-Abstimmungsvorrichtung für RDS-Empfänger
EP0584839B1 (de) Verfahren zum empfangsseitigen Auswerten zusätzlicher Informationen innerhalb eines Rundfunksignals
DE4017756A1 (de) Rds-rundfunkempfaenger mit einer einrichtung zum aufsuchen aktuell empfangswuerdiger alternativer frequenzen
EP0415132B1 (de) RDS-Rundfunkempfänger mit einer Einrichtung zum automatischen Wechsel auf ein alternatives Regionalprogramm
EP0233967B1 (de) Verfahren zum Übertragen einer digitalen Information sowie zum Abstimmen eines mobilen Rundfunkempfängers mit Hilfe dieser übertragenen digitalen Information
EP0403744B1 (de) RDS-Rundfunkempfänger mit empirisch wachsendem Speicherinhalt seiner Programmspeicher
EP0579955B1 (de) Abstimmung eines Empfängers in Abhängigkeit der Sprache des Senders
DE3942339C2 (de)
EP0489247B1 (de) RDS-Rundfunkempfänger mit erweiterter Speicherkapazität zur Erfassung alternativer Frequenzen
DE4005413C2 (de) RDS-Rundfunkempfänger mit einer Einrichtung zum beschleunigten Auffinden alternativer Frequenzen
DE3832454C2 (de)
DE3825886C2 (de) Radiodatensystem-Rundfunkempfänger
DE69232829T2 (de) Empfänger für ein Radio-Daten-System
EP0975108A2 (de) Verfahren und Vorrichtung zum Abspeichern von Sendernamen von Rundfunksendern mit Radiodatenübertragungen
DE4102912C2 (de) Voreingestellter Rundfunkdatensystem(RDS)-Empfänger
DE19746960B4 (de) Verfahren zur Speicherung von Daten von Rundfunksendefrequenzen in einem Datenspeicher eines Rundfunkempfängers
DE19531527C2 (de) Verfahren und Schaltungsanordnung zum Programmwechsel bei kurzzeitigem Signalausfall
DE4428314A1 (de) RDS-Empfänger mit Kanalvoreinstellfunktion
DE19927243B4 (de) Empfänger
EP0294511B1 (de) Verfahren zum Übertragen einer digitalen Information
DE19927242A1 (de) Empfänger
DD267860A5 (de) Verfahren zum empfangsseitigen auswerten von innerhalb eines rundfunksingnals uebertragenen digitalen informationen
DE19531367A1 (de) RDS-Empfänger
DE102014201602A1 (de) System und Verfahren zur Erkennung geographischer Regionen für mobile Empfänger und Verfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19930508

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GRUNDIG E.M.V. ELEKTRO-MECHANISCHE VERSUCHSANSTALT

17Q First examination report despatched

Effective date: 19950904

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970508

REF Corresponds to:

Ref document number: 59108692

Country of ref document: DE

Date of ref document: 19970605

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101020

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101013

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101013

Year of fee payment: 20

Ref country code: IT

Payment date: 20101023

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59108692

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59108692

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20111017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111019