EP0433856A1 - Hartmetall-Mischwerkstoffe auf Basis von Boriden, Nitriden und Eisenbindemetallen - Google Patents

Hartmetall-Mischwerkstoffe auf Basis von Boriden, Nitriden und Eisenbindemetallen Download PDF

Info

Publication number
EP0433856A1
EP0433856A1 EP90123854A EP90123854A EP0433856A1 EP 0433856 A1 EP0433856 A1 EP 0433856A1 EP 90123854 A EP90123854 A EP 90123854A EP 90123854 A EP90123854 A EP 90123854A EP 0433856 A1 EP0433856 A1 EP 0433856A1
Authority
EP
European Patent Office
Prior art keywords
titanium
volume
iron
zirconium
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90123854A
Other languages
English (en)
French (fr)
Other versions
EP0433856B1 (de
Inventor
Dietrich Dr. Lange
Lorenz Dr. Sigl
Karl-Alexander Dr. Schwetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elektroschmelzwerk Kempten GmbH
Original Assignee
Elektroschmelzwerk Kempten GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elektroschmelzwerk Kempten GmbH filed Critical Elektroschmelzwerk Kempten GmbH
Priority to AT90123854T priority Critical patent/ATE102263T1/de
Publication of EP0433856A1 publication Critical patent/EP0433856A1/de
Application granted granted Critical
Publication of EP0433856B1 publication Critical patent/EP0433856B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides

Definitions

  • Hard metals which are understood to mean sintered materials made of metallic hard materials based on high-melting carbides of the metals from groups 4b to 6b of the periodic table and low-melting binder metals from the iron group, in particular cobalt, have long been known. They are mainly used for machining technology and to combat wear. For the production of these hard metals from the usually powdery hard materials, the metal binders are required, which must wet the hard material during the sintering process with the formation of an alloy (solution). This is the only way to create the tough, hard microstructure of the hard metals suitable for use, among which the WC-Co and TiC-WC-Co systems are best known.
  • binders from the iron group are also suitable for other high-melting metallic hard materials, such as borides and nitrides (cf. "Ullmanns Enzyklopadie der techn. Chemie", Vol. 12, 4th Edition 1976, Chapter “Hard Metals” , Pp. 515-521).
  • Alloys based on nitrides and carbonitrides of titanium and zirconium with a very high proportion of the binder, in particular iron, (at least 50% and more) are particularly tough, but no longer very hard (HV 1050 - 1175) (cf. US-A -4,145,213 by Oskarsson et al.). Such materials are believed to be less brittle than the boride-based systems mentioned above. However, due to their low hardness, they are not suitable for processing hard and high-temperature materials such as SiC-reinforced aluminum alloys.
  • Density at least 97% TD based on the theoretically possible density of the entire mixed material, grain size of the hard material phase maximum 5.5 ⁇ m, hardness (HV 30) at least 1200, flexural strength (measured according to the 4-point method at room temperature) at least 1,000 MPa and Breaking resistance K IC at least 8.0 MPa m 1/2 .
  • Tungsten carbide mixed materials in which the hard material components consist of titanium boride and titanium nitride, together, preferably 50-97% by volume, have proven particularly useful Make up 50 - 90 vol .-%, and in particular about 80 vol .-%, of the entire mixed material. 2.5-40% by volume of the hard material components preferably consist of titanium nitride. The missing proportion of up to 100% by volume in the entire mixed material is distributed among the oxides, which may be present, preferably titanium oxide, with a proportion between 0 to 10% by volume and the metallic binding phase from the low-carbon iron or Iron alloy. Alloy components for low-carbon iron types are preferably chromium or chromium-nickel mixtures.
  • the hard metal mixing materials according to the invention can be produced by processes known per se, for example by pressure-free sintering of fine starting powder mixtures or by infiltration of porous moldings from the hard material components with the low-carbon binder.
  • borides and nitrides selected as hard material components should be as free as possible from carbon-containing impurities which have a disadvantageous effect on the formation of the microstructure in the finished sintered body.
  • titanium diboride which may contain boron carbide in its manufacture, can react not only with graphite, as already mentioned above, but also with boron carbide in the presence of iron to form the undesired Fe2B phase during the sintering process, as the following equations illustrate:
  • Oxygen which is predominantly in the form of adhering oxides of titanium and zirconium, which includes, for example, TiO2, Ti2O3 and / or TiO and the corresponding oxides of zirconium, does not, however, interfere and can contain up to about 2% by weight in the Starting powders are tolerated.
  • the separate addition of such oxides, in particular titanium oxide does not interfere with the sintering process and that, for example, up to 10% by volume of titanium oxide in the finished mixed material, its properties remain practically unchanged.
  • the oxygen can also be present, in whole or in part, in the form of so-called oxynitrides of titanium and zircon.
  • Iron types with a C content of less than 0.1, preferably less than 0.05% by weight are advantageously used as the low-carbon binder metals.
  • Carbonyl iron powders with an Fe content of 99.95 to 99.98% by weight have proven particularly useful.
  • These low-carbon types of iron can contain, for example, chromium in amounts of approximately 12% by weight or nickel-chromium mixtures of, for example, 8% by weight of nickel and 18% by weight of chromium as alloy components.
  • grinding units can be used for this purpose, such as ball mills, planetary ball mills and attritors, in which grinding media and grinding vessels are made of material of their own, which in the present case means, for example, titanium diboride and low-carbon iron types.
  • the powder mixtures obtained after the mixed grinding are optionally mixed with temporary binders or pressing aids and made free-flowing by spray drying. They are then pressed by customary measures, such as cold isostatic pressing or die pressing, to form green bodies of the desired shape with a density of at least 60% TD.
  • An annealing treatment at about 400 ° C removes binders or pressing aids without leaving any residue.
  • the green bodies are then heated in the absence of oxygen to temperatures in the range from 1350 ° C. to 1900 ° C., preferably from 1550 ° C. to 1800 ° C., and 10 to 150 minutes, preferably 15, until a liquid iron-rich phase is formed to 45 Minutes, held and then slowly cooled to room temperature.
  • This sintering process is advantageously carried out in furnace units which are equipped with metallic heating elements, for example made of tungsten, tantalum or molybdenum, in order to avoid unwanted carburization of the sintered bodies.
  • the sintered bodies expediently before cooling to room temperature, by applying pressure by means of a gaseous pressure transmission medium such as argon, at temperatures from 1200 ° C to 1400 ° C under a pressure of 150 to 250 MPa, preferably about 200 MPa, 10 continue to heat up to 15 minutes.
  • a gaseous pressure transmission medium such as argon
  • the hard material components for example titanium boride, titanium nitride and optionally titanium oxide
  • these powder mixtures can be molded into green bodies with a density of 50 to 60% TD.
  • These porous green bodies are then surrounded in a refractory crucible, for example made of boron nitride or aluminum oxide, with a powder bed of the desired binding metal, which only partially covers the surface of the porous body.
  • the crucibles are then heated in furnace units with metallic heating elements (W, Ta, Mo) in a vacuum free of carbon impurities to temperatures above the melting point of the metallic binding phase, whereby the liquid binding metal penetrates the porous green body by infiltration until its pores are practically completely closed are.
  • metallic heating elements W, Ta, Mo
  • the time required for this is essentially determined by the time required for the binder metal to melt.
  • the process is generally completed in a period of 30 seconds to 30 minutes depending on the size of the workpiece.
  • the hard metal mixing materials according to the invention produced in this way are not only very dense, but also very hard, tough and strong.
  • the desired combination of toughness and hardness can be varied over a wide range via the mixing ratio of the hard materials, since titanium nitride, for example, is somewhat tougher than titanium diboride with a somewhat lower hardness.
  • titanium nitride for example, is somewhat tougher than titanium diboride with a somewhat lower hardness.
  • even small amounts of titanium nitride can considerably reduce the crater wear that usually occurs with indexable inserts, although such an influence was not to be expected from a hard material component that was softer than titanium diboride.
  • the mixed materials according to the invention are also suitable as cutting tools for machining very hard materials, for example with SiC-reinforced aluminum alloys and nickel-based superalloys, as well as for impact-free machining such as core drilling or sawing of building materials containing silicon dioxide, for example concrete.
  • Example 2 The same amounts of titanium diboride and titanium nitride as in Example 1 were mixed with 600 g of a powder made of stainless steel, which contained 18% by weight of nickel, 8% by weight of chromium and ⁇ 0.05% by weight of carbon and an average starting particle size of 20 ⁇ m had ground and processed under the same conditions as described in Example 1. The sintering was carried out at a temperature of 1650 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Gegenstand der Erfindung sind Hartmetall-Mischwerkstoffe auf Basis hochschmelzender Boride und Nitride und niedrigschmelzender Eisenbindemetalle. Sie bestehen aus (1) 40 - 97 Vol.-% Boriden, wie Titan- und Zirkondiborid, (2) 1 - 48 Vol.-% Nitriden, wie Titan- und Zirkonnitrid, (3) 0 - 10 Vol.-% Oxiden, wie Titan- und Zirkonoxid, wobei (2) und (3) auch als Oxynitride, wie Titan- und Zirkonoxynitrid, vorhanden sein können, und (4) 2 - 59 Vol.-% kohlenstoffarmen Bindemetallen, wie Eisen und Eisenlegierungen und haben folgende Eigenschaften: Dichte: mindestens 97% TD; Korngröße der Hartstoffphase: maximal 5,5 µm; Härte (HV 30): mindestens 1200 Biegebruchfestigkeit (4-Punkt bei RT): mindestens 1000 MPa; Bruchwiderstand KIC: mindestens 8,0 MPa m<1/2>. Zähigkeit und Härte können über das Mischungsverhältnis der Hartstoffe, wie Titandiborid und Titannitrid, variiert und dem gewünschten Verwendungszweck jeweils genau angepaßt werden. Die Hartmetall-Mischwerkstoffe können als Schneidwerkstoffe sowohl zum Bearbeiten harter, wie mit SiC-verstärkten Aluminiumlegierungen, als auch zum Kernbohren oder Sägen von Baustoffen, wie Beton, verwendet werden.

Description

  • Hartmetalle, worunter gesinterte Werkstoffe aus metallischen Hartstoffen auf Basis hochschmelzender Carbide der Metalle aus den Gruppen 4b bis 6b des Periodensystems und niedrigschmelzender Bindemetalle aus der Eisengruppe, insbesondere Cobalt, verstanden werden, sind seit langem bekannt. Sie werden hauptsächlich für die Zerspanungstechnik und zur Verschleißbekämpfung benutzt. Für die Herstellung dieser Hartmetalle aus den üblicherweise pulverförmigen Hartstoffen sind die Metallbinder erforderlich, welche den Hartstoff während des Sinterprozesses unter Legierungsbildung (Lösung) benetzen müssen. Erst dadurch entsteht die für die Verwendung geeignete zähe-harte Mikrostruktur der Hartmetalle, unter welchen die Systeme WC-Co und TiC-WC-Co am bekanntesten sind. Ferner ist bekannt, daß Binder aus der Eisengruppe auch für andere hochschmelzende metallische Hartstoffe, wie Boride und Nitride, geeignet sind (vgl. "Ullmanns Enzyklopädie der techn. Chemie", Bd. 12, 4. Aufl. 1976, Kap. "Hartmetalle", S. 515-521).
  • Bereits in den 60er Jahren wurden die Systeme TiB₂-Fe, Co oder Ni und ZrB₂ und Fe, Co oder Ni untersucht. Dabei wurde festgestellt, daß derartige Legierungen auf Basis TiB₂ mit bis zu 20% Fe als Binder beträchtlich härter sind als solche auf Basis WC-Co und TiC-WC-Co. Legierungen auf Basis ZrB₂ mit Co und Ni sind brüchig und nicht oxidationsbeständig, während Fe mit ZrB₂ unter Bildung von tetragonalem Fe₂B reagiert und somit als Bindemittel nicht in Betracht kommt (vgl. Arbeiten von V.F. Funke et al. und M.E. Tyrrell et al., ref. in dem Buch "Boron and Refractory Borides", Ed. by V.J. Matkovich, Springer-Verlag, Berlin-Heidelberg-New York, 1977 in Kap. XIV, S. 484 in Verbindung mit Tafel 7 und S. 488 in Verbindung mit Tafel 8).
  • Aus diesen Ergebnissen wurde geschlossen, daß offensichtlich das geeignete Bindemittel für diese Boride noch nicht gefunden wurde, das die Nachteile der übermäßigen Brüchigkeit kompensieren und damit den industriellen Einsatz derartiger Legierungen auf dem Gebiet der Schneidwerkstoffe und anderer Anwendungen, die hohe Anforderungen an Korrosions-, Hitze- und/oder Oxidationsbeständigkeit stellen, ermöglichen könnte (vgl. a.a.O., S. 489).
  • Legierungen auf Basis von Nitriden und Carbonitriden des Titans und Zirkons mit einem sehr hohen Anteil des Bindemittels, insbesondere Eisen, (mindestens 50% und mehr) sind besonders zäh, aber nicht mehr sehr hart (HV 1050 - 1175) (vgl. US-A-4,145,213 von Oskarsson et al.). Derartige Stoffe sind zwar vermutlich weniger brüchig als die obengenannten Systeme auf Boridbasis. Auf Grund ihrer geringen Härte sind sie indessen für die Bearbeitung harter und hochwarmfester Werkstoffe, wie SiC-verstärkte Aluminiumlegierungen, nicht geeignet.
  • Kombinationen auf Basis von Diboriden, insbesondere des Titans und des Zirkons, mit Carbiden und/oder Nitriden,insbesondere Titannitrid und Titancarbid, und mit Bindern auf Boridbasis, wie insbesondere Co-, Ni- oder Fe-Borid, bringen keine Lösung des Problems, denn derartige Stoffe sind auf Grund des Boridbinders, worunter insbesondere CoB zu verstehen ist, zwar sehr hart und fest, aber dafür besonders brüchig (vgl. US-A-4,379,852 von Watanabe et al.).
  • Schließlich wurde auch bereits versucht, dem bekannten System auf Basis Titanborid und gegebenenfalls Titancarbid mit Bindern aus Eisen, Cobalt und Nickel oder Legierungen hiervon vor dem Sintern des Gemisches Graphit zuzusetzen, der während des Sintervorgangs mit vorhandenem Sauerstoff reagieren soll. Damit sollen Schneidwerkstoffe erzielt werden können, die sowohl ausreichend hart, als auch zäh sind, so daß sie insbesondere für die Bearbeitung von Aluminium und Aluminiumlegierungen eingesetzt werden können (vgl. EP-B-148 821 von Moskowitz et al., die auf der PCT-Anmeldung WO 84/04713 basiert). Durch Reaktion von Graphit mit Titanborid in Gegenwart von Eisen wird jedoch die Bildung der unerwünschten Fe₂B-Phase begünstigt, die nicht nur weniger hart ist als Titandiborid, sondern auch den Anteil der duktilen Eisenbindephase verringert, so daß die daraus resultierenden Werkstoffe nicht nur weniger hart, sondern auch weniger zäh sind.
  • Es stellt sich somit die Aufgabe, Hartmetall-Mischwerkstoffe auf der Basis hochschmelzender Boride und Nitride der Metalle aus der Gruppe 4b des Periodensystems und niedrigschmelzender Bindemetalle aus Eisen oder Eisenlegierungen zur Verfügung zu stellen, die hochdicht, sehr hart, zäh und fest sind, so daß sie insbesondere als Schneidwerkstoffe für harte und hochwarmfeste Materialien eingesetzt werden können.
  • Die erfindungsgemäßen Mischwerkstoffe bestehen aus
    • (1) 40 bis 97 Vol.-% Boriden, ausgewählt aus der Gruppe von Titandiborid, Zirkondiborid und Mischkristallen hiervon,
    • (2) 1 bis 48 Vol.-% Nitriden, ausgewählt aus der Gruppe von Titannitrid und Zirkonnitrid,
    • (3) 0 bis 10 Vol.-% Oxiden, ausgewählt aus der Gruppe von Titanoxid und Zirkonoxid, wobei die Komponenten (2) und (3) auch ganz oder teilweise in Form von Oxynitriden, ausgewählt aus der Gruppe von Titanoxynitrid und Zirkonoxynitrid, vorhanden sein können, und
    • (4) 2 bis 59 Vol.-% kohlenstoffarmen Eisen und Eisenlegierungen

    und haben folgende Eigenschaften:
  • Dichte mindestens 97 % TD, bezogen auf die theoretisch mögliche Dichte des gesamten Mischwerkstoffs, Korngröße der Hartstoffphase maximal 5,5 µm, Härte (HV 30) mindestens 1200, Biegebruchfestigkeit (gemessen nach der 4-Punkt-Methode bei Raumtemperatur) mindestens 1.000 MPa und Bruchwiderstand KIC mindestens 8.0 MPa m1/2.
  • Besonders bewährt haben sich Hartmetall-Mischwerkstoffe, in welchen die Hartstoffkomponenten aus Titanborid und Titannitrid bestehen, die zusammen 50 - 97 Vol.-%, vorzugsweise 50 - 90 Vol.-%, und insbesondere etwa 80 Vol.-%, des gesamten Mischwerkstoffs ausmachen. Vorzugsweise bestehen 2,5 - 40 Vol.-% der Hartstoffkomponenten aus Titannitrid. Der fehlende Anteil bis 100 Vol.-% im gesamten Mischwerkstoff verteilt sich auf die Oxide, die gegebenenfalls vorhanden sein können, vorzugsweise Titanoxid, mit einem Anteil zwischen 0 bis 10 Vol.-% und auf die metallische Bindephase aus dem kohlenstoffarmen Eisen bzw. der Eisenlegierung. Legierungsbestandteile für kohlenstoffarme Eisensorten sind vorzugsweise Chrom oder Chrom-Nickel-Gemische.
  • Die erfindungsgemäßen Hartmetall-Mischwerkstoffe können nach an sich bekannten Verfahren hergestellt werden, beispielsweise durch drucklose Sinterung feiner Ausgangspulvergemische oder durch Infiltration poröser Formkörper aus den Hartstoffkomponenten mit dem kohlenstoffarmen Bindemittel.
  • Für die Durchführung dieser Verfahren werden als Ausgangsmaterial vorteilhaft sehr feine und sehr reine Ausgangspulver eingesetzt. Die als Hartstoffkomponenten ausgewählten Boride und Nitride sollten möglichst frei von Kohlenstoff enthaltenden Verunreinigungen sein, die sich nachteilig auf die Ausbildung der Mikrostruktur im fertigen Sinterkörper auswirken. So kann beispielsweise Titandiborid, das von der Herstellung her Borcarbid enthalten kann, während des Sintervorgangs nicht nur mit Graphit, wie bereits oben erwähnt, sondern auch mit Borcarbid in Gegenwart von Eisen unter Bildung der unerwünschten Fe₂B-Phase reagieren, wie folgende Gleichungen verdeutlichen:
    Figure imgb0001
  • Sauerstoff, der vorwiegend in Form von anhaftenden Oxiden des Titans und des Zirkons vorliegt, worunter beispielsweise TiO₂, Ti₂O₃ und/oder TiO und die entsprechenden Oxide des Zirkons zu verstehen sind, stört indessen nicht und kann bis zu etwa 2 Gew.-% in den Ausgangspulvern toleriert werden. Darüber hinaus wurde festgestellt, daß auch der gesonderte Zusatz derartiger Oxide, insbesondere Titanoxid, den Sintervorgang nicht stört und daß beispielsweise bei Vorhandensein bis zu 10 Vol.-% Titanoxid im fertigen Mischwerkstoff dessen Eigenschaften praktisch unverändert bleiben.
  • Außer in Form der Oxide kann der Sauerstoff auch, ganz oder teilweise, in Form von sogenannten Oxynitriden des Titans und des Zirkons vorhanden sein. Hierunter sind Titan- und Zirkonnitride zu verstehen, in welchen einige der Stickstoffatome durch Sauerstoffatome ersetzt worden sind entsprechend den Formeln Ti(O,N) und Zr(O,N), da Stickstoff und Sauerstoff im Titannitrid- bzw. Zirkonnitridgitter unbegrenzt austauschbar sind unter Bildung von Mischkristallen ohne Mischungslücke.
  • Als kohlenstoffarme Bindemetalle werden vorteilhaft Eisensorten mit einen C-Gehalt von weniger als 0,1, vorzugsweise weniger als 0,05 Gew.-%, verwendet. Besonders bewährt haben sich Carbonyleisenpulver mit einem Fe-Gehalt von 99,95 bis 99,98 Gew.-%. Diese kohlenstoffarmen Eisensorten können als Legierungsbestandteile beispielsweise Chrom in Mengen von etwa 12 Gew.-% oder Nickel-Chrom-Gemische aus beispielsweise 8 Gew.-% Nickel und 18 Gew.-% Chrom enthalten.
  • Um die Verunreinigung mit insbesondere Kohlenstoff zu vermeiden, ist es vorteilhaft, diese Ausgangspulver, die bereits von der Herstellung her ausreichend rein sein müssen, autogen zu vermahlen. Hierzu können bekannte Mahlaggregate verwendet werden, wie Kugelmühlen, Planetenkugelmühlen und Attritoren, in welchen Mahlkörper und Mahlbehälter aus werkstoffeigenem Material bestehen, worunter im vorliegenden Fall beispielsweise Titandiborid und kohlenstoffarme Eisensorten zu verstehen sind.
  • Bei der Aufmahlung mit Mahlkörpern aus Titandiborid können insbesondere grobe Ausgangspulver auf die gewünschte Kornfeinheit zerkleinert werden, während Mahlkörper aus kohlenstoffarmen Eisensorten für eine ausreichende Durchmischung der Ausgangspulver geeignet sind, da der Zerkleinerungseffekt der Hartstoffkomponenten hierbei nur gering ist. In diesem Fall muß daher die gewünschte Korngrößenverteilung der Ausgangspulver bereits vor dem Vermahlen vorhanden sein.
  • Die nach der Mischmahlung anfallenden Pulvergemische werden gegebenenfalls mit temporären Bindemitteln bzw. Preßhilfsmitteln versetzt und durch Sprühtrocknen rieselfähig gemacht. Anschließend werden sie durch übliche Maßnahmen, wie kaltisostatisches Pressen oder Gesenkpressen, unter Bildung von Grünkörpern der gewünschten Form mit einer Dichte von mindestens 60% TD verpreßt. Durch eine Glühbehandlung bei etwa 400°C werden Bindemittel bzw. Preßhilfsmittel rückstandsfrei entfernt. Dann werden die Grünkörper unter Ausschluß von Sauerstoff auf Temperaturen im Bereich von 1350°C bis 1900°C, vorzugsweise von 1550°C bis 1800°C, erhitzt und bis zur Bildung einer flüssigen eisenreichen Phase bei dieser Temperatur 10 bis 150 Minuten, vorzugsweise 15 bis 45 Minuten, gehalten und dann langsam abgekühlt bis auf Raumtemperatur. Dieser Sintervorgang wird vorteilhaft in Ofenaggregaten vorgenommen, die mit metallischen Heizelementen, zum Beispiel aus Wolfram, Tantal oder Molybdän, ausgerüstet sind, um eine unerwünschte Aufkohlung der Sinterkörper zu vermeiden.
  • Anschließend können die Sinterkörper, zweckmäßig vor dem Abkühlen auf Raumtemperatur, durch Anwendung von Druck mittels eines gasförmigen Druckübertragungsmediums, wie Argon, bei Temperaturen von 1200°C bis 1400°C unter einem Druck von 150 bis 250 MPa, vorzugsweise etwa 200 MPa, noch 10 bis 15 Minuten weiter erhitzt werden. Durch diese hüllenlose, heißisostatische Nachverdichtung werden praktisch alle noch vorhandenen Poren eliminiert, so daß der fertige Hartmetall-Mischwerkstoff eine Dichte von 100% TD aufweist.
  • Alternativ zu diesem Sintervorgang können die Hartstoffkomponenten, beispielsweise Titanborid, Titannitrid und gegebenenfalls Titanoxid, per se autogen vermahlen und diese Pulvergemische unter Formgebung zu Grünkörpern mit einer Dichte von 50 bis 60% TD verpreßt werden. Diese porösen Grünkörper werden dann in einen feuerfesten Tiegel, zum Beispiel aus Bornitrid oder Aluminiumoxid, mit einer Pulverschüttung aus dem gewünschten Bindemetall umgeben, welche die Oberfläche des porösen Körpers nur teilweise bedeckt. Anschließend werden die Tiegel in Ofenaggregate mit metallischen Heizelementen (W, Ta, Mo) in einem von Kohlenstoffverunreinigungen freien Vakuum auf Temperaturen über den Schmelzpunkt der metallischen Bindephase erhitzt, wobei das flüssige Bindemetall durch Infiltration in den porösen Grünkörper eindringt, bis dessen Poren praktisch vollständig geschlossen sind. Auch in diesem Fall werden praktisch porenfreie Mischwerkstoffe erhalten, die ebenfalls eine Dichte von nahezu 100% TD aufweisen. Die hierfür erforderliche Zeit wird im wesentlichen von der bis zum Aufschmelzen des Bindemetalls benötigten Zeit bestimmt. Der Prozeß ist im allgemeinen in Abhängigkeit von der Größe des Werkstückes in einem Zeitraum von 30 Sekunden bis 30 Minuten beendet.
  • Die so hergestellten erfindungsgemäßen Hartmetall-Mischwerkstoffe sind nicht nur sehr dicht, sondern auch sehr hart, zäh und fest. Die gewünschte Kombination von Zähigkeit und Härte kann über das Mischungsverhältnis der Hartstoffe in weitem Bereich variiert werden, da beispielsweise Titannitrid bei etwas geringerer Härte gegenüber Titandiborid etwas zäher ist. So kann beispielsweise bereits durch geringe Titannitridzusätze der bei Wendeschneidplatten üblicherweise auftretende Kolkverschleiß erheblich reduziert werden, obwohl ein derartiger Einfluß von einer relativ zu Titandiborid weicheren Hartstoffkomponente nicht zu erwarten war. Auf Grund der Eigenschaftskombination, die dem gewünschten Verwendungszweck jeweils genau angepaßt werden kann, sind die erfindungsgemäßen Mischwerkstoffe als Schneidwerkzeuge zum Bearbeiten sehr harter Materialien, zum Beispiel mit SiC-verstärkten Aluminiumlegierungen und Superlegierungen auf Nickelbasis ebenso geeignet, wie zum schlagfreien Bearbeiten, wie Kernbohren oder Sägen von Siliciumdioxid enthaltenden Baustoffen, zum Beispiel Beton.
  • In den folgenden Beispielen wird die Herstellung erfindungsgemäßer Hartmetall-Mischwerkstoffe näher beschrieben.
  • In den Beispielen 1 bis 7 wurden Hartstoffe und Bindemetalle mit folgenden Pulveranalysen verwendet:
    Figure imgb0002
  • Beispiel 1
  • 1350 g Titandiborid mit einer mittleren Teilchengröße von 5 µm, 50 g Titannitrid mit einer mittleren Teilchengröße von 2 µm und 600 g Carbonyleisenpulver mit einer mittleren Teilchengröße von 20 µm wurden zusammen mit 2 g Paraffin und 10 dm³ Heptan in einem Mahlbehälter aus heißgepreßtem Titandiborid mit Mahlkugeln aus Titandiborid 2 Stunden mit 120 Upm vermahlen. Aus dem zerkleinerten Pulvergemisch mit einer mittleren Teilchengröße von 0,7 µm (FSSS) wurde durch Sprühtrocknen ein rieselfähiges Pulver hergestellt und dieses unter einem Druck von 320 MPa in einer Gesenkpresse zu Grünkörpern in Form von rechteckigen Platten mit den Abmessungen 53 x 23 mm verpreßt. Anschließend wurden die Grünkörper in einem Ofen mit Wolframheizelementen unter Vakuum in Gegenwart eines kohlenstofffreien Restgases bei 1700°C 30 Minuten dichtgesintert und dann langsam auf Raumtemperatur abgekühlt.
  • Beispiel 2
  • 1570 g Titandiborid mit einer mittleren Teilchengröße von 5 µm, 110 g Titannitrid derselben Teilchengröße und 300 g Carbonyleisenpulver mit einer mittleren Teilchengröße von 20 µm wurden zusammen mit 1 Gew.-% Paraffin und 10 dm³ Heptan in einem Mahlbehälter aus V2A Stahl mit Carbonyleisenkugeln 2 Stunden mit 120 Upm vermahlen. Das so erhaltene Pulvergemisch wurde wie in Beispiel 1 beschrieben aufbereitet und gesintert.
  • Beispiel 3
  • Aus gleichen Mengen Titandiborid, Titannitrid und Carbonyleisen und unter gleichen Bedingungen wie in Beispiel 1 beschrieben wurden Grünkörper in Form von Platten hergestellt, die in einem kohlenstofffreien Vakuum bei 1650°C 15 Minuten gesintert wurden. Nach dem Senken der Temperatur auf 1200°C wurden diese vorgesinterten Platten im gleichen Ofenraum unter einem Argongasdruck von 200 MPa 15 Minuten heißisostatisch nachverdichtet und dann langsam auf Raumtemperatur abgekühlt.
  • Beispiel 4
  • 1300 g Titandiborid und 175 g Titannitrid mit einer mittleren Teilchengröße < 10 µm wurden zusammen mit 10 dm³ Heptan in einem Mahlbehälter aus Titandiborid und Titandiboridmahlkugeln 2 Stunden bei 120 Upm vermahlen. Das zerkleinerte Hartstoffpulvergemisch wurde anschließend in einer Gummihülle kaltisostatisch zu Grünkörpern mit einer Dichte von 60% TD verpreßt. Diese Grünkörper wurden in einen Tiegel aus Aluminiumoxid gestellt und mit einer Pulvermischung aus Carbonyleisen umgeben, die bis etwa 2 cm unterhalb des oberen Randes der Grünkörper reicht. Anschließend wurden die Tiegel in einem Ofen mit Wolframheizelementen in einem kohlenstofffreien Vakuum auf 1700°C erhitzt und 30 Minuten bei dieser Temperatur gehalten. Dabei saugt der poröse Grünkörper flüssiges Eisen an bis die Poren praktisch vollständig geschlossen sind.
  • Beispiel 5
  • Gleiche Mengen an Titandiborid und Titannitrid wie in Beispiel 1 wurden mit 600 g eines Pulvers aus nichtrostendem Stahl, der 18 Gew.-% Nickel, 8 Gew.-% Chrom und <0.05 Gew.-% Kohlenstoff enthielt und eine mittlere Ausgangsteilchengröße von 20 µm hatte, unter den gleichen Bedingungen wie in Beispiel 1 beschrieben vermahlen und weiterverarbeitet. Das Sintern wurde bei einer Temperatur von 1650°C vorgenommen.
  • Beispiel 6
  • 1030 g Titandiborid (60 Vol.-%), 206 g Titannitrid (10 Vol.-%), 164 g Titandioxid (10 Vol.-%) und 600 g Carbonyleisenpulver mit einer mittleren Teilchengröße der Ausgangspulver von jeweils < 30 µm wurden wie in Beispiel 1 beschrieben vermahlen und weiterverarbeitet.
  • Beispiel 7
  • 687 g Titandiborid (40 Vol.-%), 824 g Titannitrid (40 Vol.-%) und 600 g Carbonyleisenpulver (20 Vol.-% Fe) mit einer mittleren Teilchengröße der Ausgangspulver von jeweils < 30 µm wurden in einem Mahlbehälter aus V2A Stahl und Carbonyleisenkugeln 2 Stunden mit 120 Upm vermahlen. Die Weiterverarbeitung erfolgte wie in Beispiel 1 beschrieben.
  • Die in den Beispielen 1 bis 7 hergestellten Hartmetall-Mischwerkstoffe wurden analysiert und hinsichtlich ihrer mechanischen Eigenschaften geprüft. Die Ergebnisse sind in den Tabellen 3 und 4 zusammengestellt.
    Figure imgb0003

Claims (6)

  1. Hartmetall-Mischwerkstoffe auf Basis hochschmelzender Boride und Nitride der Metalle aus der Gruppe 4b des Periodensystems und niedrigschmelzender Metalle aus Eisen und Eisenlegierungen, dadurch gekennzeichnet, daß die Mischwerkstoffe aus
    (1) 40 bis 97 Vol.-% Boriden, ausgewählt aus der Gruppe von Titandiborid, Zirkondiborid und Mischkristallen hiervon,
    (2) 1 bis 48 Vol.-% Nitriden, ausgewählt aus der Gruppe von Titannitrid und Zirkonnitrid,
    (3) 0 bis 10 Vol.-% Oxiden, ausgewählt aus der Gruppe von Titanoxid und Zirkonoxid, wobei die Komponenten (2) und (3) auch ganz oder teilweise in Form von Oxynitriden, ausgewählt aus der Gruppe von Titanoxynitrid und Zirkonoxynitrid, vorhanden sein können, und
    (4) 2 bis 59 Vol.-% kohlenstoffarmen Eisen und Eisenlegierungen
    bestehen und folgende Eigenschaften haben:
    Dichte mindestens 97% TD, bezogen auf die theoretisch mögliche Dichte des gesamten Mischwerkstoffs, Korngröße der Hartstoffphase maximal 5.5 µm, Härte (HV 30) mindestens 1200, Biegebruchfestigkeit (gemessen nach der 4-Punkt-Methode bei Raumtemperatur) mindestens 1.000 MPa und Bruchwiderstand KIC mindestens 8.0 MPa m1/2.
  2. Mischwerkstoffe nach Anspruch 1, dadurch gekennzeichnet, daß die Hartstoffkomponenten (1) und (2) aus Titandiborid und Titannitrid bestehen, die zusammen 50 bis 97 Vol.-% des gesamten Mischwerkstoffes ausmachen, und die Hartstoffkomponente (3) aus Titanoxid besteht mit einem Anteil von 0.1 bis 10 Vol.-%
  3. Mischwerkstoffe nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Bindemetallkomponente (4) aus einer kohlenstoffarmen Eisenlegierung besteht, die als Legierungsbestandteile Chrom oder Chrom-Nickel-Gemische enthält.
  4. Verfahren zur Herstellung der Mischwerkstoffe nach Anspruch 1, dadurch gekennzeichnet, daß sehr reine Ausgangspulver aus den Hartstoffkomponenten (1), (2) und gegebenenfalls (3) und dem Bindemetall (4) autogen vermahlen und die so erhaltenen feinen Ausgangspulvergemische unter Formgebung zu Grünkörpern kalt verpreßt und anschließend in kohlenstofffreier Atmosphäre und unter Ausschluß von Sauerstoff bei Temperaturen im Bereich von 1350°C bis 1900°C drucklos gesintert werden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die drucklos gesinterten Mischwerkstoffe unter Druckanwendung mittels eines gasförmigen Druckübertragungsmediums bei Temperaturen von 1200°C bis 1400°C unter einem Druck von 150 bis 250 MPa heißisostatisch nachverdichtet werden.
  6. Verfahren zur Herstellung der Mischwerkstoffe nach Anspruch 1, dadurch gekennzeichnet, daß sehr reine Ausgangspulver aus den Hartstoffkomponenten (1), (2) und gegebenenfalls (3) autogen vermahlen, die so erhaltenen feinen Ausgangspulvergemische unter Formgebung zu Grünkörpern kalt verpreßt und diese unter einer Pulverschüttung aus der Bindemetallkomponente (4) in kohlenstofffreier Atmosphäre über den Schmelzpunkt der metallischen Bindephase solange erhitzt werden, bis das flüssige Bindemetall durch Infiltration in den porösen Grünkörper eindringt und dessen Poren vollständig verschließt.
EP90123854A 1989-12-15 1990-12-11 Hartmetall-Mischwerkstoffe auf Basis von Boriden, Nitriden und Eisenbindemetallen Expired - Lifetime EP0433856B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90123854T ATE102263T1 (de) 1989-12-15 1990-12-11 Hartmetall-mischwerkstoffe auf basis von boriden, nitriden und eisenbindemetallen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3941536A DE3941536A1 (de) 1989-12-15 1989-12-15 Hartmetall-mischwerkstoffe auf basis von boriden, nitriden und eisenbindemetallen
DE3941536 1989-12-15

Publications (2)

Publication Number Publication Date
EP0433856A1 true EP0433856A1 (de) 1991-06-26
EP0433856B1 EP0433856B1 (de) 1994-03-02

Family

ID=6395567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90123854A Expired - Lifetime EP0433856B1 (de) 1989-12-15 1990-12-11 Hartmetall-Mischwerkstoffe auf Basis von Boriden, Nitriden und Eisenbindemetallen

Country Status (8)

Country Link
US (1) US5045512A (de)
EP (1) EP0433856B1 (de)
JP (1) JPH08944B2 (de)
AT (1) ATE102263T1 (de)
AU (1) AU633665B2 (de)
CA (1) CA2031640A1 (de)
DE (2) DE3941536A1 (de)
ES (1) ES2050923T3 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510977A1 (de) * 1991-04-26 1992-10-28 Daido Tokushuko Kabushiki Kaisha Werkstoffe mit hohem Elastizitätsmodul und daraus hergestellte beschichtete Werkzeuge
WO1993000452A1 (fr) * 1991-06-28 1993-01-07 Sandvik Hard Materials S.A. Cermets a base de borures des metaux de transition, leur fabrication et leurs applications
US5372979A (en) * 1992-11-05 1994-12-13 Elektroschmelzwerk Kempten Gmbh Composite materials based on titanium diboride
EP0659894A2 (de) * 1993-12-27 1995-06-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Legierung auf Stahlbasis mit hohem Modul und Verfahren zu deren Herstellung
GB2285267A (en) * 1993-12-23 1995-07-05 Electrofuel Manufacturing Co T Ceramic composition
WO2009112192A2 (de) * 2008-03-14 2009-09-17 Esk Ceramics Gmbh & Co. Kg Verbundwerkstoff auf basis von übergangsmetalldiboriden, verfahren zu dessen herstellung und dessen verwendung

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9127416D0 (en) * 1991-12-27 1992-02-19 Atomic Energy Authority Uk A nitrogen-strengthened alloy
US5401292A (en) * 1992-08-03 1995-03-28 Isp Investments Inc. Carbonyl iron power premix composition
US5427987A (en) * 1993-05-10 1995-06-27 Kennametal Inc. Group IVB boride based cutting tools for machining group IVB based materials
JPH07300656A (ja) * 1994-04-30 1995-11-14 Daido Metal Co Ltd 高温用焼結軸受合金及びその製造方法
US5637816A (en) * 1995-08-22 1997-06-10 Lockheed Martin Energy Systems, Inc. Metal matrix composite of an iron aluminide and ceramic particles and method thereof
JP3381487B2 (ja) * 1995-11-06 2003-02-24 株式会社日立製作所 原子力プラント制御棒駆動装置用ローラ及びそれを用いた制御棒駆動装置
US6103651A (en) * 1996-02-07 2000-08-15 North American Refractories Company High density ceramic metal composite exhibiting improved mechanical properties
US5679611A (en) * 1996-10-09 1997-10-21 Eastman Kodak Company Ceramic article containing a core comprising tetragonal zirconia and a shell comprising zirconium nitride
US5688731A (en) * 1996-11-13 1997-11-18 Eastman Kodak Company Ceramic articles containing doped zirconia having high electrical conductivity
US5702766A (en) * 1996-12-20 1997-12-30 Eastman Kodak Company Process of forming a ceramic article containing a core comprising zirconia and a shell comprising zirconium boride
US5696040A (en) * 1996-12-20 1997-12-09 Eastiman Kodak Company Ceramic article containing a core comprising zirconia and a shell comprising zirconium boride
US7175686B2 (en) * 2003-05-20 2007-02-13 Exxonmobil Research And Engineering Company Erosion-corrosion resistant nitride cermets
US7175687B2 (en) * 2003-05-20 2007-02-13 Exxonmobil Research And Engineering Company Advanced erosion-corrosion resistant boride cermets
US7544228B2 (en) * 2003-05-20 2009-06-09 Exxonmobil Research And Engineering Company Large particle size and bimodal advanced erosion resistant oxide cermets
US7153338B2 (en) * 2003-05-20 2006-12-26 Exxonmobil Research And Engineering Company Advanced erosion resistant oxide cermets
US7731776B2 (en) * 2005-12-02 2010-06-08 Exxonmobil Research And Engineering Company Bimodal and multimodal dense boride cermets with superior erosion performance
US8323790B2 (en) * 2007-11-20 2012-12-04 Exxonmobil Research And Engineering Company Bimodal and multimodal dense boride cermets with low melting point binder
WO2018145032A1 (en) * 2017-02-06 2018-08-09 The Regents Of The University Of California Tungsten tetraboride composite matrix and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE659917C (de) * 1931-10-24 1938-05-13 Fried Krupp Akt Ges Gesinterte Hartmetallegierungen
GB2038879A (en) * 1979-01-03 1980-07-30 Kennametal Inc Sintered Cemented Titanium Diboride Niobium Nitride
US4419130A (en) * 1979-09-12 1983-12-06 United Technologies Corporation Titanium-diboride dispersion strengthened iron materials
WO1984004713A1 (en) * 1983-05-27 1984-12-06 Ford Werke Ag Method of making and using a titanium diboride comprising body
GB2176807A (en) * 1985-06-19 1987-01-07 Asahi Glass Co Ltd Zrb2-containing sintered cermet

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568886B2 (de) * 1974-09-09 1981-02-26
JPS55128560A (en) * 1979-03-27 1980-10-04 Agency Of Ind Science & Technol Boride based ultrahard heat resistant material
JPS5837274B2 (ja) * 1980-08-26 1983-08-15 工業技術院長 高強度複合焼結材料
JPS5837274A (ja) * 1981-08-31 1983-03-04 日産自動車株式会社 キイシリンダの保持構造
US4636481A (en) * 1984-07-10 1987-01-13 Asahi Glass Company Ltd. ZrB2 composite sintered material
JPS6150909A (ja) * 1984-08-20 1986-03-13 Ichimaru Fuarukosu Kk 植物生薬の水溶性抽出エキス含有美白化粧料
JPS61130437A (ja) * 1984-11-28 1986-06-18 Kawasaki Steel Corp 金属蒸着用容器の製造方法
US4889836A (en) * 1988-02-22 1989-12-26 Gte Laboratories Incorporated Titanium diboride-based composite articles with improved fracture toughness
US4929417A (en) * 1989-04-21 1990-05-29 Agency Of Industrial Science And Technology Method of manufacture metal diboride ceramics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE659917C (de) * 1931-10-24 1938-05-13 Fried Krupp Akt Ges Gesinterte Hartmetallegierungen
GB2038879A (en) * 1979-01-03 1980-07-30 Kennametal Inc Sintered Cemented Titanium Diboride Niobium Nitride
US4419130A (en) * 1979-09-12 1983-12-06 United Technologies Corporation Titanium-diboride dispersion strengthened iron materials
WO1984004713A1 (en) * 1983-05-27 1984-12-06 Ford Werke Ag Method of making and using a titanium diboride comprising body
GB2176807A (en) * 1985-06-19 1987-01-07 Asahi Glass Co Ltd Zrb2-containing sintered cermet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 8, Nr. 236 (C-249), 30. Oktober 1984; & JP-A-59 118 852 (TATSUROU KURATOMI) 09-07-1984 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510977A1 (de) * 1991-04-26 1992-10-28 Daido Tokushuko Kabushiki Kaisha Werkstoffe mit hohem Elastizitätsmodul und daraus hergestellte beschichtete Werkzeuge
WO1993000452A1 (fr) * 1991-06-28 1993-01-07 Sandvik Hard Materials S.A. Cermets a base de borures des metaux de transition, leur fabrication et leurs applications
US5439499A (en) * 1991-06-28 1995-08-08 Sandvik Ab Cermets based on transition metal borides, their production and use
US5372979A (en) * 1992-11-05 1994-12-13 Elektroschmelzwerk Kempten Gmbh Composite materials based on titanium diboride
GB2285267A (en) * 1993-12-23 1995-07-05 Electrofuel Manufacturing Co T Ceramic composition
GB2285267B (en) * 1993-12-23 1998-04-01 Electrofuel Manufacturing Co T Ceramic composition
EP0659894A2 (de) * 1993-12-27 1995-06-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Legierung auf Stahlbasis mit hohem Modul und Verfahren zu deren Herstellung
EP0659894A3 (de) * 1993-12-27 1995-11-15 Toyoda Chuo Kenkyusho Kk Legierung auf Stahlbasis mit hohem Modul und Verfahren zu deren Herstellung.
US5854434A (en) * 1993-12-27 1998-12-29 Kabushiki Kaisha Toyota Chuo Kenkyusho High-modulus iron-based alloy with a dispersed boride
WO2009112192A2 (de) * 2008-03-14 2009-09-17 Esk Ceramics Gmbh & Co. Kg Verbundwerkstoff auf basis von übergangsmetalldiboriden, verfahren zu dessen herstellung und dessen verwendung
WO2009112192A3 (de) * 2008-03-14 2010-02-25 Esk Ceramics Gmbh & Co. Kg Verbundwerkstoff auf basis von übergangsmetalldiboriden, verfahren zu dessen herstellung und dessen verwendung

Also Published As

Publication number Publication date
CA2031640A1 (en) 1991-06-16
DE59004781D1 (de) 1994-04-07
US5045512A (en) 1991-09-03
EP0433856B1 (de) 1994-03-02
ES2050923T3 (es) 1994-06-01
DE3941536A1 (de) 1991-06-20
AU6802690A (en) 1991-06-20
AU633665B2 (en) 1993-02-04
JPH06128680A (ja) 1994-05-10
JPH08944B2 (ja) 1996-01-10
ATE102263T1 (de) 1994-03-15

Similar Documents

Publication Publication Date Title
EP0433856B1 (de) Hartmetall-Mischwerkstoffe auf Basis von Boriden, Nitriden und Eisenbindemetallen
EP0800495B1 (de) Herstellung eines aluminidhaltigen keramischen formkörpers
EP0353542B1 (de) Unter Druck gesinterte, polykristalline Mischwerkstoffe auf Basis von hexagonalem Bornitrid, Oxiden und Carbiden
DE102006013746A1 (de) Gesinterter verschleißbeständiger Werkstoff, sinterfähige Pulvermischung, Verfahren zur Herstellung des Werkstoffs und dessen Verwendung
EP0902771B1 (de) Metall-keramik-formkörper und verfahren zu ihrer herstellung
DE3238555C2 (de)
WO1996020902A9 (de) Herstellung eines aluminidhaltigen keramischen formkörpers
DE3027401C2 (de)
DE2009696A1 (de) Durch intermetallische Verbindungen verbundene Massen aus Aluminiumoxid und metallischer Verbindung
DE2329739A1 (de) Verfahren zum herstellen von metallkeramischen pulvern
DE3529265C2 (de)
EP0247528A1 (de) Polykristalline Sinterkörper auf Basis von Siliciumnitrid mit hoher Bruchzähigkeit und Härte
DE4007825C2 (de)
WO2004043875A2 (de) Keramik-metall- oder metall-keramik-komposite
DE3603191C2 (de)
DE10117657B4 (de) Komplex-Borid-Cermet-Körper und Verwendung dieses Körpers
EP0600255B1 (de) Verbundwerkstoffe auf der Basis von Titandiborid und Verfahren zu ihrer Herstellung
DE2461801A1 (de) Hitzefester werkstoff
DE102004051288B4 (de) Polykristallines Hartstoffpulver, Kompositwerkstoff mit einem polykristallinen Hartstoffpulver und Verfahren zur Herstellung eines polykristallinen Hartstoffpulvers
DE19646334C2 (de) Hartstoffverstärkte Al¶2¶O¶3¶-Sinterkeramiken und Verfahren zu deren Herstellung
DE19845532A1 (de) Verfahren zur Herstellung von Kompositwerkstoffen und Vertreter solcher Kompositwerkstoffe
DE1118078B (de) Hartstoffkoerper und Verfahren zu seiner Herstellung
DE4143344A1 (de) Gesinterte mischwerkstoffe, basierend auf hexygonalem bornitrid, oxyden und nitriden
DE2101186A1 (de) Werkstoff fur Strangpreßmatrizen
DD297751A7 (de) Verfahren zur herstellung dichter hartmetallformkoerper auf basis titankarbid/titankarbonitrid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19930405

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 102263

Country of ref document: AT

Date of ref document: 19940315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59004781

Country of ref document: DE

Date of ref document: 19940407

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940408

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2050923

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941112

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941114

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19941118

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19941121

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19941124

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941129

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19941214

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941230

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941231

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EAL Se: european patent in force in sweden

Ref document number: 90123854.3

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951211

Ref country code: AT

Effective date: 19951211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951212

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19951212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951231

Ref country code: CH

Effective date: 19951231

Ref country code: BE

Effective date: 19951231

BERE Be: lapsed

Owner name: ELEKTROSCHMELZWERK KEMPTEN G.M.B.H.

Effective date: 19951231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951211

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960830

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960903

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051211