EP0455625B1 - Alliage à structure duplex, à haute résistance mécanique et résistant à la corrosion - Google Patents

Alliage à structure duplex, à haute résistance mécanique et résistant à la corrosion Download PDF

Info

Publication number
EP0455625B1
EP0455625B1 EP91890088A EP91890088A EP0455625B1 EP 0455625 B1 EP0455625 B1 EP 0455625B1 EP 91890088 A EP91890088 A EP 91890088A EP 91890088 A EP91890088 A EP 91890088A EP 0455625 B1 EP0455625 B1 EP 0455625B1
Authority
EP
European Patent Office
Prior art keywords
max
alloy
weight
corrosion
expressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP91890088A
Other languages
German (de)
English (en)
Other versions
EP0455625A1 (fr
Inventor
Günter Dr. Hochörtler
Werner Zechner
Ernst Dipl.-Ing. Heissenberger
Karl Dipl.-Ing. Leban
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH
Original Assignee
Boehler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3504787&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0455625(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Boehler Edelstahl GmbH filed Critical Boehler Edelstahl GmbH
Publication of EP0455625A1 publication Critical patent/EP0455625A1/fr
Application granted granted Critical
Publication of EP0455625B1 publication Critical patent/EP0455625B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the invention relates to a high-strength, easily weldable, essentially containing the alloy components C, Si, Mn, Cr, Mo, Ni, W, N and V duplex alloy with excellent resistance to corrosion, in particular general or surface-removing corrosion, pitting and Crevice corrosion as well as stress and vibration crack corrosion, in media containing chloride and phosphoric acid and in heat-treated condition with a material strength RM of at least 750 MPa, a 0.2 proof stress RP 0.2 of at least 550 MPa and a Charpy-V toughness of at least 100 joules with good Machining properties.
  • Alloys of this type are required for mechanically highly stressed system parts in corrosive media in the chemical industry and especially in the OFF-SHORE TECHNOLOGY in the search for or production and distribution of oil and natural gas. It is necessary that these materials are easy to weld and easy to work with, can withstand high mechanical loads and have above-average toughness properties even at temperatures below 0 ° C.
  • the materials must have excellent resistance to all types of corrosion, because chloride-containing and phosphoric acid-containing media in plant parts, pipes and the like, which may be exposed to mechanical direct voltages or mechanical alternating voltages, usually alongside general surface-removing corrosion, rapidly progressing pitting and intercrystalline crevice corrosion and cause stress and vibration crack corrosion.
  • a known nitrogen-containing duplex alloy with high corrosion resistance (EP-A2-0220141) is composed in such a way that it has a ferrite content of 30 to 55%, the corrosion resistance being increased by Cr, Mo and N and reduced by manganese and sulfur.
  • the contents of the elements tungsten and in particular manganese are capped at 0.5% by weight and 1.2% by weight with regard to the resistance in chloride-containing media.
  • EP-A1-0107489 discloses a corrosion-resistant duplex alloy which, in order to improve the mechanical properties and the resistance to pitting corrosion and stress corrosion cracking in seawater, has in particular high manganese contents of 3.5 to 5.0% in order to increase the amount of nitrogen in solution hold and raise the tensile strength and yield strength.
  • the disadvantage here is that sigma phase is formed at slower cooling speeds of such materials and the toughness is significantly deteriorated.
  • Mn contents of 5 to 7% by weight, nitrogen contents of up to 0.4% by weight and to improve the corrosion resistance, copper contents of 1.1 to 3.0% by weight are used in a duplex alloy containing chromium plus 3x molybdenum of greater than 32% by weight according to WO 85/05129.
  • a duplex alloy containing chromium plus 3x molybdenum of greater than 32% by weight according to WO 85/05129.
  • EP-A1-0320548 discloses a duplex alloy with improved mechanical properties with better toughness values than FERRALIUM alloy 255 or SAF 2205.
  • a characteristic of this alloy is the setting of a ratio of Cr equivalent and Ni equivalent within narrow limits, with nickel contents of 8.0 to 11.0% by weight being maintained due to manganese concentrations of up to 2.0.
  • pore formation can occur in the casting and it can also be difficult to carry out the hot deformation, so that it is preferably used to manufacture forged or, in particular, cast parts.
  • DE-B2-26 16 599 discloses an alloy with a composition within wide limits for the production of pipes and pipe connections, which parts are used for the transport and further processing of acid gas. To increase the yield strength, these parts must be subjected to cold working after solution annealing, which causes considerable manufacturing disadvantages, particularly in the case of complicated shapes.
  • the object of the invention is to create a duplex alloy, in particular for the OFF-SHORE application in the petroleum and natural gas sector and for the chemical industry, which can be produced and processed economically and with a high level of production reliability and which has good thermoforming properties, whereby the parts made from it are easy to weld and process or machinable and the material has high mechanical properties has excellent resistance to all types of corrosion.
  • it is therefore essential that the combination of properties of high material strength, high yield strength, good toughness and resistance to surface-removing corrosion, pitting and crevice corrosion as well as stress and vibration crack corrosion is optimized.
  • the remainder contains iron and production-related impurities with the proviso that the ratio G of the nickel content in% by weight to the manganese content in% by weight is more than 2.0 but less than 4.0 and the structure phase factor P is formed [2.9x (% Cr) + 2.9x (% Mo) + 1.4x (% W) + 4.4x (% Si) -2.1 (% Ni) -1.0x (% Mn) -62 , 5x (% N)] has a value greater than 40 but less than 65.
  • Duplex alloys are cooled from a solution annealing temperature at which the proportion of austenite and ferrite is set depending on the temperature. Increasing proportions of ferrite increase the strength of the material, however the toughness and corrosion resistance are adversely affected. With a share of 40 to 60% of ferrite in the structure, sufficiently high toughness values are achieved with high strength of the material. It is important for the setting of the microstructure that the solution annealing temperature is from 1020 ° to 1150 ° C., preferably from 1050 ° C. to 1100 ° C.
  • Carbon is a strong austenite former, but reacts with carbide-forming elements to form carbides that impair toughness and, in particular, corrosion resistance.
  • Silicon is a strong ferrite former and is required by melt metallurgy to deoxidize the liquid steel. High levels of silicon impair machinability and promote Sigma phase formation, which reduces toughness. Silicon contents of 0.15 to 0.55, preferably 0.2 to 0.5, are therefore essential.
  • Manganese is an austenite former and increases the nitrogen solubility of the melt, but in higher concentrations it favors the toughness-reducing excretion of sigma phase. Low manganese levels cause problems in the melt metallurgy and casting technology with reduced nitrogen solubility and possibly deterioration of the hot formability.
  • manganese binds the sulfur with the formation of sulfide, which sulfide inclusions particularly favor pitting and crevice corrosion. It is therefore essential to the invention that the manganese content of the alloy is present within narrow limits, specifically with a concentration of 2.0 to 2.9, preferably 2.1 to 2.7,% by weight and that the sulfur content is less than 0.005% by weight. -% is.
  • Chromium is important for establishing a passive state in relation to a corrosion medium and has a ferrite-forming effect. Good corrosion resistance is brought about in the range from 23 to 27, preferably 24 to 26,% by weight of chromium of the alloy.
  • Molybdenum is particularly effective against pitting and crevice corrosion, especially in chloride-containing media.
  • high molybdenum contents can form molybdenum-rich phases, which adversely affect the corrosion resistance of the material.
  • a molybdenum content of the alloy of 3.0 to 5.0, preferably 3.5 to 4.5,% by weight is also important for achieving good weldability.
  • Nickel is an important austenite former and is required to adjust the duplex structure with concentrations of 5.6 to 8.0, preferably 6.2 to 7.4,% by weight.
  • Tungsten in the content limits of 0.5 to 1.0, preferably 0.55 to 0.9,% by weight decisively improves the hot-formability of the alloy and is also essential for increasing the resistance of the alloy to pitting and crevice corrosion.
  • Copper-containing phases deteriorate the pitting and crevice corrosion resistance in chloride-containing media, so that the copper content is at most 0.5, preferably at most 0.35,% by weight.
  • Nitrogen is an extremely important alloying element because nitrogen, as an austenite former, solidifies the austenite phase without loss of toughness. Nitrogen also inhibits the precipitation of intermetallic phases and promotes the chromium distribution between austenite and ferrite. Nitrogen levels of 0.2 to 0.35% by weight are particularly effective.
  • Vanadium forms fine vanadium carbides, in particular vanadium carbonitrides, in a concentration range from 0.04 to 0.25, preferably from 0.05 to 0.15,% by weight, as a result of which grain refinement and solidification of the material result in improved weldability and thermal structural stability becomes.
  • Lower vanadium contents can lead to coarse grain formation, higher concentrations can lead to a coagulation of the carbonitrides and nitrides which is disadvantageous for the material properties.
  • An aluminum content of the alloy cannot be absolutely prevented in most of the melt-metallurgical processes, but must be limited to a maximum of 0.06, preferably to a maximum of 0.04,% by weight because of the aluminum nitride formation, which significantly reduces the toughness.
  • Niobium / tantalum enhances the beneficial effect of vanadium and can contain up to 0.2, preferably up to 0.1,% by weight in the alloy be provided.
  • Calcium is a particularly effective deoxidation element and a strong sulfide former and improves the purity and the properties, in particular the machinability, of the alloy at concentrations of up to 0.04% by weight. Calcium with a content of 0.001 to 0.015% by weight largely prevents the formation of harmful manganese sulfides, calcium inclusions having a positive effect on the machining.
  • Magnesium contents of up to 0.02% by weight favor the thermoforming properties and can increase the degree of purity of the material.
  • Essential to the invention for a high level of properties of the mechanical and corrosion-chemical-metallurgical characteristic values of the material corresponding to the complex requirements of the alloy are a ratio value G of the nickel content to the manganese content and a structural factor P which reflects the different and differently strong effects of the individual elements on the phase distribution heat treatment.
  • the hot formability determined by duplex alloys is compared with the respective nickel to manganese ratio value G by compression tests.
  • a hot upsetting test cylindrical samples with a diameter of 12 mm and a height of 18 mm at a temperature of 1150 C were compressed in a press or hammer mechanism to a third of the initial height and the side surface formed by free spreading was examined for cracks. In these experiments, mesh-like cracks usually develop on poorly deformable materials.
  • the hot-formability of the material drops sharply from a ratio G of 4, that is to say above the range according to the invention.
  • Fig. 3 shows the influence of the sulfur and manganese content of duplex alloys on the pitting corrosion potential in synthetic sea water, aerated at a temperature of 80 ° C. It can be seen from the diagram that, according to the invention, sulfur contents of less than 0.005% by weight are required to achieve a high resistance of the material to pitting corrosion, the manganese content essentially increasing the nitrogen solubility of the melt or the nitrogen content of the alloy, thereby improving the corrosion resistance is effected.
  • FIG. 4 shows the corrosion behavior of duplex alloys according to the invention in phosphoric acid as a function of the temperature on the basis of isocorrosion lines a, b and c.
  • the machining behavior of ferrite-austenite materials is shown in the diagram in FIG. 5.
  • a machining behavior is checked by drilling when measuring the total drilling depth and / or by turning when determining the machined volume.
  • Alloys according to the invention with a ratio G (nickel content to manganese content) of 2 to 4 and a calcium content of approx. 0.006% by weight have good machining behavior, whereas comparison alloys, in particular those with low manganese concentrations or high G values, are difficult to machine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Chemically Coating (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Heat Treatment Of Articles (AREA)
  • Secondary Cells (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Claims (7)

  1. Alliage duplex, à haute résistance et se soudant bien, contenant essentiellement les composants d'alliage C, Si, Mn, Cr, Mo, Ni, W, N et V, qui possède une résistance excellente à la corrosion, notamment la corrosion générale ou la corrosion d'attaque superficielle, la corrosion en trous ou en fentes, la corrosion en criques sous des contraintes et sous des efforts alternés, dans des milieux contenant des chlorures et des milieux contenant de l'acide phosphorique et à l'état traité à chaud, une résistance mécanique du matériau RM au moins égale à 750 MPa, une limite d'élasticité 0,2 RP0,2 au moins égale à 550 MPa et une résilience Charpy sur encoche en V au moins égale à 100 Joules dans le cas de bonnes propriétés d'usinage, cet alliage, qui, après un traitement thermique et au moyen d'un refroidissement forcé à partir d'une température comprise entre 1020 °C et 1 150 °C, comporte de la ferrite et de l'austénite dans un rapport de 40 à 60 %, contenant, en % en poids :
    Carbone   max 0,04
    Silicium   0,15 à 0,55
    Manganèse   2,0 à 2,9
    Phosphore   max 0,025
    Soufre   max 0,005
    Chrome   23,0 à 27,0
    Molybdène   3,0 à 5,0
    Nickel   5,6 à 8,0
    Tungstène   0,5 à 1,0
    Cuivre   max 0,5
    Azote   0,2 à 0,35
    Vanadium   0,04 à 0,25
    Niobium/tantale   0 à 0,20
    Calcium   0 à 0,04
    Magnésium   0 à 0,02
    Aluminium   max 0,06,
    avec un complément constitué de fer et d'impuretés dues à la fabrication, sous la réserve que la valeur de rapport G de la teneur en nickel en % en poids à la teneur en manganèse en % en poids soit supérieure à 2,0, mais inférieure à 4,0 et que le facteur de phases de structure P, constitué par:
    [2,9.(%Cr) + 2,9.(%Mo) + 1,4.(%W) + 4,4.(%Si) - 2,1.(%Ni) - 1,0.(%Mn) - 62,5.(%N)], ait une valeur supérieure à 40, mais inférieure à 65.
  2. Alliage duplex selon la revendication 1, caractérisé en ce qu'il contient, en % en poids :
    Carbone   max 0,03
    Silicium   0,2 à 0,5
    Manganèse   2,1 à 2,7
    Phosphore   max 0,025
    Soufre   max 0,005
    Chrome   24,0 à 26,0
    Molybdène   3,5 à 4,5
    Nickel   6,2 à 7,4
    Tungstène   0,55 à 0,9
    Cuivre   max 0,35
    Azote   0,20 à 0,30
    Vanadium   0,05 à 0,15
    Niobium/tantale   jusqu'à 0,1
    Calcium   jusqu'à 0,02
    Magnésium   jusqu'à 0,02
    Aluminium   max 0,04.
  3. Alliage duplex selon l'une des revendications 1 et 2, caractérisé en ce qu'il contient, en % en poids :
    Calcium   0,01 à 0,015.
  4. Alliage duplex selon l'une des revendications 1 à 3, caractérisé en ce qu'il contient, en % en poids :
    Aluminium   max 0,025.
  5. Alliage duplex selon l'une des revendications 1 à 4, caractérisé en ce que la valeur de rapport G est supérieure à 2,2, mais inférieure à 3,5.
  6. Alliage duplex selon l'une des revendications 1 à 5, caractérisé en ce que le facteur de phases de structure P a une valeur supérieure à 45, mais inférieure à 59.
  7. Alliage duplex selon l'une des revendications 1 à 6, caractérisé en ce qu'il est soumis à un traitement thermique par refroidissement à partir d'une température comprise entre 1 050 °C et 1 100 °C et en utilisant de l'eau ou un gaz inerte, par exemple de l'hydrogène.
EP91890088A 1990-05-03 1991-04-25 Alliage à structure duplex, à haute résistance mécanique et résistant à la corrosion Revoked EP0455625B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1007/90 1990-05-03
AT0100790A AT397515B (de) 1990-05-03 1990-05-03 Hochfeste korrosionsbeständige duplex-legierung

Publications (2)

Publication Number Publication Date
EP0455625A1 EP0455625A1 (fr) 1991-11-06
EP0455625B1 true EP0455625B1 (fr) 1994-07-06

Family

ID=3504787

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91890088A Revoked EP0455625B1 (fr) 1990-05-03 1991-04-25 Alliage à structure duplex, à haute résistance mécanique et résistant à la corrosion

Country Status (3)

Country Link
EP (1) EP0455625B1 (fr)
AT (2) AT397515B (fr)
DE (1) DE59102100D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT405297B (de) * 1997-08-13 1999-06-25 Boehler Edelstahl Duplexlegierung für komplex beanspruchte bauteile

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU703877B2 (en) * 1995-09-27 1999-04-01 Nippon Steel & Sumitomo Metal Corporation Welded high-strength steel structure with excellent corrosion resistance
SE519589C2 (sv) * 1998-02-18 2003-03-18 Sandvik Ab Användning av höghållfast rostfritt stål i apparatur för framställning av kaustiksoda
SE524951C2 (sv) * 2001-09-02 2004-10-26 Sandvik Ab Användning av en duplex rostfri stållegering
SE524952C2 (sv) * 2001-09-02 2004-10-26 Sandvik Ab Duplex rostfri stållegering
SE527178C2 (sv) * 2003-03-02 2006-01-17 Sandvik Intellectual Property Användning av en duplex rostfri stållegering
SE527175C2 (sv) 2003-03-02 2006-01-17 Sandvik Intellectual Property Duplex rostfri ställegering och dess användning
SE531593C2 (sv) * 2007-10-26 2009-06-02 Sandvik Intellectual Property Värmeväxlare för fosforsyramiljö
EP3693121B8 (fr) 2011-01-27 2022-04-13 NIPPON STEEL Stainless Steel Corporation Tôle d'acier plaquée en acier inoxydable duplex en tant que matériau de placage et son procédé de production
JP5868206B2 (ja) 2011-03-09 2016-02-24 新日鐵住金ステンレス株式会社 溶接部耐食性に優れた二相ステンレス鋼
KR101702252B1 (ko) * 2013-01-15 2017-02-03 가부시키가이샤 고베 세이코쇼 2상 스테인리스강재 및 2상 스테인리스강관

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2815439C3 (de) * 1978-04-10 1980-10-09 Vereinigte Edelstahlwerke Ag (Vew), Wien Niederlassung Vereinigte Edelstahlwerke Ag (Vew) Verkaufsniederlassung Buederich, 4005 Meerbusch Verwendung eines ferritisch-austenitischen Chrom-Nickel-Stahles
JPS58197260A (ja) * 1982-05-13 1983-11-16 Kobe Steel Ltd 酸性油井用2相系ステンレス鋼
GB2128632A (en) * 1982-10-23 1984-05-02 Mather & Platt Ltd Stainless steel
CA1242095A (fr) * 1984-02-07 1988-09-20 Akira Yoshitake Acier inoxydable duplex ferritique-austenitique
EP0179117A1 (fr) * 1984-04-27 1986-04-30 Bonar Langley Alloys Limited Acier inox duplex a haute teneur en chrome
JPS61564A (ja) * 1984-06-13 1986-01-06 Nippon Kokan Kk <Nkk> 衝撃特性の優れた2相ステンレス鋼
SE453838B (sv) * 1985-09-05 1988-03-07 Santrade Ltd Hogkvevehaltigt ferrit-austenitiskt rostfritt stal
EP0320548B1 (fr) * 1987-12-17 1992-08-12 Esco Corporation Procédé de fabrication d'un acier inoxydable duplex et produit en acier inoxydable duplex, présentant des caractéristiques mécaniques améliorées
US4816085A (en) * 1987-08-14 1989-03-28 Haynes International, Inc. Tough weldable duplex stainless steel wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT405297B (de) * 1997-08-13 1999-06-25 Boehler Edelstahl Duplexlegierung für komplex beanspruchte bauteile

Also Published As

Publication number Publication date
EP0455625A1 (fr) 1991-11-06
ATE108220T1 (de) 1994-07-15
AT397515B (de) 1994-04-25
DE59102100D1 (de) 1994-08-11
ATA100790A (de) 1993-09-15

Similar Documents

Publication Publication Date Title
AT412727B (de) Korrosionsbeständige, austenitische stahllegierung
DE69208059T2 (de) Rostfreies Duplexstahl mit verbesserten Festigkeits- und Korrosionsbeständigkeitseigenschaften
DE602004000140T2 (de) Rostfreier austenitischer Stahl
DE69429610T2 (de) Hochfester martensitischer rostfreier Stahl und Verfahren zu seiner Herstellung
DE69421281T2 (de) Ferritisch-austenitischer rostfreier stahl und seine verwendung
DE60023699T2 (de) Warmfester rostfreier austenitischer stahl
DE69010234T2 (de) Hochfester Stahl mit hohem Chromgehalt und mit sehr guten Zähigkeits- und Oxidationsbeständigkeitseigenschaften.
DE69529829T2 (de) Ferritische wärmebeständige Stähle
DE69303518T2 (de) Hitzebeständiger, ferritischer Stahl mit niedrigem Chromgehalt und mit verbesserter Dauerstandfestigkeit und Zäheit
DE69700057T2 (de) Hitzebeständiger, ferritischer Stahl mit niedrigem Cr- und Mn-Gehalt und mit ausgezeichneter Festigkeit bei hohen Temperaturen
DE69506537T2 (de) Rostfreier zweiphasiger stahl
DE69508876T2 (de) Temperaturbeständiger ferritischer Stahl mit hohem Chromgehalt
DE69510060T2 (de) Rostfreier martensit-stahl mit ausgezeichneter verarbeitbarkeit und schwefel induzierter spannungsrisskorrosionsbeständigkeit
DE69802602T2 (de) Schweisszusatzwerkstoff für hochzähem ferritischem Stahl mit niedrigem Chromgehalt
EP0455625B1 (fr) Alliage à structure duplex, à haute résistance mécanique et résistant à la corrosion
DE68905066T2 (de) Hochtemperaturfestes stahlrohr mit niedrigem siliziumgehalt und mit verbesserten duktilitaets- und faehigkeitseigenschaften.
DE69204123T2 (de) Hitzebeständiges ferritisches Stahl mit hohem Chromgehalt und mit höhere Beständigkeit gegen Versprödung durch intergranuläre Ausscheidung von Kupfer.
DE69601340T2 (de) Hochfester, hochzaher warmebestandiger stahl und verfahren zu seiner herstellung
DE10244972B4 (de) Wärmefester Stahl und Verfahren zur Herstellung desselben
AT405297B (de) Duplexlegierung für komplex beanspruchte bauteile
DE3528537A1 (de) Verfahren zur herstellung von stahl hoher festigkeit und zaehigkeit fuer druckbehaelter
DE69432780T2 (de) Inertgaslichtbogenschweissdraht für temperaturbeständigen hochchromhaltigen ferritischen stahl
WO2010092067A1 (fr) Alliage d&#39;acier
DE2410002A1 (de) Hochchromhaltiger stahl
DE69705167T2 (de) Ferritische Stähle mit niedrigem Cr-Gehalt und ferritische Gusstähle mit niedrigem Cr-Gehalt, die eine hervorragende Hochtemperaturfestigkeit und Schwei barkeit aufweisen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910503

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOEHLER EDELSTAHL GMBH

17Q First examination report despatched

Effective date: 19931125

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19940706

Ref country code: BE

Effective date: 19940706

REF Corresponds to:

Ref document number: 108220

Country of ref document: AT

Date of ref document: 19940715

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 59102100

Country of ref document: DE

Date of ref document: 19940811

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19941007

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19941007

EAL Se: european patent in force in sweden

Ref document number: 91890088.7

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950430

26 Opposition filed

Opponent name: SANDVIK AB

Effective date: 19950405

NLR1 Nl: opposition has been filed with the epo

Opponent name: SANDVIK AB

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: BOEHLER EDELSTAHL GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970324

Year of fee payment: 7

Ref country code: FR

Payment date: 19970324

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970326

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970327

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970328

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970331

Year of fee payment: 7

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19980320

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 980320

NLR2 Nl: decision of opposition