EP0460392B1 - Verfahren zur Herstellung aufschäumbarer Metallkörper - Google Patents
Verfahren zur Herstellung aufschäumbarer Metallkörper Download PDFInfo
- Publication number
- EP0460392B1 EP0460392B1 EP91106755A EP91106755A EP0460392B1 EP 0460392 B1 EP0460392 B1 EP 0460392B1 EP 91106755 A EP91106755 A EP 91106755A EP 91106755 A EP91106755 A EP 91106755A EP 0460392 B1 EP0460392 B1 EP 0460392B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- metal
- temperature
- metal body
- foaming agent
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/003—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1121—Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
- B22F3/1125—Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/002—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
- B22F7/004—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
- B22F7/006—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part the porous part being obtained by foaming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12479—Porous [e.g., foamed, spongy, cracked, etc.]
Definitions
- the invention relates to methods for producing foamable metal bodies and their use.
- a process for producing foamable metal bodies in which a mixture of a metal powder and a gas-releasing blowing agent powder is extruded into a body at elevated temperature and pressure.
- the compaction temperature In order to avoid the decomposition of the blowing agent, the compaction temperature must be below the decomposition temperature of the blowing agent.
- porous metal materials can be produced.
- a simple method for the production of these materials is the mixing of gas-releasing substances in molten metals.
- the blowing agent decomposes with the release of gas due to the effect of temperature. This process leads to the foaming of the molten metal.
- After completion of the process there is a foamed metal material which has an irregular, random shape.
- This material can be further processed into bodies of the desired shape by appropriate processes.
- only separation processes are suitable as processes for further processing, and therefore not every metal body can be formed from such a metal material.
- metal hydrides such as titanium hydride, carbonates, for example calcium carbonate, potassium carbonate, sodium carbonate, sodium bicarbonate, hydrates, for example aluminum sulfate hydrate, alum, aluminum hydroxide or easily evaporating substances, for example mercury compounds or pulverized organic substances, can be used as blowing agents.
- This intensely mixed powder mixture is compressed by hot pressing or hot isostatic pressing into a compact, gas-tight body. In the compacting process, it is of crucial importance according to the invention that the temperature is selected so high that the connection between the individual metal powder particles is predominantly made by diffusion.
- the temperature is above the decomposition temperature of the blowing agent. It is also essential that the pressure is chosen so high that the decomposition of the propellant is prevented and a compact body is formed in which the metal particles are in a fixed connection with one another and form a gas-tight seal for the gas particles of the propellant.
- the blowing agent particles are thus "trapped" between the interconnected metal particles, so that they only release gas in a later step of foaming. This means that blowing agents with a decomposition temperature below the compacting temperature can also be used. By applying the high pressure, these blowing agents do not decompose.
- blowing agents allows the use of blowing agents, the selection of which can only be selected on the basis of compatibility with the selected metal powder or on the basis of the efficiency of the method.
- a suitable choice of the process parameters temperature and pressure ensures that a body is produced which has a gas-tight structure.
- the fact that the propellant gas remains “trapped” between the metal particles prevents it from escaping prematurely from the compacted body. Accordingly, the amounts of blowing agent required are small. So propellant shares in the The order of magnitude of a few tenths of a percent by weight because the compacted body is completely compressed and the propellant gas cannot escape. Partial amounts of 0.2 to 1% have proven to be particularly favorable. Only the amount of blowing agent that is necessary to produce a foam structure has to be added. This leads to cost savings. It is also advantageous that, due to the selected high temperature and the application of the high pressure, the compacting process takes place in a short time.
- An advantageous feature of the method according to the invention is that after the hot compacting process has ended, both the heat and the pressure are released simultaneously.
- the still hot metal body keeps its shape even though there is no longer any pressure. This means that the metal particles form such a tight seal for the blowing agent powder particles that there is no expansion of the blowing agent, even at elevated temperature.
- the metal body produced in this way is dimensionally stable and retains its shape even at elevated temperatures and without pressure.
- the invention provides the addition of reinforcing components in the form of fibers or particles made of suitable materials, such as Ceramics before. These are advantageously added to the starting powders.
- the starting materials and the foaming parameters should be selected so that a good wetting of the reinforcement components by the metal matrix is guaranteed. It is advantageous if the fibers or particles are coated (e.g. with nickel). This ensures that the forces from the metal matrix are introduced into the particle / fiber.
- the method according to the invention provides that if the reinforcement is to be aligned along a preferred direction, this can be brought about by reshaping the foamable body. This transformation can e.g. by extrusion or rolling.
- the invention provides that two or more blowing agents with different decomposition temperatures are mixed into the metal powder. If a foamable body produced from this powder mixture is heated, the blowing agent with the lower temperature first decomposes and causes foaming. If the temperature is increased further, the blowing agent decomposes at the next higher decomposition temperature and causes further foaming. The foaming takes place in two or more stages.
- Such expandable, expandable metal bodies are used in particular, for example in fire protection.
- a particular advantage of the method according to the invention is that it is now possible to produce bodies which have a continuously or discontinuously changing density over their cross section, so-called graded materials.
- An increase in density toward the edge of the foamable body is preferred since this is where the primary stress occurs.
- a foamable body with a solid cover layer or a cover layer with a higher density offers advantages in terms of joining and joining with materials of the same or a different type. If the process of hot compacting is carried out in a mold, the powder mixture being wholly or partly surrounded by a metal or metal powder which does not contain a blowing agent, the blowing agent-free metal layers each form a solid, less porous outer layer or bottom layer or cover layer, between which there is a layer.
- foamable metal body which forms a highly porous metal foam layer after a foaming process.
- the foamable metal body produced by the process according to the invention can be used to produce a porous metal body. This is done by heating the foamable body to a temperature above the decomposition temperature of the blowing agent, which releases the same gas, and then cooling the body thus foamed. It is advantageous if the heating temperature is in the temperature range of the melting point of the metal used or above or in the solidus-liquidus interval of the alloy used.
- the heating rates of the semi-finished product during the foaming process are within normal limits, i.e. they are about 1 - 5 ° C per sec. High heating rates are not necessary because the gas cannot escape anyway. These usual heating rates are a further feature of the invention which leads to cost reduction. It goes without saying that in individual cases, e.g. to achieve small pore size, a high heating rate is advantageous.
- the inventive method further provides that after the foaming, the cooling rate must be selected so that no further foaming takes place from the inside of the body. With larger parts, the cooling rate must be chosen higher than with smaller ones, it must be adapted to the sample volume.
- a further advantageous embodiment of the method according to the invention provides that the density of the porous metal body can be varied by suitable selection of the foaming parameters time and temperature. If the foaming process is interrupted after a certain time at constant temperature, a certain density results. If the foaming process is continued for a longer time, this leads to different density values. It is important that certain limit values are observed: A maximum permissible foaming time, after which the already foamed material collapses, should be observed.
- the semi-finished product is foamed freely if no final shape is specified.
- the foaming can also take place in a mold.
- the finished porous metal body takes on the predetermined shape. It is therefore possible by the method according to the invention to also produce molded parts from porous metallic material.
- the metal body produced by foaming the semi-finished product obtained in this way has a predominantly closed porosity; the metal bodies float in the water.
- the resulting pores are evenly distributed throughout the metal body, they are also approximately uniform in size.
- the pore size can be adjusted during the foaming process by the time in which the metal foam can expand.
- the density of the porous metal body can be adapted to the requirements. As already described, this can be done not only by a suitable choice of the foaming parameters, but also by a suitable addition of the blowing agent.
- the strength and ductility of the porous metal body can be varied by selecting the parameters of temperature and time at which the foaming takes place. The two properties mentioned are influenced in any case by setting the desired pore size. It goes without saying that the properties of the finished metallic body depend above all on the choice of the starting materials.
- the deformability of the compacted semi-finished product is comparable to that of the solid starting metal.
- the semifinished product does not differ in appearance from that of the starting metal.
- the semifinished product can accordingly be processed into semifinished products of any geometry by known forming processes. It can be formed into sheets, profiles, etc. It can be used in almost any deformation process that takes the decomposition temperature into account. Only when the semi-finished product is heated to temperatures above the decomposition temperature of the blowing agent used does the foaming take place.
- a body produced according to the embodiment according to claim 6 is used to produce a porous metal body, after the foaming, a slightly porous outer layer surrounds a core made of highly porous foamed metal.
- Another use of the foamable body is the production of metal foams with a solid outer layer.
- the foamable body is first formed into a cylindrical rod by means of suitable shaping processes, this is introduced into a cylindrical tube and then foamed. This process can also be applied to other hollow profiles and molded parts. It is also possible to produce an integral foam body in that the expansion of the foamable body is hindered by solid walls.
- the pores near the surface are flattened by the internal pressure of the material foaming from the inside, and the initially highly porous outer edge of the molded part is compressed again.
- the thickness of this outer edge which has an increased density relative to the inside of the workpiece, can be controlled over the period of time in which, after contact with the walls, the material can foam further from the inside before the mold is finally cooled, whereby the foaming is stopped.
- the surface of the foamable body according to the invention or of the expanding foam is prevented by cooling from foaming as much as in the non-cooled areas.
- the cooling can be effected by suitable cooling media or by contact with cold materials.
- the cooling can act on the entire surface or only on partial areas.
- Integral foam-like metal bodies can be produced by pasting a metal foam with identical or alien materials. In addition to gluing, other joining methods and fastening methods (soldering, welding, screwing) can also be used. Finally, a metal foam can also be cast with metal melts or other materials that are initially liquid and then solidify or harden.
- a powder mixture of the composition AlMg1 with 0.2 percent by weight titanium hydride was placed in a hot pressing device and heated to a temperature of 500 ° C. under a pressure of 60 MPa. After a holding time of 30 minutes it was the sample is relieved, removed and cooled. Foaming was carried out by heating the sample in a laboratory oven preheated to 800 ° C. The density of the resulting aluminum foam was approximately 0.55 g / cm 3 .
- a powder mixture of the composition AlMg2 with 0.2 percent by weight of titanium hydride was compacted in the hot press under a pressure of 100 MPa and a temperature of 550 ° C. and relieved and removed after a holding time of 20 minutes.
- the subsequent foaming of the sample was carried out by heating the sample in a laboratory oven preheated to 800 ° C. and resulted in a foam with a density of 0.6 g / cm 3 .
- a powder mixture of pure aluminum powder and 1.5 percent by weight sodium bicarbonate (NaHCO3) was placed in a hot press device and heated to a temperature of 500 ° C. under a pressure of 150 MPa. After a holding time of 20 minutes, the sample was removed and foamed in an oven preheated to 850 ° C. The density of the resulting aluminum foam was 1.3 g / cm 3 .
- a powder mixture of pure aluminum powder and 2 weight percent aluminum hydroxide was filled in the hot press device and heated to a temperature of 500 ° C. under a pressure of 150 MPa. After a holding time of 25 minutes, the sample was removed and foamed in an oven preheated to 850 ° C. The density of the resulting aluminum foam was 0.8 g / cm 3 .
- a bronze powder of the composition 60% Cu and 40% Sn was mixed with 1% by weight of titanium hydride powder and this powder mixture was compacted at a temperature of 500 ° C. and a pressure of 100 MPa for 30 minutes. The compacted sample was then heated in an oven preheated to 800 ° C. and thereby foamed. The resulting bronze foam had a density of about 1.4 g / cm 3 .
- a mixture of 70 percent by weight copper powder and 30 percent by weight aluminum powder was mixed with 1 percent by weight titanium hydride and this powder mixture was compacted at a temperature of 500 ° C. and a pressure of 100 MPa for 20 minutes.
- the compacted sample was then opened in one 950 ° C preheated oven heated and thereby foamed.
- the density of this foamed copper alloy was less than 1 g / cm 3 .
- a layer 2 of propellant-free metal powder is poured into a hot press device 1, then a layer of propellant-containing metal powder 3 and finally again a layer 2 'of propellant-free metal powder.
- a compact 4 is obtained which, if necessary, can be shaped into a further body 5. This body can then also be foamed into a body 6.
- the blowing agent-free metal layers each form a solid, less porous bottom layer 7 or covering layer 8, between which there is a highly porous metal foam layer 9.
- FIG. 2 Another method for producing integral foams is shown in FIG. 2.
- the opening 19 of an extrusion tool 11 is initially covered by a disk made of solid metal piece 12.
- the pressing chamber of the tool is filled with metal powder 13 containing blowing agent and the powder mixture is pressurized to about 60 MPa.
- the latter is compacted by heating the tool together with the powder mixture 13.
- the pressing pressure is increased so far that the central region of the solid metal plate 12, which closes the opening 10 of the tool, flows through this opening 10 and thus releases it.
- the foamable semi-finished product 14 is pressed together with the solid material 12 through the opening 10, the solid material 12 enclosing the foamable body in the form of an outer layer 13.
- a slightly porous layer surrounds a core made of highly porous foamed metal.
- FIG. 3 shows a schematic representation of the method according to the invention and an application: a metal powder 15 is mixed intensively with a blowing agent powder 16. The mixture 17 thus obtained is compacted in a press 18 under the influence of pressure and temperature. After compacting, a semifinished product 19 is produced.
- the semifinished product 19 can be formed into a sheet 20. The sheet 20 can then be foamed to a finished porous metal body 21 by the action of temperature.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Powder Metallurgy (AREA)
- Laminated Bodies (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19904018360 DE4018360C1 (en) | 1990-06-08 | 1990-06-08 | Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal |
DE4018360 | 1990-06-08 | ||
DE4101630A DE4101630A1 (de) | 1990-06-08 | 1991-01-21 | Verfahren zur herstellung aufschaeumbarer metallkoerper und verwendung derselben |
DE4101630 | 1991-01-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0460392A1 EP0460392A1 (de) | 1991-12-11 |
EP0460392B1 true EP0460392B1 (de) | 1996-09-04 |
Family
ID=25893963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91106755A Expired - Lifetime EP0460392B1 (de) | 1990-06-08 | 1991-04-26 | Verfahren zur Herstellung aufschäumbarer Metallkörper |
Country Status (6)
Country | Link |
---|---|
US (1) | US5151246A (en:Method) |
EP (1) | EP0460392B1 (en:Method) |
JP (1) | JP2898437B2 (en:Method) |
AT (1) | ATE142135T1 (en:Method) |
CA (1) | CA2044120C (en:Method) |
DE (2) | DE4101630A1 (en:Method) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5972285A (en) * | 1997-06-10 | 1999-10-26 | Th. Goldschmidt Ag | Foamable metal articles |
DE19933870C1 (de) * | 1999-07-23 | 2001-02-22 | Schunk Sintermetalltechnik Gmb | Verfahren zur Herstellung eines metallischen Verbundwerkstoffkörpers sowie Verbundwerkstoffkörper |
CN106862572A (zh) * | 2017-01-24 | 2017-06-20 | 东莞市佳乾新材料科技有限公司 | 一种建筑用抗爆泡沫铝夹层板及其制备方法 |
Families Citing this family (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4206303C1 (en:Method) * | 1992-02-28 | 1993-06-17 | Mepura Metallpulver Ges.M.B.H., Ranshofen, At | |
CH686413A5 (de) * | 1992-06-09 | 1996-03-29 | Matec Holding Ag | Verfahren zur Herstellung von Formteilen und Anwendung desselben. |
DE4424157C2 (de) * | 1993-07-29 | 1996-08-14 | Fraunhofer Ges Forschung | Verfahren zur Herstellung poröser metallischer Werkstoffe mit anisotropen thermischen und elektrischen Leitfähigkeiten |
DE4426627C2 (de) * | 1993-07-29 | 1997-09-25 | Fraunhofer Ges Forschung | Verfahren zur Herstellung eines metallischen Verbundwerkstoffes |
DE19651197C2 (de) * | 1995-12-15 | 1999-10-28 | Susan Dietzschold | Werkstoff zum Herstellen poröser Metallkörper |
FR2742856B1 (fr) * | 1995-12-21 | 1998-01-30 | Renault | Echangeur de chaleur pour vehicule automobile comportant une structure maillee tridimensionnelle permeable |
DE19612781C1 (de) * | 1996-03-29 | 1997-08-21 | Karmann Gmbh W | Bauteil aus metallischem Schaumwerkstoff, Verfahren zum Endformen dieses Bauteils und Vorrichtung zur Ausführung des Verfahrens |
AT406027B (de) * | 1996-04-19 | 2000-01-25 | Leichtmetallguss Kokillenbau W | Verfahren zur herstellung von formteilen aus metallschaum |
AT406649B (de) * | 1996-05-02 | 2000-07-25 | Mepura Metallpulver | Verfahren zur herstellung von porösen matrixmaterialien, insbesondere formkörpern, auf basis von metallen, und von halbzeug dafür |
DE19734394C2 (de) * | 1996-08-13 | 2003-06-18 | Friedrich Wilhelm Bessel Inst | Verfahren und Vorrichtung zur Herstellung von Metallschaum |
RU2171732C2 (ru) * | 1997-01-09 | 2001-08-10 | Московская государственная академия тонкой химической технологии им. М.В. Ломоносова | Способ изготовления пористых изделий из тугоплавких материалов |
AT406557B (de) * | 1997-02-28 | 2000-06-26 | Machner & Saurer Gmbh | Verfahren zur herstellung von metallkörpern mit innerer porosität |
DE19709672C2 (de) * | 1997-03-11 | 1998-12-24 | Koenig & Bauer Albert Ag | Zylinder für Druckmaschinen |
DE19717066C1 (de) * | 1997-04-23 | 1998-02-26 | Daimler Benz Ag | Verfahren zum Trennen stranggepreßter Hohlprofile und Strangpreßvorrichtung |
WO1999011832A1 (de) | 1997-08-30 | 1999-03-11 | Honsel Ag | Legierung zum herstellen von metallschaumkörpern unter verwendung eines pulvers mit keimbildenden zusätzen |
DE19746164B4 (de) * | 1997-10-18 | 2005-09-15 | Volkswagen Ag | Materialverbund mit einem zumindest abschnittsweise hohlen Profil und Verwendung desselben |
RU2121904C1 (ru) * | 1997-11-13 | 1998-11-20 | Общество с ограниченной ответственностью "Алюминиевые спеченные порошковые сплавы" | Способ производства пористых полуфабрикатов из порошковых алюминиевых сплавов |
DE19847273B4 (de) * | 1998-01-02 | 2004-06-17 | Wilhelm Karmann Gmbh | Verfahren zum Endformen eines aus einem im wesentlichen flächigen Halbzeug gebildeten Bauteils |
DE19813176C2 (de) * | 1998-03-25 | 2000-08-24 | Fraunhofer Ges Forschung | Verfahren zur Herstellung von Verbundwerkstoffbauteilen |
DE19813554A1 (de) * | 1998-03-27 | 1999-09-30 | Vaw Ver Aluminium Werke Ag | Verbundblech oder -band in Sandwichstruktur sowie Verfahren zu seiner Herstellung |
JP3508604B2 (ja) * | 1998-04-08 | 2004-03-22 | 三菱マテリアル株式会社 | 高強度スポンジ状焼成金属複合板の製造方法 |
AT408317B (de) * | 1998-04-09 | 2001-10-25 | Mepura Metallpulver | Verfahren zur herstellung von schaummetall-formkörpern |
WO1999064287A1 (de) * | 1998-06-09 | 1999-12-16 | M.I.M. Hüttenwerke Duisburg Gmbh | Verfahren zur herstellung einer verstärkung in einem hohlraum eines kfz-bauteils |
RU2138367C1 (ru) * | 1998-07-27 | 1999-09-27 | Открытое акционерное общество "Всероссийский институт легких сплавов" | Способ получения пористых полуфабрикатов из порошков алюминиевых сплавов |
EP1105672A1 (en) * | 1998-08-06 | 2001-06-13 | The BOC Group plc | Pressure vessel under hydrostatic pressure |
US6168072B1 (en) * | 1998-10-21 | 2001-01-02 | The Boeing Company | Expansion agent assisted diffusion bonding |
DE19849600C1 (de) * | 1998-10-28 | 2001-02-22 | Schunk Sintermetalltechnik Gmb | Verfahren zur Herstellung von einem metallischen Verbundwerkstoff |
DE19852277C2 (de) * | 1998-11-13 | 2000-12-14 | Schunk Sintermetalltechnik Gmb | Verfahren zur Herstellung eines metallischen Verbundwerkstoffes sowie Halbzeug für einen solchen |
RU2153957C2 (ru) * | 1998-11-18 | 2000-08-10 | Арбузова Лариса Алексеевна | Способ получения пористых полуфабрикатов из порошков алюминиевых сплавов |
RU2139774C1 (ru) * | 1998-11-18 | 1999-10-20 | Арбузова Лариса Алексеевна | Способ получения пористых изделий из порошков алюминиевых сплавов |
DE19854175C1 (de) * | 1998-11-24 | 2000-03-23 | Fritz Michael Streuber | Metallschaumfügeverfahren |
DE19854173C2 (de) * | 1998-11-24 | 2000-11-23 | Fritz Michael Streuber | Metallschaumformkörper |
EP1008406A3 (de) * | 1998-12-09 | 2000-09-06 | Bayerische Motoren Werke Aktiengesellschaft | Herstellverfahren für ein mit einer Leichtmetall-Schaumstruktur ausgefülltes Hohlteil |
GB9903276D0 (en) * | 1999-02-12 | 1999-04-07 | Boc Group Plc | Reticulated foam structutes |
DE19907855C1 (de) * | 1999-02-24 | 2000-09-21 | Goldschmidt Ag Th | Herstellung von Metallschäumen |
DE19908867A1 (de) * | 1999-03-01 | 2000-09-07 | Arved Huebler | Verbundkörper sowie Verfahren zum Herstellen eines Verbundkörpers |
ATE256853T1 (de) | 1999-03-10 | 2004-01-15 | Fraunhofer Ges Forschung | Verwendung von metallschäumen in panzerungssystemen |
US6698331B1 (en) | 1999-03-10 | 2004-03-02 | Fraunhofer Usa, Inc. | Use of metal foams in armor systems |
RU2154548C1 (ru) * | 1999-03-18 | 2000-08-20 | Арбузова Лариса Алексеевна | Способ получения пористых полуфабрикатов и готовых изделий из порошков алюминиевых сплавов (варианты) |
DE19919574A1 (de) * | 1999-04-29 | 2000-11-30 | Lucas Ind Plc | Kolben und Verfahren zur Herstellung eines solchen |
ATE228907T1 (de) | 1999-05-19 | 2002-12-15 | Fraunhofer Ges Forschung | Bauteil aus metallschaum enthaltenden verbundwerkstoff und verfahren zu seiner herstellung |
GB9912215D0 (en) * | 1999-05-26 | 1999-07-28 | Boc Group Plc | Reticulated foam structures |
DE19930982C1 (de) * | 1999-07-05 | 2001-03-08 | Honsel Ag | Verfahren zum Herstellen von Verbundblechen durch Walzen |
RU2193948C2 (ru) * | 1999-07-06 | 2002-12-10 | Лебедев Виктор Иванович | Способ получения пористого металла и изделий из него |
RU2179499C2 (ru) * | 1999-08-20 | 2002-02-20 | Федеральное государственное унитарное предприятие Конструкторское бюро химавтоматики | Способ получения пористых изделий заданной проницаемости и конфигурации |
DE19941278A1 (de) * | 1999-08-31 | 2001-03-08 | Bernd Fischer | Struktur zur Absorption mechanischer Beanspruchungen |
DE19942916A1 (de) | 1999-09-08 | 2001-03-15 | Linde Gas Ag | Herstellen von aufschäumbaren Metallkörpern und Metallschäumen |
RU2180288C2 (ru) * | 1999-09-21 | 2002-03-10 | Полькин Игорь Степанович | Легкий энерго- и звукопоглощающий, теплоизолирующий материал |
US6481911B1 (en) | 1999-11-24 | 2002-11-19 | Fritz Michael Streuber | Jointing method for joining preformed bodies |
US6605368B2 (en) | 1999-12-21 | 2003-08-12 | Laura Lisa Smith | Cookware vessel |
NL1014116C2 (nl) * | 2000-01-19 | 2001-07-20 | Corus Aluminium Walzprod Gmbh | Werkwijze en inrichting voor het vormen van een laminaat van gecomprimeerd metaalpoeder met een schuimmiddel tussen twee metaallagen, en daarmee gevormd produkt. |
DE10024776C1 (de) | 2000-05-19 | 2001-09-06 | Goldschmidt Ag Th | Verwendung von Metallhydrid-behandeltem Zink in der metallorganischen Synthese |
US6464933B1 (en) * | 2000-06-29 | 2002-10-15 | Ford Global Technologies, Inc. | Forming metal foam structures |
DE10045494C2 (de) * | 2000-09-13 | 2002-07-18 | Neue Materialien Fuerth Gmbh | Verfahren zum Herstellen eines Formkörpers aus Metallschaum |
DE10049058B4 (de) * | 2000-10-04 | 2005-07-28 | Honsel Gmbh & Co Kg | Herstellen von Schweißverbindungen zwischen Metallbändern, -platten, -barren und/oder -profilen |
NL1016713C2 (nl) * | 2000-11-27 | 2002-05-29 | Stork Screens Bv | Warmtewisselaar en een dergelijke warmtewisselaar omvattende thermo-akoestische omvorminrichting. |
CA2344088A1 (en) * | 2001-01-16 | 2002-07-16 | Unknown | A method and an apparatus for production of a foam metal |
US6852272B2 (en) * | 2001-03-07 | 2005-02-08 | Advanced Ceramics Research, Inc. | Method for preparation of metallic and ceramic foam products and products made |
US6524522B2 (en) | 2001-03-07 | 2003-02-25 | Advanced Ceramics Research, Inc. | Method for preparation of metallic foam products and products made |
DE10127716A1 (de) * | 2001-06-07 | 2002-12-12 | Goldschmidt Ag Th | Verfahren zur Herstellung von Metall/Metallschaum-Verbundbauteilen |
RU2202454C2 (ru) * | 2001-06-29 | 2003-04-20 | Открытое акционерное общество "Всероссийский институт легких сплавов" | Способ соединения заготовок из пеноалюминия |
RU2202443C2 (ru) * | 2001-06-29 | 2003-04-20 | Открытое акционерное общество "Всероссийский институт легких сплавов" | Способ получения полуфабрикатов из пеноалюминия |
RU2200647C1 (ru) * | 2001-07-17 | 2003-03-20 | Литвинцев Александр Иванович | Способ производства пористых полуфабрикатов из порошков алюминиевых сплавов |
DE10136370B4 (de) * | 2001-07-26 | 2005-03-31 | Schwingel, Dirk, Dr. | Verbundwerkstoff und daraus hergestelltes Bauteil bestehend aus einem aufgeschäumten Metallkern und massiven Deckblechen, sowie Verfahren zur Herstellung |
US6808003B2 (en) * | 2001-08-07 | 2004-10-26 | Alcoa Inc. | Coextruded products of aluminum foam and skin material |
US6660224B2 (en) * | 2001-08-16 | 2003-12-09 | National Research Council Of Canada | Method of making open cell material |
US7108828B2 (en) * | 2001-08-27 | 2006-09-19 | National Research Council Of Canada | Method of making open cell material |
US6689509B2 (en) * | 2001-09-20 | 2004-02-10 | Daramic, Inc. | Laminated multilayer separator for lead-acid batteries |
DE10161348A1 (de) * | 2001-12-13 | 2003-06-26 | Trw Automotive Safety Sys Gmbh | Fahrzeuglenkrad |
JP3805694B2 (ja) | 2002-02-15 | 2006-08-02 | 本田技研工業株式会社 | 発泡/多孔質金属の製造方法 |
DE10215086B4 (de) * | 2002-02-18 | 2004-01-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Aufschäumbarer Metallkörper, Verfahren zu seiner Herstellung und seine Verwendung |
US7261141B2 (en) * | 2002-02-22 | 2007-08-28 | Hideo Nakajima | Metal porous body manufacturing method |
US20040126583A1 (en) * | 2002-11-19 | 2004-07-01 | Takashi Nakamura | Foaming agent for manufacturing a foamed or porous metal |
JP4233018B2 (ja) * | 2003-01-17 | 2009-03-04 | 本田技研工業株式会社 | 発泡体を充填した閉断面構造体の製造方法 |
AT6727U1 (de) * | 2003-01-30 | 2004-03-25 | Plansee Ag | Verfahren zur herstellung poröser sinterformkörper |
EP1468765A1 (en) * | 2003-04-16 | 2004-10-20 | Corus Technology BV | Preform for foamed sheet product and foamed product manufactured therefrom |
US7516529B2 (en) * | 2003-12-17 | 2009-04-14 | General Motors Corporation | Method for producing in situ metallic foam components |
DE10359502A1 (de) * | 2003-12-18 | 2005-07-14 | Bayerische Motoren Werke Ag | Verfahren zur Herstellung eines dreidimensionalen, flächigen Bauteils |
US7481968B2 (en) | 2004-03-17 | 2009-01-27 | National Institute Of Advanced Industrial Science And Technology | Method for preparing a sintered porous body of metal or ceramic |
US7597840B2 (en) * | 2005-01-21 | 2009-10-06 | California Institute Of Technology | Production of amorphous metallic foam by powder consolidation |
US20060269434A1 (en) * | 2005-05-31 | 2006-11-30 | Ecer Gunes M | Process for porous materials and property improvement methods for the same |
DE102005037305B4 (de) * | 2005-08-02 | 2007-05-16 | Hahn Meitner Inst Berlin Gmbh | Verfahren zur pulvermetallurgischen Herstellung von Metallschaumstoff und von Teilen aus Metallschaumstoff |
DE102005037069B4 (de) * | 2005-08-05 | 2010-03-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Poröse Verbundwerkstoffe auf Basis eines Metalls und Verfahren zu deren Herstellung |
US20070154731A1 (en) * | 2005-12-29 | 2007-07-05 | Serguei Vatchiants | Aluminum-based composite materials and methods of preparation thereof |
DE102006009917B4 (de) * | 2006-03-03 | 2014-04-10 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Metall-Aerogel-Metallschaum-Verbundwerkstoff |
DE102006018381A1 (de) * | 2006-04-20 | 2007-10-25 | Siemens Ag | Verfahren zur Erhöhung der Steifigkeit eines einen Hohlraum aufweisenden Bauteils und danach hergestelltes Bauteil |
DE102006020860B4 (de) * | 2006-05-04 | 2008-02-07 | Alulight International Gmbh | Verfahren zur Herstellung von Verbundkörpern sowie danach hergestellte Verbundkörper |
AT504305B1 (de) * | 2006-10-05 | 2009-09-15 | H Tte Klein Reichenbach Ges M | Mehrschichtiger metallformkírper mit einer metallschaummatrix und dessen verwendung |
US20090326657A1 (en) * | 2008-06-25 | 2009-12-31 | Alexander Grinberg | Pliable Artificial Disc Endplate |
KR101111286B1 (ko) * | 2008-08-22 | 2012-03-14 | 한국생산기술연구원 | 발포체, 이 발포체의 제조장치, 이 발포체를 이용한 발포금속의 제조방법 및 발포금속 제조장치 |
DE102008044946B4 (de) * | 2008-08-29 | 2022-06-15 | Evonik Superabsorber Gmbh | Einsatz von Schaumkörpern in Oxidations-Reaktoren zur Herstellung ungesättigter Carbonsäuren |
US9301390B2 (en) | 2009-03-30 | 2016-03-29 | Tokuyama Corporation | Process for producing metallized substrate, and metallized substrate |
EP2415543B1 (en) * | 2009-03-30 | 2021-07-28 | Mitsubishi Materials Corporation | Process for producing porous sintered aluminum, and porous sintered aluminum |
JP5402380B2 (ja) | 2009-03-30 | 2014-01-29 | 三菱マテリアル株式会社 | アルミニウム多孔質焼結体の製造方法 |
JP5428546B2 (ja) | 2009-06-04 | 2014-02-26 | 三菱マテリアル株式会社 | アルミニウム多孔質焼結体を有するアルミニウム複合体の製造方法 |
JP5402381B2 (ja) * | 2009-08-11 | 2014-01-29 | 三菱マテリアル株式会社 | アルミニウム多孔質焼結体の製造方法 |
DE102009040258A1 (de) | 2009-09-04 | 2011-03-24 | Jaeckel, Manfred, Dipl.-Ing. | Verfahren zur Herstellung eines zellularen Sinterformkörpers |
US8820610B2 (en) | 2009-10-14 | 2014-09-02 | National University Corporation Gunma University | Using friction stir processing to form foamed metal precursors |
US9374893B2 (en) * | 2010-03-02 | 2016-06-21 | Tokuyama Corporation | Production method of metallized substrate |
IT1399822B1 (it) * | 2010-03-23 | 2013-05-03 | Matteazzi | Metodo per ottenere sistemi porosi |
DE102010022598B3 (de) | 2010-05-31 | 2011-12-01 | Siemens Aktiengesellschaft | Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist |
DE102010022599B3 (de) * | 2010-05-31 | 2011-12-01 | Siemens Aktiengesellschaft | Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist |
FR2961894B1 (fr) * | 2010-06-24 | 2013-09-13 | Valeo Vision | Dispositif a echange de chaleur, notamment pour vehicule automobile |
JP2012100846A (ja) * | 2010-11-10 | 2012-05-31 | Mitsubishi Materials Corp | 多孔質インプラント素材 |
JP5720189B2 (ja) * | 2010-11-10 | 2015-05-20 | 三菱マテリアル株式会社 | 多孔質インプラント素材 |
UA112633C2 (uk) * | 2013-01-28 | 2016-10-10 | Андрій Євгенійович Малашко | Спосіб виготовлення робочого органа технологічного устаткування зі зносостійким елементом, що взаємодіє з абразивним середовищем |
US10295309B2 (en) | 2013-07-08 | 2019-05-21 | Loukus Technologies, Inc. | Core structured components and containers |
JP5825311B2 (ja) * | 2013-09-06 | 2015-12-02 | 三菱マテリアル株式会社 | アルミニウム多孔質焼結体 |
EP3155629B1 (de) * | 2014-08-06 | 2018-10-03 | Siemens Aktiengesellschaft | Elektrische einrichtung mit einer elektrischen sicherungsanordnung mit einem metallschaumstoff und verfahren zum unterbrechen eines elektrischen stromes durch die einrichtung |
DE102015205829B4 (de) * | 2015-03-31 | 2017-01-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Herstellung von geschäumten Sandwichelementen |
CH711353A2 (fr) * | 2015-07-24 | 2017-01-31 | Swatch Group Res & Dev Ltd | Assemblage de pièce en matériau fragile. |
US10590529B2 (en) * | 2015-11-20 | 2020-03-17 | Fourté International, Sdn. Bhd | Metal foams and methods of manufacture |
WO2017097512A1 (en) * | 2015-12-07 | 2017-06-15 | Dynaenergetics Gmbh & Co. Kg | Shaped charge metal foam package |
CN105642898B (zh) * | 2016-01-14 | 2017-07-25 | 哈尔滨工程大学 | 一种采用激光3d打印技术制造封闭孔结构材料的方法 |
WO2018098585A1 (en) | 2016-12-02 | 2018-06-07 | Polyvalor, Limited Partnership | Openly porous acoustic foam, process for manufacture and uses thereof |
DE102017100510A1 (de) * | 2017-01-12 | 2018-07-12 | Lisa Dräxlmaier GmbH | Fahrzeug-bauteil mit geschäumter elektrischer leitstruktur und herstellverfahren für ein solches |
DE102017121513A1 (de) * | 2017-09-15 | 2019-03-21 | Pohltec Metalfoam Gmbh | Verfahren zum Schäumen von Metall im Flüssigkeitsbad |
WO2019152918A1 (en) * | 2018-02-02 | 2019-08-08 | Santeri Holdings LLC | Identifiable physical form, sales instruments, and information marketplace for commodity trades |
CN111360259A (zh) * | 2020-03-10 | 2020-07-03 | 中信戴卡股份有限公司 | 一种异形泡沫铝填充铝合金空腔铸件的制备方法 |
DE102021126310A1 (de) | 2021-10-11 | 2023-04-13 | HAVEL metal foam GmbH | Verfahren und Vorrichtung zum Herstellen einer aufschäumbaren, bandförmigen Presspulver-Metallplatine mittels Kaltwalzen sowie Presspulver-Metallplatine |
US12221275B2 (en) | 2021-10-29 | 2025-02-11 | DynaEnergetics Europe GmbH | Mobile perforating bank unit and modular storage container |
US20230160404A1 (en) * | 2021-11-22 | 2023-05-25 | Mott Corporation | Porous flow restrictor and methods of manufacture thereof |
CN114939674B (zh) * | 2022-05-06 | 2024-04-05 | 上海汉邦联航激光科技有限公司 | 多孔隙率泡沫铜的选区激光熔化成型方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3087807A (en) * | 1959-12-04 | 1963-04-30 | United Aircraft Corp | Method of making foamed metal |
GB939612A (en) * | 1960-02-04 | 1963-10-16 | Dow Chemical Co | Shaped metal and process for its production |
US3848666A (en) * | 1970-11-19 | 1974-11-19 | Ethyl Corp | Foamed metal bodies |
US3941182A (en) * | 1971-10-29 | 1976-03-02 | Johan Bjorksten | Continuous process for preparing unidirectionally reinforced metal foam |
US3940262A (en) * | 1972-03-16 | 1976-02-24 | Ethyl Corporation | Reinforced foamed metal |
US3929425A (en) * | 1973-02-26 | 1975-12-30 | Ethyl Corp | Foamed metal bodies |
JPS57185902A (en) * | 1981-05-11 | 1982-11-16 | Nippon Seiko Kk | Sintering method for porous body |
JPS60149739A (ja) * | 1984-08-06 | 1985-08-07 | Res Inst Iron Steel Tohoku Univ | シリコンカ−バイド繊維強化ニツケル複合材料の製造方法 |
JPH01298123A (ja) * | 1988-05-27 | 1989-12-01 | Sumitomo Electric Ind Ltd | 多孔質アルミニウム合金の製造方法 |
JPH0617524B2 (ja) * | 1988-11-08 | 1994-03-09 | 勝廣 西山 | マグネシウム―チタン系焼結合金およびその製造方法 |
US4973358A (en) * | 1989-09-06 | 1990-11-27 | Alcan International Limited | Method of producing lightweight foamed metal |
-
1991
- 1991-01-21 DE DE4101630A patent/DE4101630A1/de active Granted
- 1991-04-26 EP EP91106755A patent/EP0460392B1/de not_active Expired - Lifetime
- 1991-04-26 AT AT91106755T patent/ATE142135T1/de not_active IP Right Cessation
- 1991-04-26 DE DE59108133T patent/DE59108133D1/de not_active Expired - Lifetime
- 1991-05-31 US US07/708,350 patent/US5151246A/en not_active Expired - Lifetime
- 1991-06-06 JP JP3134868A patent/JP2898437B2/ja not_active Expired - Lifetime
- 1991-06-07 CA CA002044120A patent/CA2044120C/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5972285A (en) * | 1997-06-10 | 1999-10-26 | Th. Goldschmidt Ag | Foamable metal articles |
DE19933870C1 (de) * | 1999-07-23 | 2001-02-22 | Schunk Sintermetalltechnik Gmb | Verfahren zur Herstellung eines metallischen Verbundwerkstoffkörpers sowie Verbundwerkstoffkörper |
CN106862572A (zh) * | 2017-01-24 | 2017-06-20 | 东莞市佳乾新材料科技有限公司 | 一种建筑用抗爆泡沫铝夹层板及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
DE4101630C2 (en:Method) | 1992-04-16 |
JPH04231403A (ja) | 1992-08-20 |
JP2898437B2 (ja) | 1999-06-02 |
CA2044120C (en) | 2001-05-01 |
DE4101630A1 (de) | 1991-12-12 |
US5151246A (en) | 1992-09-29 |
CA2044120A1 (en) | 1991-12-09 |
ATE142135T1 (de) | 1996-09-15 |
EP0460392A1 (de) | 1991-12-11 |
DE59108133D1 (de) | 1996-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0460392B1 (de) | Verfahren zur Herstellung aufschäumbarer Metallkörper | |
DE4018360C1 (en) | Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal | |
EP0884123B1 (de) | Schäumbarer Metallkörper | |
EP1915226B1 (de) | Verfahren zur pulvermetallurgischen herstellung von metallschaumstoff und von teilen aus metallschaumstoff | |
EP1392875A1 (de) | Verfahren zur herstellung von metall-/metallschaum-verbundbauteilen | |
EP1356131B1 (de) | Verfahren zur herstellung von metallschaum und danach hergestellter metallkörper | |
EP1017864B1 (de) | Legierung zum herstellen von metallschaumkörpern unter verwendung eines pulvers mit keimbildenden zusätzen | |
AT406649B (de) | Verfahren zur herstellung von porösen matrixmaterialien, insbesondere formkörpern, auf basis von metallen, und von halbzeug dafür | |
DE102006020860A1 (de) | Verfahren zur Herstellung von Verbundkörpern sowie danach hergestellte Verbundkörper | |
DE4424157C2 (de) | Verfahren zur Herstellung poröser metallischer Werkstoffe mit anisotropen thermischen und elektrischen Leitfähigkeiten | |
EP1000690B1 (de) | Verfahren zur Herstellung eines aufschäumbaren Halbzeuges sowie Halbzeug | |
DE102007006156B3 (de) | Verfahren zur Herstellung eines Verbundkörpers und Zwischenprodukt zur Herstellung eines Verbundkörpers | |
EP2427284B1 (de) | Pulvermetallurgisches verfahren zur herstellung von metallschaum | |
EP3661677A1 (de) | Verfahren zum schäumen von metall im flüssigkeitsbad | |
DE19810979C2 (de) | Aluminiumlegierung zum Herstellen von Aluminiumschaumkörpern unter Verwendung eines Pulvers mit keimbildenden Zusätzen | |
DE102017121512A1 (de) | Verfahren zum Schäumen von Metall mit Wärmekontakt | |
DE3421858C2 (en:Method) | ||
EP0693564B1 (de) | Verfahren zur Herstellung von Körpern aus intermetallischen Phasen aus pulverförmigen, duktilen Komponenten | |
EP2143809B1 (de) | Metallschäume aus einer Aluminiumlegierung, ihre Verwendung und Verfahren zur Herstellung | |
DE3502504A1 (de) | Verfahren zur herstellung eines schwammartigen metallformkoerpers | |
WO2019053181A1 (de) | Verfahren zum schäumen von metall mit wärmekontakt | |
WO2003069002A1 (de) | Aufschäumbarer metallkörper, verfahren zu seiner herstellung und seine verwendung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19920515 |
|
17Q | First examination report despatched |
Effective date: 19921117 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19960904 Ref country code: FR Effective date: 19960904 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960904 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19960904 Ref country code: DK Effective date: 19960904 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960904 Ref country code: GB Effective date: 19960904 |
|
REF | Corresponds to: |
Ref document number: 142135 Country of ref document: AT Date of ref document: 19960915 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SCHMAUDER & WANN PATENTANWALTSBUERO, INHABER KLAUS |
|
REF | Corresponds to: |
Ref document number: 59108133 Country of ref document: DE Date of ref document: 19961010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19961204 |
|
EN | Fr: translation not filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 19960904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970430 Ref country code: BE Effective date: 19970430 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWA Free format text: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#LEONRODSTRASSE 54#80636 MUENCHEN (DE) -TRANSFER TO- FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#HANSASTRASSE 27 C#80686 MUENCHEN (DE) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20100422 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20100426 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100623 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59108133 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20110426 |