EP0478479A1 - Procédé permettant d'améliorer le comportement à la microrétassure des alliages de magnésium - Google Patents

Procédé permettant d'améliorer le comportement à la microrétassure des alliages de magnésium Download PDF

Info

Publication number
EP0478479A1
EP0478479A1 EP91420340A EP91420340A EP0478479A1 EP 0478479 A1 EP0478479 A1 EP 0478479A1 EP 91420340 A EP91420340 A EP 91420340A EP 91420340 A EP91420340 A EP 91420340A EP 0478479 A1 EP0478479 A1 EP 0478479A1
Authority
EP
European Patent Office
Prior art keywords
strontium
manganese
zinc
magnesium alloys
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91420340A
Other languages
German (de)
English (en)
Other versions
EP0478479B1 (fr
Inventor
Jean Charbonnier
Gilles Nussbaum
Gilles Regazzoni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferropem SAS
Original Assignee
Pechiney Electrometallurgie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Electrometallurgie SAS filed Critical Pechiney Electrometallurgie SAS
Publication of EP0478479A1 publication Critical patent/EP0478479A1/fr
Application granted granted Critical
Publication of EP0478479B1 publication Critical patent/EP0478479B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent

Definitions

  • the present invention relates to a method making it possible to improve the microretassuring behavior of magnesium alloys.
  • Said alloys have good mechanical characteristics and excellent resistance to corrosion.
  • they when they are shaped from liquid metal by gravity molding, either in a sand mold or in waterproof mold or by pressure molding, they generally have micro-shrinkage in their mass. These shrinkages are due to the fact that during solidification, a contraction of the metal occurs which can reach several% by volume; if no supply of liquid metal is made in the contraction zone, then a vacuum is produced which results in the formation of a cavity or shrinkage.
  • the solidification interval of the metal is very large, as in the case of the alloys mentioned above, a relatively large pasty zone is formed in the molded part in which the contraction occurs gradually. The liquid metal is thus caused to travel between the solid dendrites over a long distance and cannot fill the voids: this results in the formation of microcavities distributed between the grains throughout the pasty zone; this is called micro-backwashing.
  • microbreaks tend to degrade the mechanical characteristics of the parts which contain them.
  • they form open porosities which make them unusable in applications where they are subjected to pressure.
  • the invention consists in adding to the magnesium alloy an element from the family of alkaline earths: strontium.
  • the amount of strontium added is between 0.01 and 2% by weight of the alloy because below 0.01%, the effect is negligible and above 2%, the addition turns out to be harmful because there is formation of a large quantity of intermetallic compounds which weaken the metal.
  • the purpose of this example is to show the influence of strontium on the mechanical characteristics of the AZ91 alloy. Test pieces without micro-backwashes, in the T4 and T6 state and containing 0 and 0.3% of strontium were subjected to tensile tests at room temperature and the values of the elastic limit R0.2, of the resistance were measured. at rupture Rm and elongation A. The results are shown in the following table.
  • T4 and T6 correspond to heat treatments for dissolving followed in the first case of a natural aging treatment and in the second of an artificial aging treatment.
  • strontium does not alter the mechanical tensile properties and even improves the plastic limit of the alloy in the T4 state.
  • the presence of strontium guaranteeing the absence of microretassures it is certain that the values obtained are representative of the properties of the whole part, which is more difficult to obtain in the absence of strontium.
  • the purpose of this example is to show the influence of strontium on corrosion resistance.
  • This invention finds its application, in particular in the manufacture of gearbox casings and structural elements of portable computers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Forging (AREA)
  • Domestic Plumbing Installations (AREA)
  • Mechanical Operated Clutches (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

L'invention est relative à un procédé permettant d'améliorer le comportement à la microretassure des alliages de magnésium. Ce procédé consiste à ajouter du strontium aux dits alliages avant moulage. Il s'applique plus particulièrement aux alliages de magnésium contenant comme éléments principaux d'addition et en poids 4 à 10% d'aluminium et soit jusqu'à 3% de zinc et/ou jusqu'à 1% de manganèse, soit jusqu'à 1% de silicium et/ou jusqu'à 1% de manganèse et qui sont utilisés notamment pour la fabrication de carters de boîtes de vitesse et d'éléments de structure d'ordinateurs portables.

Description

  • La présente invention est relative à un procédé permettant d'améliorer le comportement à la microretassure des alliages de magnésium.
  • On entend ici par alliages de magnésium, tous ceux qui contiennent entre 4 et 10 % en poids d'aluminium et,
    • soit jusqu'à 3 % de zinc et/ou jusqu'à 1 % de manganèse,
    • soit jusqu'à 1% de silicium et/ou jusqu'à 1 % de manganèse, solde magnésium.
  • Plus particulièrement, on peut citer les alliages qui selon les normes de l'ASTM répondent aux désignations suivantes:
    • AZ63 ( alliage contenant en poids 6,0 % d'aluminium, 3,0 % de zinc, au moins 0,15 % de manganèse )
    • AZ80 ( alliage contenant en poids 8,5 % d'aluminium, 0,5 % de zinc, au moins 0,12% de manganèse )
    • AZ91 ( alliage contenant en poids 8,7 % d'aluminium, 0,7 % de zinc, au moins 0,13 % de manganèse )
    • AZ92 ( alliage contenant en poids 9,0 % d'aluminium, 2,0 % de zinc, au moins 0,1 % de manganèse )
    • AM60 ( alliage contenant en poids 6,0 % d'aluminium, 0,13 % de manganèse )
    • AM100 ( alliage contenant en poids 10,0 % d'aluminium, 0,1 % de manganèse )
    • AS41 ( alliage contenant en poids 4,2 % d'aluminium, 0,35 % de manganèse )
  • Les dits alliages présentent de bonnes caractéristiques mécaniques et une excellente résistance à la corrosion. Cependant, quand ils sont mis en forme à partir de métal liquide par moulage par gravité, soit en moule sable soit en moule étanche ou par moulage sous pression, ils présentent généralement dans leur masse des microretassures. Ces retassures sont dues au fait que pendant la solidification, il se produit une contraction du métal qui peut atteindre plusieurs % en volume ; si aucun apport de métal liquide n'est réalisé dans la zone de contraction, il se produit alors un vide qui se traduit par la formation d'une cavité ou retassure.
    Lorsque l'intervalle de solidification du métal est très grand, comme c'est le cas des alliages mentionnés ci-dessus, il se forme dans la pièce moulée une zone pâteuse relativement étendue dans laquelle la contraction se produit progressivement. Le métal liquide est ainsi amené à cheminer entre les dendrites solides sur une grande distance et ne peut combler les vides : il en résulte la formation de microcavités réparties entre les grains dans toute la zone pâteuse ; c'est ce qu'on appelle des microretassures.
  • Or, les microretassures tendent à dégrader les caractéristiques mécaniques des pièces qui en contiennent. De plus, dans le cas de pièces à parois minces, elles forment des porosités ouvertes qui les rendent inutilisables dans les applications où elles sont soumises à une pression.
  • Le problème se pose donc, lorsqu'on veut obtenir à partir de ces alliages des pièces moulées ayant de bonnes caractéristiques mécaniques ou tout au moins étanches, d'empêcher la formation de ces microretassures sans pour autant nuire à d'autres propriétés telles que la résistance à la corrosion, par exemple.
  • Certes, ce problème n'est pas nouveau et l'homme de l'art de la fonderie des alliages de magnésium a été amené à rechercher des solutions visant à le résoudre.
  • C'est ainsi, par exemple, qu'il a trouvé que l'ajout de calcium permettait de réduire la présence de microporosités dans les alliages de magnésium énumérés plus haut. On peut citer, dans ce domaine, le brevet britannique N° 847.992 dans lequel il est dit page 2, lignes 95-99 que les alliages de magnésium ayant une forte teneur en aluminium et en zinc ont une tendance à former des microretassures et que la présence de calcium diminue fortement cette tendance. Toutefois, on peut noter que les quantités mises en oeuvre sont, suivant la revendication 1, comprises entre 0,5 % et 3 %, ce qui est relativement élevé et conduit à certaines difficultés de fabrication telles que, en particulier le collage du métal et/ou des pièces à l'outillage.
  • C'est pourquoi la demanderesse a cherché à trouver une autre solution présentant moins d'inconvénients. Cela l'a amenée à mettre au point un procédé permettant d'améliorer le comportement à la microretassure lors de leur mise en forme par moulage des alliages de magnésium contenant comme éléments principaux d'addition 4 à 10 % en poids d' aluminium et soit jusqu'à 3 % de zinc et/ou jusqu'à 1 % de manganèse, soit jusqu'à 1 % de silicium et/ou jusqu'à 1 % de manganèse caractérisé en ce que l'on ajoute du strontium aux dits alliages avant moulage.
  • Ainsi, l'invention consiste à ajouter à l'alliage de magnésium un élément de la famille des alcalino-terreux : le strontium.
  • Certes, la présence de strontium dans les alliages de magnésium a déjà été signalée par ailleurs ; on peut citer, à ce sujet, les brevets britaniques 687.934, 687.935 et 1.354.363. Mais, ces documents concernent des alliages contenant du lithium et du zirconium et/ ou du cadmium et de l'argent. Quant au strontium , il figure parmi d'autres éléments d'alliage tels que le zinc, le cadmium, le thorium, le mercure, l'argent, le baryum, le calcium, le plomb et aucune fonction particulière ne lui est attribuée. En fait, la demanderesse a constaté que l'ajout de strontium dans les alliages de magnésium mentionnés plus haut avait pour effet :
    • de concentrer la microretassure dans une zone relativement restreinte de la pièce et en tout cas proche de l' attaque du moule c'est à dire de la partie située au voisinage de l'alimentation, ce qui permet en masselottant cette zone d'obtenir une pièce saine;
    • de réduire de manière très sensible l'écart entre la densité minimale et la densité de l'alliage aux plus fortes teneurs en strontium;
    • d'améliorer ainsi les caractéristiques mécaniques des pièces obtenues sans nuire à leur tenue à la corrosion.
  • De préférence, la quantité de strontium ajoutée est comprise entre 0,01 et 2% en poids de l'alliage car en dessous de 0.01%, l'effet est négligeable et au dessus de 2%, l'ajout s'avère nocif car il y a formation d'une grande quantité de composés intermétalliques qui fragilisent le métal.
  • Cet ajout est fait, de préférence, sous forme élémentaire suivant les techniques connues de l'homme de l'art.
  • Les exemples suivants permettront de mieux comprendre l'invention.
  • Exemple 1.-
  • Il a pour but de montrer l'influence respective des ajouts de strontium et de calcium sur la densité des pièces. Des éprouvettes parallélipipédiques (15x30x250 mm³) sont coulées dans des conditions voisines dans des moules en sable à la température de 700°C.
    Après démoulage, les éprouvettes sont radiographiées, la densité est mesurée et on étudie l'évolution de la densité de l'alliage en fonction de la distance par rapport à l'attaque de coulée.
    Des alliages AZ 91 contenant 0; 0,018; 1 et 2% de strontium d'une part et 0,018; 1 et 2 % de calcium d'autre part ont été soumis à cette méthode.
    Les résultats figurent sur les schémas 1, 2 et 3 qui permettent de comparer pour chacune des teneurs l'influence à la fois du calcium et du strontium.
    On constate que sur les éprouvettes contenant du strontium:
    • la densité à une distance de 150 mm de l'attaque est pratiquement égale à la densité théorique de l'alliage;
    • le nombre de microporosités est d'autant plus réduit que la teneur en strontium est élevée;
    • les défauts sont concentrés dans une zone peu étendue alors que le reste de l'échantillon est plus sain que l'AZ91. Dans le cas d'une installation industrielle, on alimentera la zone de défauts avec une masselotte.
  • En ce qui concerne le calcium, il exerce également un effet mais avec une ampleur nettement moins grande que le strontium.
  • Exemple 2.-
  • Cet exemple a pour but de montrer l'influence du strontium sur les caractéristiques mécaniques de l'alliage AZ91. Des éprouvettes sans microretassures, à l'état T4 et T6 et contenant 0 et 0,3% de strontium ont été soumises à des essais de traction à température ambiante et on a mesuré les valeurs de la limite élastique R0,2, de la résistance à la rupture Rm et de l'allongement A. Les résultats figurent dans le tableau suivant.
  • Rappelons que les états T4 et T6 correspondent à des traitements thermiques de mise en solution suivis dans le premier cas d'un traitement de vieillissement naturel et dans le deuxième d'un traitement de vieillissement artificiel.
    Figure imgb0001
  • On constate que l'ajout de strontium n'altère pas les propriétés mécaniques de traction et même améliore la limite plastique de l'alliage à l'état T4.
    De plus, la présence de strontium garantissant l'absence de microretassures, on est certain que les valeurs obtenues sont représentatives des propriétés de toute la pièce, ce qui est plus difficile à obtenir en l'absence de strontium.
  • Exemple 3.-
  • Cet exemple a pour but de montrer l'influence du strontium sur la résistance à la corrosion.
  • Pour celà, on a soumis des échantillons d'AZ91 contenant 0, 0,018 et 0,3% de strontium prélevés au centre des éprouvettes moulées et traités T4 ou T6 à l'action d'une solution aqueuse contenant 56 en poids de chlorure de sodium pendant 3jours puis, on a mesuré la perte de masse du dit échantillon.
    Les résultats figurent dans le tableau suivant:
    Figure imgb0002
  • Ces résultats montrent que l'ajout de strontium conduit à une réduction importante de la perte de masse de l'échantillon, notamment pour des teneurs de 0,3%.
  • Ainsi, l'absence de microretassures diminue de façon sensible la surface spécifique des échantillons et, par conséquent, améliore la résistance à la corrosion.
  • Cette invention trouve son application, notamment dans la fabrication de carters de boîtes de vitesse et d'éléments de structure d'ordinateurs portables.

Claims (3)

1.-Procédé permettant d'améliorer le comportement à la microretassure lors de leur mise en forme par moulage des alliages de magnésium contenant comme éléments principaux d'addition et en poids 4 à 10 % d'aluminium et soit jusqu'à 3 % de zinc et/ou jusqu'à 1 % de manganèse, soit jusqu'à 1 % de silicium et/ou jusqu'à 1 % de manganèse caractérisé en ce que l'on ajoute du strontium aux dits alliages avant moulage.
2.-Procédé selon la revendication 1 caractérisé en ce que la quantité de strontium ajoutée est comprise entre 0,01% et 2% en poids.
3.-Procédé selon la revendication 1 caractérisé en ce que le strontium est ajouté sous forme élémentaire
EP91420340A 1990-09-28 1991-09-26 Procédé permettant d'améliorer le comportement à la microrétassure des alliages de magnésium Expired - Lifetime EP0478479B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9012455 1990-09-28
FR9012455A FR2667328B1 (fr) 1990-09-28 1990-09-28 Procede permettant d'ameliorer le comportement a la microretassure des alliages de magnesium.

Publications (2)

Publication Number Publication Date
EP0478479A1 true EP0478479A1 (fr) 1992-04-01
EP0478479B1 EP0478479B1 (fr) 1995-05-17

Family

ID=9401070

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91420340A Expired - Lifetime EP0478479B1 (fr) 1990-09-28 1991-09-26 Procédé permettant d'améliorer le comportement à la microrétassure des alliages de magnésium

Country Status (9)

Country Link
US (1) US5223215A (fr)
EP (1) EP0478479B1 (fr)
JP (1) JP2559306B2 (fr)
KR (1) KR100225180B1 (fr)
CA (1) CA2052372C (fr)
DE (1) DE69109788T2 (fr)
ES (1) ES2071961T3 (fr)
FR (1) FR2667328B1 (fr)
NO (1) NO179290C (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665299A1 (fr) * 1993-12-17 1995-08-02 Mazda Motor Corporation Matériau de moulage en alliage de magnésium pour traitement plastique, pièces fabriquées avec cet alliage et procédé de fabrication

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613999A (en) * 1992-09-11 1997-03-25 Nippon Kinzoku Co., Ltd. Method for producing magnesium
US5693158A (en) * 1993-02-12 1997-12-02 Mazda Motor Corporation Magnesium light alloy product and method of producing the same
IL125681A (en) * 1998-08-06 2001-06-14 Dead Sea Magnesium Ltd Magnesium alloy for high temperature applications
US6808679B2 (en) * 1999-12-15 2004-10-26 Noranda, Inc. Magnesium-based casting alloys having improved elevated temperature performance, oxidation-resistant magnesium alloy melts, magnesium-based alloy castings prepared therefrom and methods for preparing same
US6322644B1 (en) * 1999-12-15 2001-11-27 Norands, Inc. Magnesium-based casting alloys having improved elevated temperature performance
AU753538B2 (en) 2000-02-24 2002-10-24 Mitsubishi Aluminum Co., Ltd. Die casting magnesium alloy
US6342180B1 (en) 2000-06-05 2002-01-29 Noranda, Inc. Magnesium-based casting alloys having improved elevated temperature properties
JP3592659B2 (ja) * 2001-08-23 2004-11-24 株式会社日本製鋼所 耐食性に優れたマグネシウム合金およびマグネシウム合金部材
DE10251663A1 (de) * 2002-11-06 2004-05-19 Bayerische Motoren Werke Ag Magnesiumlegierung
CA2419010A1 (fr) * 2003-02-17 2004-08-17 Noranda Inc. Utilisation de strontium pour diminuer l'oxydation de magnesium fondu et methode d'ajout de strontium au magnesium
JP5249367B2 (ja) * 2003-06-19 2013-07-31 住友電気工業株式会社 マグネシウム基合金ねじ
CN1306052C (zh) * 2004-09-17 2007-03-21 中国科学院上海微系统与信息技术研究所 高耐蚀铸造镁铝合金及制备方法
DE102007061561A1 (de) 2007-12-18 2009-06-25 Magontec Gmbh Legierung umfassend Mg und Sr und hieraus gefertigte galvanische Opferanode
CN104745905A (zh) * 2013-12-30 2015-07-01 苏州昊卓新材料有限公司 一种高强度、高韧性压铸镁合金及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2221254A (en) * 1939-11-13 1940-11-12 Dow Chemical Co Magnesium base alloy
US2464918A (en) * 1945-03-22 1949-03-22 Magnesium Elektron Ltd Magnesium base alloys
FR1214787A (fr) * 1958-02-11 1960-04-12 Fuchs Otto Alliages de magnésium à résistance de fluage élevée contre une déformation permanente aux températures élevées

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1979452A (en) * 1933-03-25 1934-11-06 Kemet Lab Co Inc Magnesium alloy
US3119684A (en) * 1961-11-27 1964-01-28 Dow Chemical Co Article of magnesium-base alloy and method of making
US5041294A (en) * 1990-04-24 1991-08-20 Wm. Wrigley Jr. Company Sorbitol-modified flavor
US5143564A (en) * 1991-03-28 1992-09-01 Mcgill University Low porosity, fine grain sized strontium-treated magnesium alloy castings

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2221254A (en) * 1939-11-13 1940-11-12 Dow Chemical Co Magnesium base alloy
US2464918A (en) * 1945-03-22 1949-03-22 Magnesium Elektron Ltd Magnesium base alloys
FR1214787A (fr) * 1958-02-11 1960-04-12 Fuchs Otto Alliages de magnésium à résistance de fluage élevée contre une déformation permanente aux températures élevées

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665299A1 (fr) * 1993-12-17 1995-08-02 Mazda Motor Corporation Matériau de moulage en alliage de magnésium pour traitement plastique, pièces fabriquées avec cet alliage et procédé de fabrication
US6143097A (en) * 1993-12-17 2000-11-07 Mazda Motor Corporation Magnesium alloy cast material for plastic processing, magnesium alloy member using the same, and manufacturing method thereof

Also Published As

Publication number Publication date
DE69109788D1 (de) 1995-06-22
FR2667328A1 (fr) 1992-04-03
NO179290C (no) 1996-09-11
DE69109788T2 (de) 1995-09-21
FR2667328B1 (fr) 1992-11-06
ES2071961T3 (es) 1995-07-01
EP0478479B1 (fr) 1995-05-17
NO913693D0 (no) 1991-09-19
KR920006526A (ko) 1992-04-27
JP2559306B2 (ja) 1996-12-04
CA2052372C (fr) 1997-03-18
US5223215A (en) 1993-06-29
NO179290B (no) 1996-06-03
CA2052372A1 (fr) 1992-03-29
KR100225180B1 (ko) 1999-10-15
JPH0867928A (ja) 1996-03-12
NO913693L (no) 1992-03-30

Similar Documents

Publication Publication Date Title
EP0478479B1 (fr) Procédé permettant d'améliorer le comportement à la microrétassure des alliages de magnésium
EP1966402B1 (fr) Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d'avion
EP1766102B1 (fr) Procede de fabrication de produits en alliage d'aluminium a haute tenacite et haute resistance a la fatigue
EP0158571B1 (fr) Alliages al-cu-li-mg à très haute résistance mécanique spécifique
FR2827614A1 (fr) Produits corroyes soudables en alliage d'aluminium a haute resistance et leur procede de fabrication
CA2851592A1 (fr) Procede de transformation ameliore de toles en alliage al-cu-li
EP1453986A1 (fr) Piece de securite moulee en alliage al-si
EP1815036A2 (fr) Alliage d'aluminium pour piece a haute resistance mecanique a chaud
FR3026747A1 (fr) Toles isotropes en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion
EP3122913A1 (fr) Procédé de fabrication d'une pièce mécanique décolletée et anodisée en alliage 6xxx présentant une faible rugosité après anodisation
CA2942426A1 (fr) Produit file en alliage 6xxx apte au decolletage et presentant une faible rugosite apres anodisation
JP4511156B2 (ja) アルミニウム合金の製造方法と、これにより製造されるアルミニウム合金、棒状材、摺動部品、鍛造成形品および機械加工成形品
JP2010106336A (ja) マグネシウム合金の鍛造方法
JPS59189055A (ja) 気孔巣の少ないダイカスト品の製造方法
FR2621929A1 (fr) Article en alliage aluminium-silicium et son procede de fabrication par moulage par pression
JP2017039986A (ja) アルミニウム合金製車両用ホイール
JP2002226934A (ja) ダイカスト用アルミニウム合金
JP3195392B2 (ja) 高強度高靱性アルミニウム合金鋳物の製造方法
Wu et al. Microstructure and uniaxial tensile properties of heat treatable Al-Zn alloy for structural HPDC components
FR2557144A1 (fr) Alliage d'aluminium a proprietes ameliorees
JP2002129271A (ja) アルミニウム合金およびアルミニウム合金製鋳物の製造方法
EP0064468B1 (fr) Procédé de fabrication de feuilles en alliages d'aluminium-fer hypoeutectiques
Fujita et al. Development of magnesium forged wheel
KR100828861B1 (ko) 알루미늄합금 압출 소재
CH627788A5 (en) Nickel alloy with a high boron content

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19920413

17Q First examination report despatched

Effective date: 19940503

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950519

REF Corresponds to:

Ref document number: 69109788

Country of ref document: DE

Date of ref document: 19950622

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2071961

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050926

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070910

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070920

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070914

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070820

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070725

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080926

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070915

Year of fee payment: 17

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080927

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201