EP0459107A1 - Drehschiebervakuumpumpe und ihr Verfahren zur Ölversorgung - Google Patents

Drehschiebervakuumpumpe und ihr Verfahren zur Ölversorgung Download PDF

Info

Publication number
EP0459107A1
EP0459107A1 EP91105121A EP91105121A EP0459107A1 EP 0459107 A1 EP0459107 A1 EP 0459107A1 EP 91105121 A EP91105121 A EP 91105121A EP 91105121 A EP91105121 A EP 91105121A EP 0459107 A1 EP0459107 A1 EP 0459107A1
Authority
EP
European Patent Office
Prior art keywords
oil
sump
pump
stage
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91105121A
Other languages
English (en)
French (fr)
Other versions
EP0459107B1 (de
Inventor
Thomas Abelen
Lutz Arndt
Winfried Kaiser
Peter Müller
Dieter Vorberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Publication of EP0459107A1 publication Critical patent/EP0459107A1/de
Application granted granted Critical
Publication of EP0459107B1 publication Critical patent/EP0459107B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the invention relates to a method for supplying oil to a two-stage rotary vane vacuum pump with scooping areas and further points to be supplied with oil, and with an oil sump.
  • the invention also relates to a two-stage rotary vane vacuum pump suitable for carrying out this method.
  • the oil In rotary vane vacuum pumps operated with oil, the oil initially has the task of creating an adequate seal between the suction and pressure sides in the suction chambers. At the same time, the oil is used to lubricate the rotors in the pumping chambers and the slides guided in them. Furthermore, oil circulated in the circuit causes cooling especially of the components rotating in a vacuum. In addition, dirt particles from the oil are to be conveyed into the oil sump. Finally, the other bearing points of the vacuum pump (rotor bearings, bearing of the drive shaft, etc.) should also be lubricated with the help of the oil in the pump.
  • the present invention is based on the object of specifying a method of the type mentioned at the beginning and of creating a two-stage rotary vane pump which is suitable for carrying out this method and which do not require a separate pressure oil pump and which nevertheless ensures an adequate oil supply to all points requiring oil.
  • this object is achieved in an operating method of the type mentioned at the outset in that the oil from the oil sump is conveyed with the aid of the fore-vacuum stage of the pump into an intermediate sump arranged above the bearing points, that it is gravity-fed to further points to be supplied with oil from this intermediate sump and that it flows back into the oil sump from these points.
  • the fact that the oil is conveyed with the aid of the fore-vacuum stage of the pump initially ensures the oil supply to this stage of the fore-vacuum stage. From there, the oil reaches the intermediate sump, which has a greater geodetic height than the lubrication points that are subsequently to be supplied with oil.
  • the drains from the intermediate sump can be formed by channels in the cast, holes with relatively large diameters or by baffles, so that they are completely insensitive to dirt. The risk of contaminated oil destroying the pump is therefore eliminated. If, in addition, particularly sensitive bearings are designed in such a way that the lubricant can never drain off completely, emergency running properties are achieved which prevent total damage in the event of a lack of oil supply.
  • a two-stage rotary vane vacuum pump suitable for carrying out the method according to the invention expediently has a one leading from the oil sump to the scooping chamber of the fore-vacuum stage Oil line whose inlet opening is below the oil level in the oil sump. Oil passes through this line into the fore-vacuum stage and is conveyed by it into the intermediate oil sump located above the outlet valve of the fore-vacuum stage.
  • the intermediate sump is expediently connected via oil lines to the lower-lying bearing points, from which the oil flows back into the oil sump.
  • the two-stage vacuum pump 1 shown in the figures as an exemplary embodiment comprises the actual pump housing 2, the oil box 3 surrounding the pump housing, the drive motor 4 and the outer housing or the hood 5.
  • the pump housing 2 and the drive motor 4 are fastened to a shield 6 , which is supported by a base plate 7 on the floor.
  • Part of the pump housing 2 is the one-piece pump ring 8, the opening of which has three areas 11, 12, 13 with different designs.
  • the rotor system 14 with the sections 14a, 14b and 14c is also formed in one piece within the pump ring 8.
  • the two outer sections 14a and 14c are equipped with slide slots 15, 16 accessible from the end faces and form the anchors of the high vacuum or fore vacuum stage.
  • the length and diameter of the middle section 14b of the rotor system 14 corresponds to the middle area 12 of the opening of the pump ring 8 in such a way that this area has the function of a sliding bearing for the rotor system 14.
  • the slide of the HV stage is also included Designated 18.
  • the area 11 of the pump ring 8 forms, together with the front plate 19, the scooping space 21 of the fore-vacuum (VV) stage.
  • the slide of the VV stage is designated 22.
  • the inlet channel of the HV stage is designated 23.
  • the channel leading from the outlet of the HV stage to the inlet of the VV stage is only shown in FIG. 2 and designated by 24.
  • the outlet valve 26 is assigned to the outlet channel 25 (FIG. 2) of the VV stage.
  • the outlet valve 26 is designed as a check valve and takes over the vacuum protection of the recipient in the event of a pump failure.
  • the valve 26 is arranged in the upper region of the pump housing 2. It is located at the bottom of a recess 27 which forms an intermediate oil sump during the operation of the vacuum pump.
  • the inlet port 31 of the vacuum pump shown is attached to the intermediate plate 6. It is connected to the inlet duct 23 of the HV stage via a bore 32 in the shield 6.
  • the outlet connector 33 is also provided on the shield 6. It is connected to the interior of the oil box 3 via a hole corresponding to the hole 32.
  • a dome 35 arranged on the front side of the oil box. Its central section 36 is transparent and serves to check the oil level in the oil box 3.
  • the dome 35 has an approximately semicircular cross section, the broad side of which faces the oil box 3. It extends over the entire height of the oil box 3, so that it can be equipped with the oil fill opening 37 and the oil drain opening 38.
  • the motor 4 is equipped with a blower 41 on its free end face.
  • the cooling air flow generated by this fan serves not only to cool the engine, but also to cool the oil box 3.
  • Both the motor housing and the oil box 3 are equipped with axially or horizontally running cooling fins 42 and 43, respectively.
  • the intermediate plate 32 also has the function of a clutch housing. It is provided with a bearing bore 51, into which a rotor shaft journal 52 arranged on the rotor system 14 and the shaft journal 53 of the drive motor 4 project and are slidably supported there. With the help of a pin coupling 54, the two shaft journals 52, 53 are coupled on the end face. Instead of the pin coupling, interlocking projections could also be provided in the area of the end faces of the shaft journals 52, 53.
  • Each of the shaft journals 52, 53 is assigned a shaft sealing ring 55, 56, the seat of which is also located in the clutch housing. These form a lubricant chamber 57, which contains the clutch and can be operated with full lubrication via the oil bore 58. Since the shaft seal ring 55 on the rotor side is in the immediate vicinity of the HV stage, the performance of this stage operated with insufficient lubrication is not impaired by lubricating oil.
  • FIGS. 1 and 3 Below the oil level 71 of the oil sump 72 there is the inlet opening 73 of an oil line 74, which leads into the scoop chamber 21 of the VV stage 11, 14a.
  • the oil channel 74 consists of several bores both in the intermediate plate 6 and in the pump housing 8, which enable the switching of a solenoid valve 75 in the oil channel 74.
  • the valve 75 closes so that no oil can get into the recipient, the vacuum of which is secured as a result of the outlet valve 26.
  • the mouth of the oil channel 74 into the scoop chamber 21 of the VV stage is expediently designed as a nozzle 76 (cf. also FIG. 3) and is located such that a direct connection to the suction side (inlet channel 24) is always provided by the slide 22 of the VV stage is blocked.
  • the nozzle 76 allows the amount of oil sucked in by the vacuum in the VV stage to be adjusted.
  • a branch 77 leads from the oil channel 74 directly to the intermediate store 12, 14b, where a pressure is established between the pressures of the HV stage and the VV stage during operation of the pump.
  • the oil entering the interim storage facility flows into both the HV stage and the VV stage.
  • the amount of oil reaching the HV stage is sufficient to supply it with the desired lack of lubrication.
  • This oil reaches the VV stage 11, 14a via the connecting channel 24.
  • the oil flowing into the VV stage passes together with the pumped gas through the outlet valve 26 and forms the intermediate oil sump in the recess 27. This is connected to an oil line 78 (indicated by dashed lines in FIGS. 1 and 2), which leads to the further points of the pump which are to be supplied with oil.
  • the oil channel 78 initially consists of an approximately axially directed bore 79 which is guided laterally in the pump housing and extends to the intermediate shield 6.
  • the oil could also be led to the intermediate plate 6 through a laterally guided channel.
  • a transverse bore 81 adjoins the axial bore 79 and runs above the coupling and the mounting of the pins (52, 53). This bore 81 ends in an area from which the oil can flow back into the sump 72.
  • the bores 79, 81 are arranged inclined such that the oil from the intermediate sump reaches the other points to be lubricated due to gravity.
  • a bearing housing and a clutch housing are shown schematically as blocks 83 and 84.
  • the position of the oil bore 81 is shown in Figure 2 by a dashed line. It passes through - preferably inclined - the pump housing 2 and cuts the lubricant chamber 57 to be supplied with oil above the shaft journals 52, 53 or the coupling 54.
  • An axial groove 82 is expediently provided in the bearing and coupling housing 6 in this area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Die Erfindung bezieht sich auf ein Verfahren zur Ölversorung einer zweistufigen Drehschieberpumpe (1) mit Schöpfräumen (17, 21) und weiteren mit Schmieröl zu versorgenden Stellen (12, 51, 54) sowie mit einem Ölsumpf (72); um auf eine Druckölpumpe verzichten zu können und dennoch eine ausreichende Ölversorgung sicherzustellen, wird vorgeschlagen, daß Öl aus dem Ölsumpf (72) mit Hilfe der Vorvakuumstufe (11, 14a) der Pumpe (1) in einen oberhalb der weiteren mit Öl zu versorgenden Stellen angeordneten Zwischensumpf (27) gefördert wird, daß es aus diesem Zwischensumpf durch Schwerkraft zu weiteren mit Öl zu versorgenden Stellen (51, 54) geführt wird und daß es von diesen Stellen in den Ölsumpf (72) zurückfließt.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Ölversorgung einer zweistufigen Drehschiebervakuumpumpe mit Schöpfräumen und weiteren mit Öl zu versorgenden Stellen sowie mit einem Ölsumpf. Außerdem bezieht sich die Erfindung auf eine für die Durchführung dieses Verfahrens geeignete zweistufige Drehschiebervakuumpumpe.
  • Bei mit Öl betriebenen Drehschiebervakuumpumpen hat das Öl zunächst die Aufgabe, in den Schöpfräumen eine ausreichende Abdichtung zwischen den Saugseiten und den Druckseiten herbeizuführen. Gleichzeitig dient das Öl der Schmierung der in den Schöpfräumen befindlichen Rotoren sowie der darin geführten Schieber. Weiterhin bewirkt im Kreislauf geführtes Öl eine Kühlung vor allem der im Vakuum rotierenden Bauteile. Außerdem sollen Schmutzteilchen vom Öl in den Ölsumpf gefördert werden. Schließlich sollen auch die weiteren Lagerstellen der Vakuumpumpe (Rotorlagerungen, Lagerung der Antriebswelle usw.) mit Hilfe des in der Pumpe befindlichen Öls geschmiert werden.
  • Es ist bekannt, Drehschiebervakuumpumpen mit einer separaten Druckölpumpe auszurüsten und das mit Hilfe dieser Pumpe geförderte Drucköl den jeweils mit Öl zu versorgenden Stellen der Vakuumpumpe zuzuführen. Eine ausreichende Ölzufuhr der verschiedenen, mit Öl zu versorgenden Stellen ist dadurch zwar sichergestellt; wegen der separaten Druckölpumpe ist diese Lösung jedoch technisch aufwendig.
  • Weiterhin ist es bekannt, den von der Pumpe erzeugten Unterdruck zur Förderung des Öls auszunutzen. Dabei ist jedoch die Schmierung von Stellen, die sich nicht unmittelbar am Schöpfraum befinden oder aufgrund der gewünschten Pumpleistung nicht mit dem Schöpfraum verbunden sein dürfen, problematisch.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art anzugeben sowie eine für die Durchführung dieses Verfahrens geeignete zweistufige Drehschieberpumpe zu schaffen, welche ohne separate Druckölpumpe auskommen und dennoch eine ausreichende Ölversorgung aller Öl benötigenden Stellen sichergestellt ist.
  • Erfindungsgemäß wird diese Aufgabe bei einem Betriebsverfahren der eingangs genannten Art dadurch gelöst, daß das Öl aus dem Ölsumpf mit Hilfe der Vorvakuumstufe der Pumpe in einen oberhalb der Lagerstellen angeordneten Zwischensumpf gefördert wird, daß es aus diesem Zwischensumpf durch Schwerkraft zu weiteren mit Öl zu versorgenden Stellen geführt wird und daß es von diesen Stellen in den Ölsumpf zurückfließt. Dadurch, daß das Öl mit Hilfe der Vorvakuumstufe der Pumpe gefördert wird, ist zunächst die Ölversorgung dieser Stufe der Vorvakuumstufe sichergestellt. Von dort aus gelangt das Öl in den Zwischensumpf, der eine größere geodätische Höhe hat als die anschließend mit Öl zu versorgenden Schmierstellen. Die Abflüsse aus dem Zwischensumpf können durch Rinnen im Guß, Bohrungen mit relativ großen Durchmessern oder durch Leitbleche gebildet werden, so daß sie gegen Schmutz völlig unempfindlich sind. Die Gefahr, daß verschmutztes Öl zur Zerstörung der Pumpe führt, ist also beseitigt. Werden darüber hinaus besonders empfindliche Lager so ausgebildet, daß das Schmiermittel niemals völlig abfließen kann, dann werden Notlaufeigenschaften erreicht, die im Falle fehlender Ölversorgung einen Totalschaden vermeiden.
  • Eine für die Durchführung des erfindungsgemäßen Verfahrens geeignete zweistufige Drehschiebervakuumpumpe weist zweckmäßig eine vom Ölsumpf zum Schöpfraum der Vorvakuumstufe führende Ölleitung auf, deren Eintrittsöffnung unterhalb des Ölspiegels im Ölsumpf liegt. Durch diese Leitung gelangt Öl in die Vorvakuumstufe und wird von dieser in den oberhalb des Auslaßventiles der Vorvakuumstufe gelegenen Ölzwischensumpf gefördert. Der Zwischensumpf ist zweckmäßig über Ölleitungen mit den tiefergelegenen Lagerstellen verbunden, von denen das Öl in den Ölsumpf zurückfließt.
  • Weitere Vorteile und Einzelheiten sollen anhand der Figuren 1 bis 3 erläutert werden. Es zeigen
    • Figur 1 und Figur 2 Schnitte durch eine erfindungsgemäß gestaltete Drehschiebervakuumpumpe und
    • Figur 3 ein Ölkreislaufschema nach der Erfindung.
  • Die in den Figuren als Ausführungsbeispiel dargestellte, zweistufige Vakuumpumpe 1 umfaßt das eigentliche Pumpengehäuse 2, den das Pumpengehäuse umgebenden Ölkasten 3, den Antriebsmotor 4 und das äußere Gehäuse bzw. die Haube 5. Das Pumpengehäuse 2 und der Antriebsmotor 4 sind an einem Schild 6 befestigt, der sich über eine Grundplatte 7 auf dem Boden abstützt.
  • Bestandteil des Pumpengehäuses 2 ist der einstückig ausgebildete Pumpenring 8, dessen Öffnung drei Bereiche 11, 12, 13 mit unterschiedlicher Gestaltung aufweist. Innerhalb des Pumpenringes 8 befindet sich das ebenfalls einstückig ausgebildete Rotorensystem 14 mit den Abschnitten 14a, 14b und 14c. Die beiden äußeren Abschnitte 14a und 14c sind mit von den Stirnseiten her zugänglichen Schieberschlitzen 15, 16 ausgerüstet und bilden die Anker der Hochvakuum- bzw. Vorvakuumstufe.
  • Der mittlere Abschnitt 14b des Rotorensystems 14 entspricht in seiner Länge und seinem Durchmesser derart dem mittleren Bereich 12 der Öffnung des Pumpenringes 8, daß dieser Bereich die Funktion einer Gleitlagerung für das Rotorensystem 14 hat. Der gegenüber dem Bereich 12 vergrößerte Bereich 13 des Pumpenringes 8 bildet gemeinsam mit dem Schild 6 den Schöpfraum 17 der Hochvakuum( HV)-Stufe der Pumpe 1. Der Schieber der HV-Stufe ist mit 18 bezeichnet. Der Bereich 11 des Pumpenringes 8 bildet gemeinsam mit der Frontplatte 19 den Schöpfraum 21 der Vorvakuum(VV)-Stufe. Der Schieber der VV-Stufe ist mit 22 bezeichnet.
  • Der Einlaßkanal der HV-Stufe ist mit 23 bezeichnet. Der vom Auslaß der HV-Stufe zum Einlaß der VV-Stufe führende Kanal ist nur in Figur 2 eingezeichnet und mit 24 bezeichnet. Dem Auslaßkanal 25 (Figur 2) der VV-Stufe ist das Auslaßventil 26 zugeordnet. Das Auslaßventil 26 ist als Rückschlagventil ausgebildet und übernimmt die Vakuumsicherung des Rezipienten bei Ausfall der Pumpe. Das Ventil 26 ist im oberen Bereich des Pumpengehäuses 2 angeordnet. Es befindet sich am Boden einer Vertiefung 27, die während des Betriebs der Vakuumpumpe einen Ölzwischensumpf bildet.
  • Der Einlaßstutzen 31 der dargestellten Vakuumpumpe ist am Zwischenschild 6 befestigt. Über eine Bohrung 32 im Schild 6 ist er an den Eintrittskanal 23 der HV-Stufe angeschlossen. Auch der Auslaßstutzen 33 ist am Schild 6 vorgesehen. Über eine der Bohrung 32 entsprechende Bohrung steht er mit dem Innenraum des Ölkastens 3 in Verbindung.
  • Bestandteil des Ölkastens 3 ist noch ein stirnseitig am Ölkasten angeordneter Dom 35. Sein mittlerer Abschnitt 36 ist durchsichtig und dient der Kontrolle des Ölstandes im Ölkasten 3. Der Dom 35 hat einen etwa halbrunden Querschnitt, dessen Breitseite dem Ölkasten 3 zugewandt ist. Er erstreckt sich über die gesamte Höhe des Ölkastens 3, so daß er mit der Öleinfüllöffnung 37 und der Ölablaßöffnung 38 ausgerüstet werden kann.
  • Der Motor 4 ist auf seiner freien Stirnseite mit einem Gebläse 41 ausgerüstet. Der von diesem Gebläse erzeugte Kühlluftstrom dient nicht nur der Kühlung des Motors, sondern auch der Kühlung des Ölkastens 3. Sowohl das Motorgehäuse als auch der Ölkasten 3 sind mit axial bzw. horizontal verlaufenden Kühlrippen 42 bzw. 43 ausgerüstet.
  • Der Zwischenschild 32 hat außerdem noch die Funktion eines Kupplungsgehäuses. Er ist mit einer Lagerbohrung 51 versehen, in die ein am Rotorsystem 14 angeordneter Rotorwellenzapfen 52 und der Wellenzapfen 53 des Antriebsmotors 4 hineinragen und dort gleitend gelagert sind. Mit Hilfe einer Stiftkupplung 54 sind die beiden Wellenzapfen 52, 53 stirnseitig gekuppelt. Anstelle der Stiftkupplung könnten auch ineinandergreifende Vorsprünge im Bereich der Stirnseiten der Wellenzapfen 52, 53 vorgesehen sein.
  • Jedem der Wellenzapfen 52, 53 ist ein Wellendichtring 55, 56 zugeordnet, deren Sitz sich ebenfalls im Kupplungsgehäuse befindet. Diese bilden einen Schmiermittelraum 57, der die Kupplung enthält und über die Öl-Bohrung 58 mit Vollschmierung betrieben werden kann. Da sich der rotorseitige Wellendichtring 55 in unmittelbarer Nähe der HV-Stufe befindet, ist die Leistungsfähigkeit dieser mit Mangelschmierung betriebenen Stufe durch Schmieröl nicht beeinträchtigt.
  • Bei der Beschreibung des erfindungsgemäßen Ölkreislaufs wird auf die Figuren 1 und 3 Bezug genommen. Unterhalb des Ölstandes 71 des Ölsumpfes 72 befindet sich die Eintrittsöffnung 73 einer Ölleitung 74, der in den Schöpfraum 21 der VV-Stufe 11, 14a führt.
  • Beim dargestellten Ausführungsbeispiel besteht der Ölkanal 74 aus mehreren Bohrungen sowohl im Zwischenschild 6 als auch im Pumpengehäuse 8, die die Einschaltung eines Magnetventiles 75 in den Ölkanal 74 ermöglichen. Bei einem Stromausfall schließt das Ventil 75, so daß kein Öl in den Rezipienten, dessen Vakuum infolge des Auslaßventils 26 gesichert ist, gelangen kann.
  • Die Mündung des Ölkanals 74 in den Schöpfraum 21 der VV-Stufe ist zweckmäßig als Düse 76 ausgebildet (vgl. auch Fig. 3) und so gelegen, daß eine direkte Verbindung zur Saugseite (Einlaßkanal 24) durch den Schieber 22 der VV-Stufe stets versperrt ist. Die Düse 76 erlaubt es, die Menge des vom Vakuum in der VV-Stufe angesaugten Öles einzustellen.
  • Vom Ölkanal 74 führt eine Abzweigung 77 unmittelbar zum Zwischenlager 12, 14b, wo sich während des Betriebs der Pumpe ein zwischen den Drücken der HV-Stufe und der VV-Stufe liegender Druck einstellt. Das in das Zwischenlager gelangende Öl strömt sowohl in die HV-Stufe als auch in die VV-Stufe. Die in die HV-Stufe gelangende Ölmenge reicht aus, um diese mit der gewünschten Mangelschmierung zu versorgen. Über den Verbindungskanal 24 gelangt dieses Öl in die VV-Stufe 11, 14a.
  • Das in die VV-Stufe einströmende Öl tritt gemeinsam mit dem abgepumpten Gas durch das Auslaßventil 26 und bildet in der Vertiefung 27 den Ölzwischensumpf. Dieser steht mit einer Ölleitung 78 (in den Figuren 1 und 2 gestrichelt angedeutet) in Verbindung, der zu den weiteren Stellen der Pumpe führt, die mit Öl zu versorgen sind.
  • Beim dargestellten Ausführungsbeispiel besteht der Ölkanal 78 zunächst aus einer etwa axial gerichteten, seitlich im Pumpengehäuse geführten Bohrung 79, die sich bis zum Zwischenschild 6 erstreckt. Auch durch eine seitlich geführte Rinne könnte das Öl bis zum zwischenschild 6 geführt werden. An die axiale Bohrung 79 schließt sich eine Querbohrung 81 an, die oberhalb der Kupplung und der Lagerung der Zapfen (52, 53) verläuft. Diese Bohrung 81 endet in einem Bereich, von dem aus das Öl in den Sumpf 72 zurückfließen kann. Die Bohrungen 79, 81 sind derart geneigt angeordnet, daß das Öl aus dem Zwischensumpf infolge der Schwerkraft zu den weiteren zu schmierenden Stellen gelangt. In dem Kreislaufschema nach Figur 3 sind ein Lagergehäuse und ein Kupplungsgehäuse schematisch als Block 83 und 84 dargestellt. Die Lage der Ölbohrung 81 ist in Figur 2 durch eine gestrichelte Linie dargestellt. Sie durchsetzt - vorzugsweise geneigt - das Pumpengehäuse 2 und schneidet den mit Öl zu versorgenden Schmiermittelraum 57 oberhalb der Wellenzapfen 52, 53 bzw. der Kupplung 54. Zweckmäßig ist in diesem Bereich noch eine Axialnut 82 im Lager- und Kupplungsgehäuse 6 vorgesehen.
  • Durch die Bohrung 81 gelangt Öl in den Schmiermittelraum 57. Überschüssiges Öl strömt weiter durch die Bohrung 81 und fließt in den tiefer gelegenen Ölsumpf ab. Aus dem Schmiermittelraum 57 kann das Schmieröl niemals völlig abfließen, so daß die erfindungsgemäße Lagerung und Kupplung besonders gute Notlaufeigenschaften hat.

Claims (9)

  1. Verfahren zur Ölversorung einer zweistufigen Drehschieberpumpe (1) mit Schöpfräumen (17, 21) und weiteren mit Schmieröl zu versorgenden Stellen (12, 51, 54) sowie mit einem Ölsumpf (72), dadurch gekennzeichnet, daß Öl aus dem Ölsumpf (72) mit Hilfe der vorvakuumstufe (11, 14a) der Pumpe (1) in einen oberhalb der weiteren mit Öl zu versorgenden Stellen angeordneten Zwischensumpf (27) gefördert wird, daß es aus diesem Zwischensumpf durch Schwerkraft zu weiteren mit Öl zu versorgenden Stellen (51, 54) geführt wird und daß es von diesen Stellen in den Ölsumpf (72) zurückfließt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Öl über eine mit dem Ölsumpf (72) verbundene Leitung (74) in die Vorvakuumstufe (11, 14a) gesaugt wird, daß es mit den von der Vorvakuumstufe geförderten Gas in den oberhalb eines Auslaßventiles (26) und der weiteren mit Öl zu versorgenden Stellen (52, 54) gelegenen Zwischensumpf (27) gelangt.
  3. Zweistufige Drehschiebervakuumpumpe zur Durchführung der Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine vom Ölsumpf (72) zum Schöpfraum (21) der Vorvakuumstufe (11, 14a) führende Ölleitung (74) vorgesehen ist, deren Eintrittsöffnung (73) unterhalb des Ölspiegels (71) im Ölsumpf (72) liegt, daß oberhalb des Auslaßventiles (26) der Vorvakuumstufe und der weiteren mit Öl zu versorgenden Stellen (51, 54) ein Ölzwischensumpf (27) angeordnet ist und daß der Zwischensumpf über eine Ölleitung (78) mit den tiefer gelegenen Stellen (51, 54) verbunden ist.
  4. Pumpe nach Anspruch 3, dadurch gekennzeichnet, daß in die Ölleitung (74) ein Magnetventil eingeschaltet ist.
  5. Pumpe nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Ölleitung (74) mit einer zu einem Zwischenlager (12) führenden Abzweigung (77) versehen ist.
  6. Pumpe nach Anspruch 3, 4 oder 5, dadurch gekennzeichnet, daß die Eintrittsöffnung der Ölleitung (74) in den Schöpfraum (21) der Vorvakuumstufe (11, 14a) als Düse (76) ausgebildet ist.
  7. Pumpe nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet , daß geneigt angeordnete Bohrungen vom Zwischensumpf (27) zu den weiteren mit Öl zu versorgenden Stellen (83, 84 bzw. 51, 54) führen.
  8. Pumpe nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet , daß ein Zwischenschild (6) ein gemeinsames Lager- und Kupplungsgehäuse bildet, daß zwei einen Schmiermittelraum (57) bildende Wellendichtringe (55, 56) aufweist und daß die mit dem Schmiermittelraum (57) in Verbindung stehende Ölleitung (78) oberhalb des Lager- und Kupplungsgehäuses verläuft.
  9. Pumpe nach Anspruch 8, dadurch gekennzeichnet, daß die Lagerbohrung (51) im Lager- und Kupplungsgehäuse (6) in seinem oberen Bereich mit einer Axialnut (82) ausgerüstet ist und daß die Bohrung (78) die Axialnut (82) schneidet.
EP91105121A 1990-05-29 1991-03-30 Drehschiebervakuumpumpe und ihr Verfahren zur Ölversorgung Expired - Lifetime EP0459107B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4017191A DE4017191A1 (de) 1990-05-29 1990-05-29 Verfahren zur oelversorgung einer zweistufigen drehschiebervakuumpumpe und fuer die durchfuehrung dieses verfahrens geeignete drehschiebervakuumpumpe
DE4017191 1990-05-29

Publications (2)

Publication Number Publication Date
EP0459107A1 true EP0459107A1 (de) 1991-12-04
EP0459107B1 EP0459107B1 (de) 1994-09-21

Family

ID=6407366

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91105121A Expired - Lifetime EP0459107B1 (de) 1990-05-29 1991-03-30 Drehschiebervakuumpumpe und ihr Verfahren zur Ölversorgung

Country Status (4)

Country Link
US (1) US5178522A (de)
EP (1) EP0459107B1 (de)
JP (1) JPH04231696A (de)
DE (2) DE4017191A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008074362A1 (fr) * 2006-12-18 2008-06-26 Ateliers Busch Sa Corps de pompe à palettes
EP2963240A3 (de) * 2014-07-04 2016-07-06 Pfeiffer Vacuum Gmbh Vakuumpumpe

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4325285A1 (de) * 1993-07-28 1995-02-02 Leybold Ag Ölgedichtete Vakuumpumpe
DE4325286A1 (de) * 1993-07-28 1995-02-02 Leybold Ag Zweistufige Drehschiebervakuumpumpe
DE4325284A1 (de) * 1993-07-28 1995-02-02 Leybold Ag Gehäuse für eine zweistufige Drehschiebervakuumpumpe
DE9311986U1 (de) * 1993-08-11 1993-10-14 Leybold Ag, 63450 Hanau Zweistufige Drehschiebervakuumpumpe
DE4327583A1 (de) * 1993-08-17 1995-02-23 Leybold Ag Vakuumpumpe mit Ölabscheider
US20050084392A1 (en) * 2003-10-20 2005-04-21 United Dominion Industries, Inc. Pump drive alignment apparatus and method
ITMI20052191A1 (it) * 2005-11-16 2007-05-17 Enea Mattei Spa Sistema di raffreddamento integrato e compressore di fluidi gassosi provvisto dello stesso
DE102006058839A1 (de) * 2006-12-13 2008-06-19 Pfeiffer Vacuum Gmbh Schmiermittelgedichtete Drehschiebervakuumpumpe
WO2015007015A1 (zh) * 2013-07-19 2015-01-22 浙江飞越机电有限公司 油箱侧置式双级旋片真空泵

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2902210A (en) * 1955-08-15 1959-09-01 Edwards High Vacuum Ltd Multi-stage mechanical vacuum pumps
FR2073819A5 (de) * 1969-12-16 1971-10-01 High Edwards Vacuum Int
US4120621A (en) * 1976-07-19 1978-10-17 Puritan Bennett Corporation Oil sealed single stage vacuum pump
FR2489433A1 (fr) * 1980-09-03 1982-03-05 Leybold Heraeus Sogev Pompe a vide rotative a joint d'huile

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1409868A (en) * 1920-08-05 1922-03-14 W M Hardwick Pump
US1672205A (en) * 1925-06-26 1928-06-05 Eisler Charles Compound vacuum pump
US2062045A (en) * 1926-10-12 1936-11-24 Gen Motors Corp Motor operated machine unit
DE1191070B (de) * 1955-08-15 1965-04-15 Edwards High Vacuum Ltd Zweistufige, oelabgedichtete Drehkolben-Vakuumpumpe
US2877946A (en) * 1955-11-10 1959-03-17 Central Scientific Co Vacuum pump
DE1190134B (de) * 1957-02-07 1965-04-01 Edwards High Vacuum Ltd Drehkolben-Vakuumpumpe mit oelueberlagertem Auspuffventil
FR1302509A (fr) * 1961-07-13 1962-08-31 Alsacienne D Electronique Et D Perfectionnement aux pompes à vide rotatives à joint d'huile
US3525578A (en) * 1968-11-29 1970-08-25 Precision Scient Co Vacuum pump
DE2354039A1 (de) * 1973-10-29 1975-05-07 Leybold Heraeus Gmbh & Co Kg Drehschieberpumpe
IT1207829B (it) * 1987-02-04 1989-06-01 Galileo Spa Off Perfezionamento nel circuito di lubrificazione delle pompe rotative per vuoto.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2902210A (en) * 1955-08-15 1959-09-01 Edwards High Vacuum Ltd Multi-stage mechanical vacuum pumps
FR2073819A5 (de) * 1969-12-16 1971-10-01 High Edwards Vacuum Int
US4120621A (en) * 1976-07-19 1978-10-17 Puritan Bennett Corporation Oil sealed single stage vacuum pump
FR2489433A1 (fr) * 1980-09-03 1982-03-05 Leybold Heraeus Sogev Pompe a vide rotative a joint d'huile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008074362A1 (fr) * 2006-12-18 2008-06-26 Ateliers Busch Sa Corps de pompe à palettes
EP2963240A3 (de) * 2014-07-04 2016-07-06 Pfeiffer Vacuum Gmbh Vakuumpumpe
DE102014109383B4 (de) 2014-07-04 2022-03-24 Pfeiffer Vacuum Gmbh Vakuumpumpe

Also Published As

Publication number Publication date
DE4017191A1 (de) 1991-12-05
DE59103001D1 (de) 1994-10-27
US5178522A (en) 1993-01-12
EP0459107B1 (de) 1994-09-21
JPH04231696A (ja) 1992-08-20

Similar Documents

Publication Publication Date Title
DE60015924T2 (de) Schraubenkompressor
DE3888212T2 (de) Hermetischer Spiralverdichter.
DE4017194A1 (de) Drehschiebervakuumpumpe
DE69306922T2 (de) Ölzufuhrsystem für Rotationsverdichter der Horizontalbauart
DE2811679A1 (de) Oelversorgungshilfssystem
EP1021653A1 (de) Gekühlte schraubenvakuumpumpe
EP0459107B1 (de) Drehschiebervakuumpumpe und ihr Verfahren zur Ölversorgung
DE2544685B2 (de) Taumelscheiben-Kompressor
EP1021654A1 (de) Schraubenvakuumpumpe mit rotoren
EP1936200B1 (de) Schmiermittelgedichtete Drehschiebervakuumpumpe
DE3034941A1 (de) Mit aerosol arbeitende hilfs-schmiervorrichtung, insbesondere fuer fluggeraete
DE69527831T2 (de) Ölstandskontrollvorrichtung für kompressoren
DE2833167A1 (de) Baueinheit, bestehend aus einer oelpumpe zur oelumlaufschmierung einer brennkraftmaschine und einer vakuumpumpe zur erzeugung eines vakuums fuer die bremskraftverstaerkung in kraftfahrzeugen
DE1503398A1 (de) Motorkompressor in gekapselter Ausfuehrung
DE69427186T2 (de) Schwingender rotations-kompressor
DE69003412T2 (de) Liegender Spiralverdichter.
DE1939717A1 (de) Waelzkolbenpumpe
DE2226921A1 (de) Geschmierte lagerung
DE2948993A1 (de) Verdichter, insbesondere schraubenverdichter, mit schmiermittelkreislauf
DE2048301A1 (de) Meß- und Spulolpumpe
DE60000568T2 (de) Lagerschmierungssystem eines Schwingungsverdichters
DE102021110772A1 (de) Zentrifugalkompressor
DE69303447T2 (de) Vakuumpumpgerät
EP1113176A2 (de) Vakuumpumpe mit Wellendichtmitteln
DE102021207713B3 (de) Antriebseinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19920518

17Q First examination report despatched

Effective date: 19930720

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940928

REF Corresponds to:

Ref document number: 59103001

Country of ref document: DE

Date of ref document: 19941027

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960208

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960216

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960227

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960305

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19970331

Ref country code: CH

Effective date: 19970331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050330