EP0460392B1 - Verfahren zur Herstellung aufschäumbarer Metallkörper - Google Patents

Verfahren zur Herstellung aufschäumbarer Metallkörper Download PDF

Info

Publication number
EP0460392B1
EP0460392B1 EP91106755A EP91106755A EP0460392B1 EP 0460392 B1 EP0460392 B1 EP 0460392B1 EP 91106755 A EP91106755 A EP 91106755A EP 91106755 A EP91106755 A EP 91106755A EP 0460392 B1 EP0460392 B1 EP 0460392B1
Authority
EP
European Patent Office
Prior art keywords
metal
temperature
metal body
foaming agent
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91106755A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0460392A1 (de
Inventor
Hartmut Dr.-Ing. Schrader
Joachim Dipl.-Phys. Baumeister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19904018360 external-priority patent/DE4018360C1/de
Application filed by Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschung eV
Publication of EP0460392A1 publication Critical patent/EP0460392A1/de
Application granted granted Critical
Publication of EP0460392B1 publication Critical patent/EP0460392B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • B22F7/006Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part the porous part being obtained by foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]

Definitions

  • the invention relates to methods for producing foamable metal bodies and their use.
  • a process for producing foamable metal bodies in which a mixture of a metal powder and a gas-releasing blowing agent powder is extruded into a body at elevated temperature and pressure.
  • the compaction temperature In order to avoid the decomposition of the blowing agent, the compaction temperature must be below the decomposition temperature of the blowing agent.
  • porous metal materials can be produced.
  • a simple method for the production of these materials is the mixing of gas-releasing substances in molten metals.
  • the blowing agent decomposes with the release of gas due to the effect of temperature. This process leads to the foaming of the molten metal.
  • After completion of the process there is a foamed metal material which has an irregular, random shape.
  • This material can be further processed into bodies of the desired shape by appropriate processes.
  • only separation processes are suitable as processes for further processing, and therefore not every metal body can be formed from such a metal material.
  • metal hydrides such as titanium hydride, carbonates, for example calcium carbonate, potassium carbonate, sodium carbonate, sodium bicarbonate, hydrates, for example aluminum sulfate hydrate, alum, aluminum hydroxide or easily evaporating substances, for example mercury compounds or pulverized organic substances, can be used as blowing agents.
  • This intensely mixed powder mixture is compressed by hot pressing or hot isostatic pressing into a compact, gas-tight body. In the compacting process, it is of crucial importance according to the invention that the temperature is selected so high that the connection between the individual metal powder particles is predominantly made by diffusion.
  • the temperature is above the decomposition temperature of the blowing agent. It is also essential that the pressure is chosen so high that the decomposition of the propellant is prevented and a compact body is formed in which the metal particles are in a fixed connection with one another and form a gas-tight seal for the gas particles of the propellant.
  • the blowing agent particles are thus "trapped" between the interconnected metal particles, so that they only release gas in a later step of foaming. This means that blowing agents with a decomposition temperature below the compacting temperature can also be used. By applying the high pressure, these blowing agents do not decompose.
  • blowing agents allows the use of blowing agents, the selection of which can only be selected on the basis of compatibility with the selected metal powder or on the basis of the efficiency of the method.
  • a suitable choice of the process parameters temperature and pressure ensures that a body is produced which has a gas-tight structure.
  • the fact that the propellant gas remains “trapped” between the metal particles prevents it from escaping prematurely from the compacted body. Accordingly, the amounts of blowing agent required are small. So propellant shares in the The order of magnitude of a few tenths of a percent by weight because the compacted body is completely compressed and the propellant gas cannot escape. Partial amounts of 0.2 to 1% have proven to be particularly favorable. Only the amount of blowing agent that is necessary to produce a foam structure has to be added. This leads to cost savings. It is also advantageous that, due to the selected high temperature and the application of the high pressure, the compacting process takes place in a short time.
  • An advantageous feature of the method according to the invention is that after the hot compacting process has ended, both the heat and the pressure are released simultaneously.
  • the still hot metal body keeps its shape even though there is no longer any pressure. This means that the metal particles form such a tight seal for the blowing agent powder particles that there is no expansion of the blowing agent, even at elevated temperature.
  • the metal body produced in this way is dimensionally stable and retains its shape even at elevated temperatures and without pressure.
  • the invention provides the addition of reinforcing components in the form of fibers or particles made of suitable materials, such as Ceramics before. These are advantageously added to the starting powders.
  • the starting materials and the foaming parameters should be selected so that a good wetting of the reinforcement components by the metal matrix is guaranteed. It is advantageous if the fibers or particles are coated (e.g. with nickel). This ensures that the forces from the metal matrix are introduced into the particle / fiber.
  • the method according to the invention provides that if the reinforcement is to be aligned along a preferred direction, this can be brought about by reshaping the foamable body. This transformation can e.g. by extrusion or rolling.
  • the invention provides that two or more blowing agents with different decomposition temperatures are mixed into the metal powder. If a foamable body produced from this powder mixture is heated, the blowing agent with the lower temperature first decomposes and causes foaming. If the temperature is increased further, the blowing agent decomposes at the next higher decomposition temperature and causes further foaming. The foaming takes place in two or more stages.
  • Such expandable, expandable metal bodies are used in particular, for example in fire protection.
  • a particular advantage of the method according to the invention is that it is now possible to produce bodies which have a continuously or discontinuously changing density over their cross section, so-called graded materials.
  • An increase in density toward the edge of the foamable body is preferred since this is where the primary stress occurs.
  • a foamable body with a solid cover layer or a cover layer with a higher density offers advantages in terms of joining and joining with materials of the same or a different type. If the process of hot compacting is carried out in a mold, the powder mixture being wholly or partly surrounded by a metal or metal powder which does not contain a blowing agent, the blowing agent-free metal layers each form a solid, less porous outer layer or bottom layer or cover layer, between which there is a layer.
  • foamable metal body which forms a highly porous metal foam layer after a foaming process.
  • the foamable metal body produced by the process according to the invention can be used to produce a porous metal body. This is done by heating the foamable body to a temperature above the decomposition temperature of the blowing agent, which releases the same gas, and then cooling the body thus foamed. It is advantageous if the heating temperature is in the temperature range of the melting point of the metal used or above or in the solidus-liquidus interval of the alloy used.
  • the heating rates of the semi-finished product during the foaming process are within normal limits, i.e. they are about 1 - 5 ° C per sec. High heating rates are not necessary because the gas cannot escape anyway. These usual heating rates are a further feature of the invention which leads to cost reduction. It goes without saying that in individual cases, e.g. to achieve small pore size, a high heating rate is advantageous.
  • the inventive method further provides that after the foaming, the cooling rate must be selected so that no further foaming takes place from the inside of the body. With larger parts, the cooling rate must be chosen higher than with smaller ones, it must be adapted to the sample volume.
  • a further advantageous embodiment of the method according to the invention provides that the density of the porous metal body can be varied by suitable selection of the foaming parameters time and temperature. If the foaming process is interrupted after a certain time at constant temperature, a certain density results. If the foaming process is continued for a longer time, this leads to different density values. It is important that certain limit values are observed: A maximum permissible foaming time, after which the already foamed material collapses, should be observed.
  • the semi-finished product is foamed freely if no final shape is specified.
  • the foaming can also take place in a mold.
  • the finished porous metal body takes on the predetermined shape. It is therefore possible by the method according to the invention to also produce molded parts from porous metallic material.
  • the metal body produced by foaming the semi-finished product obtained in this way has a predominantly closed porosity; the metal bodies float in the water.
  • the resulting pores are evenly distributed throughout the metal body, they are also approximately uniform in size.
  • the pore size can be adjusted during the foaming process by the time in which the metal foam can expand.
  • the density of the porous metal body can be adapted to the requirements. As already described, this can be done not only by a suitable choice of the foaming parameters, but also by a suitable addition of the blowing agent.
  • the strength and ductility of the porous metal body can be varied by selecting the parameters of temperature and time at which the foaming takes place. The two properties mentioned are influenced in any case by setting the desired pore size. It goes without saying that the properties of the finished metallic body depend above all on the choice of the starting materials.
  • the deformability of the compacted semi-finished product is comparable to that of the solid starting metal.
  • the semifinished product does not differ in appearance from that of the starting metal.
  • the semifinished product can accordingly be processed into semifinished products of any geometry by known forming processes. It can be formed into sheets, profiles, etc. It can be used in almost any deformation process that takes the decomposition temperature into account. Only when the semi-finished product is heated to temperatures above the decomposition temperature of the blowing agent used does the foaming take place.
  • a body produced according to the embodiment according to claim 6 is used to produce a porous metal body, after the foaming, a slightly porous outer layer surrounds a core made of highly porous foamed metal.
  • Another use of the foamable body is the production of metal foams with a solid outer layer.
  • the foamable body is first formed into a cylindrical rod by means of suitable shaping processes, this is introduced into a cylindrical tube and then foamed. This process can also be applied to other hollow profiles and molded parts. It is also possible to produce an integral foam body in that the expansion of the foamable body is hindered by solid walls.
  • the pores near the surface are flattened by the internal pressure of the material foaming from the inside, and the initially highly porous outer edge of the molded part is compressed again.
  • the thickness of this outer edge which has an increased density relative to the inside of the workpiece, can be controlled over the period of time in which, after contact with the walls, the material can foam further from the inside before the mold is finally cooled, whereby the foaming is stopped.
  • the surface of the foamable body according to the invention or of the expanding foam is prevented by cooling from foaming as much as in the non-cooled areas.
  • the cooling can be effected by suitable cooling media or by contact with cold materials.
  • the cooling can act on the entire surface or only on partial areas.
  • Integral foam-like metal bodies can be produced by pasting a metal foam with identical or alien materials. In addition to gluing, other joining methods and fastening methods (soldering, welding, screwing) can also be used. Finally, a metal foam can also be cast with metal melts or other materials that are initially liquid and then solidify or harden.
  • a powder mixture of the composition AlMg1 with 0.2 percent by weight titanium hydride was placed in a hot pressing device and heated to a temperature of 500 ° C. under a pressure of 60 MPa. After a holding time of 30 minutes it was the sample is relieved, removed and cooled. Foaming was carried out by heating the sample in a laboratory oven preheated to 800 ° C. The density of the resulting aluminum foam was approximately 0.55 g / cm 3 .
  • a powder mixture of the composition AlMg2 with 0.2 percent by weight of titanium hydride was compacted in the hot press under a pressure of 100 MPa and a temperature of 550 ° C. and relieved and removed after a holding time of 20 minutes.
  • the subsequent foaming of the sample was carried out by heating the sample in a laboratory oven preheated to 800 ° C. and resulted in a foam with a density of 0.6 g / cm 3 .
  • a powder mixture of pure aluminum powder and 1.5 percent by weight sodium bicarbonate (NaHCO3) was placed in a hot press device and heated to a temperature of 500 ° C. under a pressure of 150 MPa. After a holding time of 20 minutes, the sample was removed and foamed in an oven preheated to 850 ° C. The density of the resulting aluminum foam was 1.3 g / cm 3 .
  • a powder mixture of pure aluminum powder and 2 weight percent aluminum hydroxide was filled in the hot press device and heated to a temperature of 500 ° C. under a pressure of 150 MPa. After a holding time of 25 minutes, the sample was removed and foamed in an oven preheated to 850 ° C. The density of the resulting aluminum foam was 0.8 g / cm 3 .
  • a bronze powder of the composition 60% Cu and 40% Sn was mixed with 1% by weight of titanium hydride powder and this powder mixture was compacted at a temperature of 500 ° C. and a pressure of 100 MPa for 30 minutes. The compacted sample was then heated in an oven preheated to 800 ° C. and thereby foamed. The resulting bronze foam had a density of about 1.4 g / cm 3 .
  • a mixture of 70 percent by weight copper powder and 30 percent by weight aluminum powder was mixed with 1 percent by weight titanium hydride and this powder mixture was compacted at a temperature of 500 ° C. and a pressure of 100 MPa for 20 minutes.
  • the compacted sample was then opened in one 950 ° C preheated oven heated and thereby foamed.
  • the density of this foamed copper alloy was less than 1 g / cm 3 .
  • a layer 2 of propellant-free metal powder is poured into a hot press device 1, then a layer of propellant-containing metal powder 3 and finally again a layer 2 'of propellant-free metal powder.
  • a compact 4 is obtained which, if necessary, can be shaped into a further body 5. This body can then also be foamed into a body 6.
  • the blowing agent-free metal layers each form a solid, less porous bottom layer 7 or covering layer 8, between which there is a highly porous metal foam layer 9.
  • FIG. 2 Another method for producing integral foams is shown in FIG. 2.
  • the opening 19 of an extrusion tool 11 is initially covered by a disk made of solid metal piece 12.
  • the pressing chamber of the tool is filled with metal powder 13 containing blowing agent and the powder mixture is pressurized to about 60 MPa.
  • the latter is compacted by heating the tool together with the powder mixture 13.
  • the pressing pressure is increased so far that the central region of the solid metal plate 12, which closes the opening 10 of the tool, flows through this opening 10 and thus releases it.
  • the foamable semi-finished product 14 is pressed together with the solid material 12 through the opening 10, the solid material 12 enclosing the foamable body in the form of an outer layer 13.
  • a slightly porous layer surrounds a core made of highly porous foamed metal.
  • FIG. 3 shows a schematic representation of the method according to the invention and an application: a metal powder 15 is mixed intensively with a blowing agent powder 16. The mixture 17 thus obtained is compacted in a press 18 under the influence of pressure and temperature. After compacting, a semifinished product 19 is produced.
  • the semifinished product 19 can be formed into a sheet 20. The sheet 20 can then be foamed to a finished porous metal body 21 by the action of temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)
EP91106755A 1990-06-08 1991-04-26 Verfahren zur Herstellung aufschäumbarer Metallkörper Expired - Lifetime EP0460392B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19904018360 DE4018360C1 (en) 1990-06-08 1990-06-08 Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal
DE4018360 1990-06-08
DE4101630A DE4101630A1 (de) 1990-06-08 1991-01-21 Verfahren zur herstellung aufschaeumbarer metallkoerper und verwendung derselben
DE4101630 1991-01-21

Publications (2)

Publication Number Publication Date
EP0460392A1 EP0460392A1 (de) 1991-12-11
EP0460392B1 true EP0460392B1 (de) 1996-09-04

Family

ID=25893963

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91106755A Expired - Lifetime EP0460392B1 (de) 1990-06-08 1991-04-26 Verfahren zur Herstellung aufschäumbarer Metallkörper

Country Status (6)

Country Link
US (1) US5151246A (en:Method)
EP (1) EP0460392B1 (en:Method)
JP (1) JP2898437B2 (en:Method)
AT (1) ATE142135T1 (en:Method)
CA (1) CA2044120C (en:Method)
DE (2) DE4101630A1 (en:Method)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972285A (en) * 1997-06-10 1999-10-26 Th. Goldschmidt Ag Foamable metal articles
DE19933870C1 (de) * 1999-07-23 2001-02-22 Schunk Sintermetalltechnik Gmb Verfahren zur Herstellung eines metallischen Verbundwerkstoffkörpers sowie Verbundwerkstoffkörper
CN106862572A (zh) * 2017-01-24 2017-06-20 东莞市佳乾新材料科技有限公司 一种建筑用抗爆泡沫铝夹层板及其制备方法

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4206303C1 (en:Method) * 1992-02-28 1993-06-17 Mepura Metallpulver Ges.M.B.H., Ranshofen, At
CH686413A5 (de) * 1992-06-09 1996-03-29 Matec Holding Ag Verfahren zur Herstellung von Formteilen und Anwendung desselben.
DE4424157C2 (de) * 1993-07-29 1996-08-14 Fraunhofer Ges Forschung Verfahren zur Herstellung poröser metallischer Werkstoffe mit anisotropen thermischen und elektrischen Leitfähigkeiten
DE4426627C2 (de) * 1993-07-29 1997-09-25 Fraunhofer Ges Forschung Verfahren zur Herstellung eines metallischen Verbundwerkstoffes
DE19651197C2 (de) * 1995-12-15 1999-10-28 Susan Dietzschold Werkstoff zum Herstellen poröser Metallkörper
FR2742856B1 (fr) * 1995-12-21 1998-01-30 Renault Echangeur de chaleur pour vehicule automobile comportant une structure maillee tridimensionnelle permeable
DE19612781C1 (de) * 1996-03-29 1997-08-21 Karmann Gmbh W Bauteil aus metallischem Schaumwerkstoff, Verfahren zum Endformen dieses Bauteils und Vorrichtung zur Ausführung des Verfahrens
AT406027B (de) * 1996-04-19 2000-01-25 Leichtmetallguss Kokillenbau W Verfahren zur herstellung von formteilen aus metallschaum
AT406649B (de) * 1996-05-02 2000-07-25 Mepura Metallpulver Verfahren zur herstellung von porösen matrixmaterialien, insbesondere formkörpern, auf basis von metallen, und von halbzeug dafür
DE19734394C2 (de) * 1996-08-13 2003-06-18 Friedrich Wilhelm Bessel Inst Verfahren und Vorrichtung zur Herstellung von Metallschaum
RU2171732C2 (ru) * 1997-01-09 2001-08-10 Московская государственная академия тонкой химической технологии им. М.В. Ломоносова Способ изготовления пористых изделий из тугоплавких материалов
AT406557B (de) * 1997-02-28 2000-06-26 Machner & Saurer Gmbh Verfahren zur herstellung von metallkörpern mit innerer porosität
DE19709672C2 (de) * 1997-03-11 1998-12-24 Koenig & Bauer Albert Ag Zylinder für Druckmaschinen
DE19717066C1 (de) * 1997-04-23 1998-02-26 Daimler Benz Ag Verfahren zum Trennen stranggepreßter Hohlprofile und Strangpreßvorrichtung
WO1999011832A1 (de) 1997-08-30 1999-03-11 Honsel Ag Legierung zum herstellen von metallschaumkörpern unter verwendung eines pulvers mit keimbildenden zusätzen
DE19746164B4 (de) * 1997-10-18 2005-09-15 Volkswagen Ag Materialverbund mit einem zumindest abschnittsweise hohlen Profil und Verwendung desselben
RU2121904C1 (ru) * 1997-11-13 1998-11-20 Общество с ограниченной ответственностью "Алюминиевые спеченные порошковые сплавы" Способ производства пористых полуфабрикатов из порошковых алюминиевых сплавов
DE19847273B4 (de) * 1998-01-02 2004-06-17 Wilhelm Karmann Gmbh Verfahren zum Endformen eines aus einem im wesentlichen flächigen Halbzeug gebildeten Bauteils
DE19813176C2 (de) * 1998-03-25 2000-08-24 Fraunhofer Ges Forschung Verfahren zur Herstellung von Verbundwerkstoffbauteilen
DE19813554A1 (de) * 1998-03-27 1999-09-30 Vaw Ver Aluminium Werke Ag Verbundblech oder -band in Sandwichstruktur sowie Verfahren zu seiner Herstellung
JP3508604B2 (ja) * 1998-04-08 2004-03-22 三菱マテリアル株式会社 高強度スポンジ状焼成金属複合板の製造方法
AT408317B (de) * 1998-04-09 2001-10-25 Mepura Metallpulver Verfahren zur herstellung von schaummetall-formkörpern
WO1999064287A1 (de) * 1998-06-09 1999-12-16 M.I.M. Hüttenwerke Duisburg Gmbh Verfahren zur herstellung einer verstärkung in einem hohlraum eines kfz-bauteils
RU2138367C1 (ru) * 1998-07-27 1999-09-27 Открытое акционерное общество "Всероссийский институт легких сплавов" Способ получения пористых полуфабрикатов из порошков алюминиевых сплавов
EP1105672A1 (en) * 1998-08-06 2001-06-13 The BOC Group plc Pressure vessel under hydrostatic pressure
US6168072B1 (en) * 1998-10-21 2001-01-02 The Boeing Company Expansion agent assisted diffusion bonding
DE19849600C1 (de) * 1998-10-28 2001-02-22 Schunk Sintermetalltechnik Gmb Verfahren zur Herstellung von einem metallischen Verbundwerkstoff
DE19852277C2 (de) * 1998-11-13 2000-12-14 Schunk Sintermetalltechnik Gmb Verfahren zur Herstellung eines metallischen Verbundwerkstoffes sowie Halbzeug für einen solchen
RU2153957C2 (ru) * 1998-11-18 2000-08-10 Арбузова Лариса Алексеевна Способ получения пористых полуфабрикатов из порошков алюминиевых сплавов
RU2139774C1 (ru) * 1998-11-18 1999-10-20 Арбузова Лариса Алексеевна Способ получения пористых изделий из порошков алюминиевых сплавов
DE19854175C1 (de) * 1998-11-24 2000-03-23 Fritz Michael Streuber Metallschaumfügeverfahren
DE19854173C2 (de) * 1998-11-24 2000-11-23 Fritz Michael Streuber Metallschaumformkörper
EP1008406A3 (de) * 1998-12-09 2000-09-06 Bayerische Motoren Werke Aktiengesellschaft Herstellverfahren für ein mit einer Leichtmetall-Schaumstruktur ausgefülltes Hohlteil
GB9903276D0 (en) * 1999-02-12 1999-04-07 Boc Group Plc Reticulated foam structutes
DE19907855C1 (de) * 1999-02-24 2000-09-21 Goldschmidt Ag Th Herstellung von Metallschäumen
DE19908867A1 (de) * 1999-03-01 2000-09-07 Arved Huebler Verbundkörper sowie Verfahren zum Herstellen eines Verbundkörpers
ATE256853T1 (de) 1999-03-10 2004-01-15 Fraunhofer Ges Forschung Verwendung von metallschäumen in panzerungssystemen
US6698331B1 (en) 1999-03-10 2004-03-02 Fraunhofer Usa, Inc. Use of metal foams in armor systems
RU2154548C1 (ru) * 1999-03-18 2000-08-20 Арбузова Лариса Алексеевна Способ получения пористых полуфабрикатов и готовых изделий из порошков алюминиевых сплавов (варианты)
DE19919574A1 (de) * 1999-04-29 2000-11-30 Lucas Ind Plc Kolben und Verfahren zur Herstellung eines solchen
ATE228907T1 (de) 1999-05-19 2002-12-15 Fraunhofer Ges Forschung Bauteil aus metallschaum enthaltenden verbundwerkstoff und verfahren zu seiner herstellung
GB9912215D0 (en) * 1999-05-26 1999-07-28 Boc Group Plc Reticulated foam structures
DE19930982C1 (de) * 1999-07-05 2001-03-08 Honsel Ag Verfahren zum Herstellen von Verbundblechen durch Walzen
RU2193948C2 (ru) * 1999-07-06 2002-12-10 Лебедев Виктор Иванович Способ получения пористого металла и изделий из него
RU2179499C2 (ru) * 1999-08-20 2002-02-20 Федеральное государственное унитарное предприятие Конструкторское бюро химавтоматики Способ получения пористых изделий заданной проницаемости и конфигурации
DE19941278A1 (de) * 1999-08-31 2001-03-08 Bernd Fischer Struktur zur Absorption mechanischer Beanspruchungen
DE19942916A1 (de) 1999-09-08 2001-03-15 Linde Gas Ag Herstellen von aufschäumbaren Metallkörpern und Metallschäumen
RU2180288C2 (ru) * 1999-09-21 2002-03-10 Полькин Игорь Степанович Легкий энерго- и звукопоглощающий, теплоизолирующий материал
US6481911B1 (en) 1999-11-24 2002-11-19 Fritz Michael Streuber Jointing method for joining preformed bodies
US6605368B2 (en) 1999-12-21 2003-08-12 Laura Lisa Smith Cookware vessel
NL1014116C2 (nl) * 2000-01-19 2001-07-20 Corus Aluminium Walzprod Gmbh Werkwijze en inrichting voor het vormen van een laminaat van gecomprimeerd metaalpoeder met een schuimmiddel tussen twee metaallagen, en daarmee gevormd produkt.
DE10024776C1 (de) 2000-05-19 2001-09-06 Goldschmidt Ag Th Verwendung von Metallhydrid-behandeltem Zink in der metallorganischen Synthese
US6464933B1 (en) * 2000-06-29 2002-10-15 Ford Global Technologies, Inc. Forming metal foam structures
DE10045494C2 (de) * 2000-09-13 2002-07-18 Neue Materialien Fuerth Gmbh Verfahren zum Herstellen eines Formkörpers aus Metallschaum
DE10049058B4 (de) * 2000-10-04 2005-07-28 Honsel Gmbh & Co Kg Herstellen von Schweißverbindungen zwischen Metallbändern, -platten, -barren und/oder -profilen
NL1016713C2 (nl) * 2000-11-27 2002-05-29 Stork Screens Bv Warmtewisselaar en een dergelijke warmtewisselaar omvattende thermo-akoestische omvorminrichting.
CA2344088A1 (en) * 2001-01-16 2002-07-16 Unknown A method and an apparatus for production of a foam metal
US6852272B2 (en) * 2001-03-07 2005-02-08 Advanced Ceramics Research, Inc. Method for preparation of metallic and ceramic foam products and products made
US6524522B2 (en) 2001-03-07 2003-02-25 Advanced Ceramics Research, Inc. Method for preparation of metallic foam products and products made
DE10127716A1 (de) * 2001-06-07 2002-12-12 Goldschmidt Ag Th Verfahren zur Herstellung von Metall/Metallschaum-Verbundbauteilen
RU2202454C2 (ru) * 2001-06-29 2003-04-20 Открытое акционерное общество "Всероссийский институт легких сплавов" Способ соединения заготовок из пеноалюминия
RU2202443C2 (ru) * 2001-06-29 2003-04-20 Открытое акционерное общество "Всероссийский институт легких сплавов" Способ получения полуфабрикатов из пеноалюминия
RU2200647C1 (ru) * 2001-07-17 2003-03-20 Литвинцев Александр Иванович Способ производства пористых полуфабрикатов из порошков алюминиевых сплавов
DE10136370B4 (de) * 2001-07-26 2005-03-31 Schwingel, Dirk, Dr. Verbundwerkstoff und daraus hergestelltes Bauteil bestehend aus einem aufgeschäumten Metallkern und massiven Deckblechen, sowie Verfahren zur Herstellung
US6808003B2 (en) * 2001-08-07 2004-10-26 Alcoa Inc. Coextruded products of aluminum foam and skin material
US6660224B2 (en) * 2001-08-16 2003-12-09 National Research Council Of Canada Method of making open cell material
US7108828B2 (en) * 2001-08-27 2006-09-19 National Research Council Of Canada Method of making open cell material
US6689509B2 (en) * 2001-09-20 2004-02-10 Daramic, Inc. Laminated multilayer separator for lead-acid batteries
DE10161348A1 (de) * 2001-12-13 2003-06-26 Trw Automotive Safety Sys Gmbh Fahrzeuglenkrad
JP3805694B2 (ja) 2002-02-15 2006-08-02 本田技研工業株式会社 発泡/多孔質金属の製造方法
DE10215086B4 (de) * 2002-02-18 2004-01-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aufschäumbarer Metallkörper, Verfahren zu seiner Herstellung und seine Verwendung
US7261141B2 (en) * 2002-02-22 2007-08-28 Hideo Nakajima Metal porous body manufacturing method
US20040126583A1 (en) * 2002-11-19 2004-07-01 Takashi Nakamura Foaming agent for manufacturing a foamed or porous metal
JP4233018B2 (ja) * 2003-01-17 2009-03-04 本田技研工業株式会社 発泡体を充填した閉断面構造体の製造方法
AT6727U1 (de) * 2003-01-30 2004-03-25 Plansee Ag Verfahren zur herstellung poröser sinterformkörper
EP1468765A1 (en) * 2003-04-16 2004-10-20 Corus Technology BV Preform for foamed sheet product and foamed product manufactured therefrom
US7516529B2 (en) * 2003-12-17 2009-04-14 General Motors Corporation Method for producing in situ metallic foam components
DE10359502A1 (de) * 2003-12-18 2005-07-14 Bayerische Motoren Werke Ag Verfahren zur Herstellung eines dreidimensionalen, flächigen Bauteils
US7481968B2 (en) 2004-03-17 2009-01-27 National Institute Of Advanced Industrial Science And Technology Method for preparing a sintered porous body of metal or ceramic
US7597840B2 (en) * 2005-01-21 2009-10-06 California Institute Of Technology Production of amorphous metallic foam by powder consolidation
US20060269434A1 (en) * 2005-05-31 2006-11-30 Ecer Gunes M Process for porous materials and property improvement methods for the same
DE102005037305B4 (de) * 2005-08-02 2007-05-16 Hahn Meitner Inst Berlin Gmbh Verfahren zur pulvermetallurgischen Herstellung von Metallschaumstoff und von Teilen aus Metallschaumstoff
DE102005037069B4 (de) * 2005-08-05 2010-03-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Poröse Verbundwerkstoffe auf Basis eines Metalls und Verfahren zu deren Herstellung
US20070154731A1 (en) * 2005-12-29 2007-07-05 Serguei Vatchiants Aluminum-based composite materials and methods of preparation thereof
DE102006009917B4 (de) * 2006-03-03 2014-04-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Metall-Aerogel-Metallschaum-Verbundwerkstoff
DE102006018381A1 (de) * 2006-04-20 2007-10-25 Siemens Ag Verfahren zur Erhöhung der Steifigkeit eines einen Hohlraum aufweisenden Bauteils und danach hergestelltes Bauteil
DE102006020860B4 (de) * 2006-05-04 2008-02-07 Alulight International Gmbh Verfahren zur Herstellung von Verbundkörpern sowie danach hergestellte Verbundkörper
AT504305B1 (de) * 2006-10-05 2009-09-15 H Tte Klein Reichenbach Ges M Mehrschichtiger metallformkírper mit einer metallschaummatrix und dessen verwendung
US20090326657A1 (en) * 2008-06-25 2009-12-31 Alexander Grinberg Pliable Artificial Disc Endplate
KR101111286B1 (ko) * 2008-08-22 2012-03-14 한국생산기술연구원 발포체, 이 발포체의 제조장치, 이 발포체를 이용한 발포금속의 제조방법 및 발포금속 제조장치
DE102008044946B4 (de) * 2008-08-29 2022-06-15 Evonik Superabsorber Gmbh Einsatz von Schaumkörpern in Oxidations-Reaktoren zur Herstellung ungesättigter Carbonsäuren
US9301390B2 (en) 2009-03-30 2016-03-29 Tokuyama Corporation Process for producing metallized substrate, and metallized substrate
EP2415543B1 (en) * 2009-03-30 2021-07-28 Mitsubishi Materials Corporation Process for producing porous sintered aluminum, and porous sintered aluminum
JP5402380B2 (ja) 2009-03-30 2014-01-29 三菱マテリアル株式会社 アルミニウム多孔質焼結体の製造方法
JP5428546B2 (ja) 2009-06-04 2014-02-26 三菱マテリアル株式会社 アルミニウム多孔質焼結体を有するアルミニウム複合体の製造方法
JP5402381B2 (ja) * 2009-08-11 2014-01-29 三菱マテリアル株式会社 アルミニウム多孔質焼結体の製造方法
DE102009040258A1 (de) 2009-09-04 2011-03-24 Jaeckel, Manfred, Dipl.-Ing. Verfahren zur Herstellung eines zellularen Sinterformkörpers
US8820610B2 (en) 2009-10-14 2014-09-02 National University Corporation Gunma University Using friction stir processing to form foamed metal precursors
US9374893B2 (en) * 2010-03-02 2016-06-21 Tokuyama Corporation Production method of metallized substrate
IT1399822B1 (it) * 2010-03-23 2013-05-03 Matteazzi Metodo per ottenere sistemi porosi
DE102010022598B3 (de) 2010-05-31 2011-12-01 Siemens Aktiengesellschaft Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist
DE102010022599B3 (de) * 2010-05-31 2011-12-01 Siemens Aktiengesellschaft Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist
FR2961894B1 (fr) * 2010-06-24 2013-09-13 Valeo Vision Dispositif a echange de chaleur, notamment pour vehicule automobile
JP2012100846A (ja) * 2010-11-10 2012-05-31 Mitsubishi Materials Corp 多孔質インプラント素材
JP5720189B2 (ja) * 2010-11-10 2015-05-20 三菱マテリアル株式会社 多孔質インプラント素材
UA112633C2 (uk) * 2013-01-28 2016-10-10 Андрій Євгенійович Малашко Спосіб виготовлення робочого органа технологічного устаткування зі зносостійким елементом, що взаємодіє з абразивним середовищем
US10295309B2 (en) 2013-07-08 2019-05-21 Loukus Technologies, Inc. Core structured components and containers
JP5825311B2 (ja) * 2013-09-06 2015-12-02 三菱マテリアル株式会社 アルミニウム多孔質焼結体
EP3155629B1 (de) * 2014-08-06 2018-10-03 Siemens Aktiengesellschaft Elektrische einrichtung mit einer elektrischen sicherungsanordnung mit einem metallschaumstoff und verfahren zum unterbrechen eines elektrischen stromes durch die einrichtung
DE102015205829B4 (de) * 2015-03-31 2017-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von geschäumten Sandwichelementen
CH711353A2 (fr) * 2015-07-24 2017-01-31 Swatch Group Res & Dev Ltd Assemblage de pièce en matériau fragile.
US10590529B2 (en) * 2015-11-20 2020-03-17 Fourté International, Sdn. Bhd Metal foams and methods of manufacture
WO2017097512A1 (en) * 2015-12-07 2017-06-15 Dynaenergetics Gmbh & Co. Kg Shaped charge metal foam package
CN105642898B (zh) * 2016-01-14 2017-07-25 哈尔滨工程大学 一种采用激光3d打印技术制造封闭孔结构材料的方法
WO2018098585A1 (en) 2016-12-02 2018-06-07 Polyvalor, Limited Partnership Openly porous acoustic foam, process for manufacture and uses thereof
DE102017100510A1 (de) * 2017-01-12 2018-07-12 Lisa Dräxlmaier GmbH Fahrzeug-bauteil mit geschäumter elektrischer leitstruktur und herstellverfahren für ein solches
DE102017121513A1 (de) * 2017-09-15 2019-03-21 Pohltec Metalfoam Gmbh Verfahren zum Schäumen von Metall im Flüssigkeitsbad
WO2019152918A1 (en) * 2018-02-02 2019-08-08 Santeri Holdings LLC Identifiable physical form, sales instruments, and information marketplace for commodity trades
CN111360259A (zh) * 2020-03-10 2020-07-03 中信戴卡股份有限公司 一种异形泡沫铝填充铝合金空腔铸件的制备方法
DE102021126310A1 (de) 2021-10-11 2023-04-13 HAVEL metal foam GmbH Verfahren und Vorrichtung zum Herstellen einer aufschäumbaren, bandförmigen Presspulver-Metallplatine mittels Kaltwalzen sowie Presspulver-Metallplatine
US12221275B2 (en) 2021-10-29 2025-02-11 DynaEnergetics Europe GmbH Mobile perforating bank unit and modular storage container
US20230160404A1 (en) * 2021-11-22 2023-05-25 Mott Corporation Porous flow restrictor and methods of manufacture thereof
CN114939674B (zh) * 2022-05-06 2024-04-05 上海汉邦联航激光科技有限公司 多孔隙率泡沫铜的选区激光熔化成型方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3087807A (en) * 1959-12-04 1963-04-30 United Aircraft Corp Method of making foamed metal
GB939612A (en) * 1960-02-04 1963-10-16 Dow Chemical Co Shaped metal and process for its production
US3848666A (en) * 1970-11-19 1974-11-19 Ethyl Corp Foamed metal bodies
US3941182A (en) * 1971-10-29 1976-03-02 Johan Bjorksten Continuous process for preparing unidirectionally reinforced metal foam
US3940262A (en) * 1972-03-16 1976-02-24 Ethyl Corporation Reinforced foamed metal
US3929425A (en) * 1973-02-26 1975-12-30 Ethyl Corp Foamed metal bodies
JPS57185902A (en) * 1981-05-11 1982-11-16 Nippon Seiko Kk Sintering method for porous body
JPS60149739A (ja) * 1984-08-06 1985-08-07 Res Inst Iron Steel Tohoku Univ シリコンカ−バイド繊維強化ニツケル複合材料の製造方法
JPH01298123A (ja) * 1988-05-27 1989-12-01 Sumitomo Electric Ind Ltd 多孔質アルミニウム合金の製造方法
JPH0617524B2 (ja) * 1988-11-08 1994-03-09 勝廣 西山 マグネシウム―チタン系焼結合金およびその製造方法
US4973358A (en) * 1989-09-06 1990-11-27 Alcan International Limited Method of producing lightweight foamed metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972285A (en) * 1997-06-10 1999-10-26 Th. Goldschmidt Ag Foamable metal articles
DE19933870C1 (de) * 1999-07-23 2001-02-22 Schunk Sintermetalltechnik Gmb Verfahren zur Herstellung eines metallischen Verbundwerkstoffkörpers sowie Verbundwerkstoffkörper
CN106862572A (zh) * 2017-01-24 2017-06-20 东莞市佳乾新材料科技有限公司 一种建筑用抗爆泡沫铝夹层板及其制备方法

Also Published As

Publication number Publication date
DE4101630C2 (en:Method) 1992-04-16
JPH04231403A (ja) 1992-08-20
JP2898437B2 (ja) 1999-06-02
CA2044120C (en) 2001-05-01
DE4101630A1 (de) 1991-12-12
US5151246A (en) 1992-09-29
CA2044120A1 (en) 1991-12-09
ATE142135T1 (de) 1996-09-15
EP0460392A1 (de) 1991-12-11
DE59108133D1 (de) 1996-10-10

Similar Documents

Publication Publication Date Title
EP0460392B1 (de) Verfahren zur Herstellung aufschäumbarer Metallkörper
DE4018360C1 (en) Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal
EP0884123B1 (de) Schäumbarer Metallkörper
EP1915226B1 (de) Verfahren zur pulvermetallurgischen herstellung von metallschaumstoff und von teilen aus metallschaumstoff
EP1392875A1 (de) Verfahren zur herstellung von metall-/metallschaum-verbundbauteilen
EP1356131B1 (de) Verfahren zur herstellung von metallschaum und danach hergestellter metallkörper
EP1017864B1 (de) Legierung zum herstellen von metallschaumkörpern unter verwendung eines pulvers mit keimbildenden zusätzen
AT406649B (de) Verfahren zur herstellung von porösen matrixmaterialien, insbesondere formkörpern, auf basis von metallen, und von halbzeug dafür
DE102006020860A1 (de) Verfahren zur Herstellung von Verbundkörpern sowie danach hergestellte Verbundkörper
DE4424157C2 (de) Verfahren zur Herstellung poröser metallischer Werkstoffe mit anisotropen thermischen und elektrischen Leitfähigkeiten
EP1000690B1 (de) Verfahren zur Herstellung eines aufschäumbaren Halbzeuges sowie Halbzeug
DE102007006156B3 (de) Verfahren zur Herstellung eines Verbundkörpers und Zwischenprodukt zur Herstellung eines Verbundkörpers
EP2427284B1 (de) Pulvermetallurgisches verfahren zur herstellung von metallschaum
EP3661677A1 (de) Verfahren zum schäumen von metall im flüssigkeitsbad
DE19810979C2 (de) Aluminiumlegierung zum Herstellen von Aluminiumschaumkörpern unter Verwendung eines Pulvers mit keimbildenden Zusätzen
DE102017121512A1 (de) Verfahren zum Schäumen von Metall mit Wärmekontakt
DE3421858C2 (en:Method)
EP0693564B1 (de) Verfahren zur Herstellung von Körpern aus intermetallischen Phasen aus pulverförmigen, duktilen Komponenten
EP2143809B1 (de) Metallschäume aus einer Aluminiumlegierung, ihre Verwendung und Verfahren zur Herstellung
DE3502504A1 (de) Verfahren zur herstellung eines schwammartigen metallformkoerpers
WO2019053181A1 (de) Verfahren zum schäumen von metall mit wärmekontakt
WO2003069002A1 (de) Aufschäumbarer metallkörper, verfahren zu seiner herstellung und seine verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920515

17Q First examination report despatched

Effective date: 19921117

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19960904

Ref country code: FR

Effective date: 19960904

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960904

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960904

Ref country code: DK

Effective date: 19960904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960904

Ref country code: GB

Effective date: 19960904

REF Corresponds to:

Ref document number: 142135

Country of ref document: AT

Date of ref document: 19960915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & WANN PATENTANWALTSBUERO, INHABER KLAUS

REF Corresponds to:

Ref document number: 59108133

Country of ref document: DE

Date of ref document: 19961010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961204

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19960904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

Ref country code: BE

Effective date: 19970430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWA

Free format text: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#LEONRODSTRASSE 54#80636 MUENCHEN (DE) -TRANSFER TO- FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#HANSASTRASSE 27 C#80686 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100422

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100426

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100623

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59108133

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110426