EP0429505B1 - Garniture d'etancheite pour ouvrages d'art et procede pour sa fabrication - Google Patents

Garniture d'etancheite pour ouvrages d'art et procede pour sa fabrication Download PDF

Info

Publication number
EP0429505B1
EP0429505B1 EP89909192A EP89909192A EP0429505B1 EP 0429505 B1 EP0429505 B1 EP 0429505B1 EP 89909192 A EP89909192 A EP 89909192A EP 89909192 A EP89909192 A EP 89909192A EP 0429505 B1 EP0429505 B1 EP 0429505B1
Authority
EP
European Patent Office
Prior art keywords
elements
seams
lengthwise
expansion
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89909192A
Other languages
German (de)
English (en)
Other versions
EP0429505A1 (fr
Inventor
Annette Becker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECOLOGY ENGINEERING CONSULTING ESTABLISHMENT
Original Assignee
ECOLOGY Engineering Consulting Establishment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19883827990 external-priority patent/DE3827990A1/de
Priority claimed from DE19893904594 external-priority patent/DE3904594A1/de
Application filed by ECOLOGY Engineering Consulting Establishment filed Critical ECOLOGY Engineering Consulting Establishment
Priority to AT89909192T priority Critical patent/ATE90305T1/de
Publication of EP0429505A1 publication Critical patent/EP0429505A1/fr
Application granted granted Critical
Publication of EP0429505B1 publication Critical patent/EP0429505B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/04Linings
    • B65D90/041Rigid liners fixed to the container
    • B65D90/044Rigid liners fixed to the container fixed or supported over substantially the whole interface
    • B65D90/045Rigid liners fixed to the container fixed or supported over substantially the whole interface the liners being in the form of tiles or panels

Definitions

  • the invention relates to a seal for civil engineering structures such as industrial pools, tubs, industrial floors or the like with a sealing layer of plate-shaped elements made of corrosion-resistant metals, which is glued to the entire surface of a solid structural sub-layer such as concrete with a fine layer, whereby along their abutting, possibly angled edge strips, the sides are continuously sealed
  • Connected longitudinal joints and transverse joints are formed with expansion areas and cavities and, if necessary, tubular test lines for monitoring leaks along the longitudinal joints and transverse joints are provided in the cavities in the expansion area of the longitudinal joints and transverse joints, which are provided with external connections.
  • the invention also relates to a method for producing such seals using plate-shaped elements made of corrosion-resistant metals.
  • a seal of the generic type is known from DE-OS 36 08 950.
  • studded stainless steel foils profiled on one side are glued to the entire surface of a concrete structure to be sealed using adhesive.
  • the joints are in the form of overlap seams or V-shaped upstanding seams and are glued.
  • the cavities that arise during the impact formation become over Pipes or hoses or electrical lines connected to a central monitoring system for detecting leaks, so that the occurrence of leakage liquids in cavities can be indicated.
  • a concrete container is known from DE-U 8423651, which is lined with a thin, independently non-stable steel liner.
  • the steel liner is movable on the container wall by means of intermediate elements, e.g. along anchor rails, held so that steel liners and containers can be moved independently of one another to compensate for thermal expansions.
  • the steel liner is welded together from individual parts on the intermediate elements, which are movably guided on the container.
  • a double-walled container is known from DE-A 2329525, in which a lining, in particular an elastic lining, is inserted into the container to form an intermediate space.
  • the gap is monitored for leaking fluid that is displayed by means of an inserted hose that has holes in the side of the sole, which is displayed. The tightness of the seam connections is not checked.
  • Seals on buildings are intended to prevent water and liquids from penetrating and to provide corrosion protection. Also the uncontrolled drainage of harmful liquids from industrial pools such as oil sumps, tank sumps, cooling water pools, fire extinguishing ponds, wet operations, shielding of tanks, equipment and chemical plants Industry, sewage treatment plants, landfills should be prevented by means of seals.
  • the invention has for its object to provide a corrosion-resistant seal for civil engineering, which withstands the highest demands on chemical aggressiveness and allows draining of liquids into a collecting device, which is not only walkable but may also be designed to be used by transport vehicles. Furthermore, the seal should also be able to be checked for the tightness of the connections produced at the joints of the elements of the sealing layer immediately after completion and at any later point in time without damaging the seal.
  • the sealing layer is preferably formed from plate-shaped elements made of stainless steel sheets or other suitable metals or metallic alloys which are optionally formed with lateral edge strips angled upwards and / or downwards and which are glued over the entire surface of the substructure by means of a reactive resin adhesive.
  • Cold-binding reactive resin adhesives that permanently bond different materials together, for example based on polyisocyanate reactive resins, are suitable. These are applied in amounts of approx. 100-500g / m2 depending on the quality of the substrate to the substructure or fine layer. The fully bonded elements can then no longer warp under thermal stress.
  • Such a sealing layer is able to absorb thermal expansions in the case of temperature fluctuations of up to 100 ° C. and more without being subject to warping or stress cracks.
  • stainless steel sheets for example according to DIN standard quality V4a or V2, ensures long-term chemical resistance and corrosion resistance.
  • the use of stainless steel sheets with a thickness of 0.8 mm to 1.0 mm is sufficient to achieve the desired resistance and strength of the seal.
  • the sealing layer is built up from elements which, for the formation of V-shaped expansion folds projecting upwards above the element plane, have angled upward at the longitudinal joints on two mutually parallel sides and edge strips slightly inclined outwards from the vertical, and for the formation of expansion joints on the transverse joints on one or both sides of the elements running transversely thereto, an edge strip is angled downwards.
  • These elements can be laid in wide drainage channels on the surface to be sealed, whereby they are laid in a desired drainage direction with a slight slope, 1 to 2%, which is formed in the fine layer.
  • expansion areas are obtained at the longitudinal joints of the elements in the form of an expansion fold, which are formed as a V-fold when the elements are placed against one another by the slightly outwardly inclined edged edge strips.
  • the edge strips are here inclined approximately 2 to 10 °, in particular 2 to 5 °, outwards from the vertical.
  • the expansion areas at the transverse joints of the elements of the sealing layer are designed as expansion joints. According to the invention it is proposed that a continuous approximately U-shaped profile strip made of corrosion-resistant metal is arranged underneath the elements in the substructure in the area of the transverse joints, into which the downwardly angled edge strips of adjoining elements protrude with sufficient free space for expansion movements.
  • connecting elements such as angle profiles or the like, made of corrosion-resistant metals can also be used, the basic inventive configurations of the joints with expansion areas being used accordingly.
  • perforated test lines for example with perforations in the form of holes or slots, are arranged in the expansion regions formed by upward or downward angled edge strips of the elements.
  • an inert gas introduced into the test lines and sensing the seal from the outside and welded shocks, any leaks can be determined by detecting the escaping gas.
  • the space available in the expansion areas is used for the installation of a test device that does not impede the sealing.
  • the test leads are preferably laid in individual sections so that they can be tested section by section.
  • test lines are preferably installed directly during the manufacture of the seal and, after the seal has been completed, are filled with an inert gas, such as noble gas, in order to carry out the first test test.
  • Escaping gas which can be detected with a leak detector at the exit points and can be displayed optically and / or acoustically, indicates leaks at welds or stress cracks or other leaks in the seal.
  • test lines are advantageously formed from corrosion-resistant metal tubes with an outside diameter of less than 4 mm, in particular equal to or less than 3 mm and an inner diameter of less than 2 mm, in particular equal to or less than 1 mm.
  • the perforation of the test leads preferably consists of very small holes, which are worked into the tube walls by means of a laser beam, for example.
  • test lines of the individual expansion areas laid in individual sections are each provided with an external connection, such as a pipe socket, in sections. If the building permits, the external connections should preferably be arranged on ascending walls. It is thus possible to specifically check only certain, particularly endangered or conspicuous areas during checks, since the test lines of a larger seal do not form an interconnected system, but individual sections that can be checked for themselves.
  • the hat-shaped profile strip has two parallel longitudinal grooves formed on the central web that serve as test leads.
  • the area in between can also be checked for leaks if, according to a further proposal of the invention, the channel formed between the two longitudinal grooves on the inside of the hat-shaped profile strip is closed to a further channel by means of a glued-on sealing tape and can thus be used as a test line.
  • elements with edge strips angled downwards on two opposite sides are used to form expansion joints on the transverse joints, and grooves are milled into the fine layer and, if appropriate, underlayer in the grooves, corresponding to the length of the elements, into the grooves an approximately U -shaped profile strip made of corrosion-resistant metal is inserted, into which the edge strips of the elements, which are angled downwards, are inserted with sufficient space for expansion movements and then the joints are welded in the element plane.
  • elements with edge strips protruding on two opposite sides are used, which are applied to the substructure parallel to the direction of drainage, and the upper edges of the edge strips are pressed together to form an almost gapless joint and then spaced apart under the action of a protective gas spot welded and then the joints along the upper edges welded tightly under the influence of a protective gas.
  • the longitudinal joints are laid in the element level and elements without trained edge strips are inserted parallel to the direction of the drain and a hat-shaped profile strip is attached and fastened to the substructure parallel to the direction of the width, and then the fine layer is flush with the top of the substructure finally applied to the profile strip and then the elements are glued to the entire surface of the fine layer and the central web of the profile strip, the longitudinal joint of the adjoining elements being arranged and welded centrally on the profile strip.
  • tubular perforated test lines are inserted into the expansion areas and, after the sealing layer has been completed, the test lines are filled with gas, in particular noble gas, and the sealing layer is scanned along the welded joints for gas escaping from leaks.
  • the leak test is carried out by using a hat-shaped profile strip with two parallel longitudinal grooves formed on the central web, the longitudinal grooves being closed to form continuous channels after the sealing layer and the elements have been applied and these channels serve as test lines, into which gas, in particular noble gas, is introduced after the sealing has been completed, and the sealing along the welded joints is scanned from the outside for gas escaping from leaks.
  • a continuous sealing tape connecting the two longitudinal grooves can be glued to the inside of the hat-shaped profile strip, thereby forming a further channel which can be used as a test line for leaks by introducing gas.
  • All elements of the seal according to the invention are continuously welded to form a continuous sealing layer at the joints under the influence of protective gas. Carrying out all welding processes on the elements while maintaining a protective gas cloud prevents the occurrence of crevice corrosion on the elements, such as stainless steel sheets.
  • the formation of the longitudinal joints as a V-fold proves to be advantageous, since the protective gas collects in the V-fold of the edge strips and remains during welding.
  • the protective gas blown into the U-shaped profile strips of the expansion areas of the transverse joints or the longitudinal grooves of the hat-shaped profile strip can remain with one another during the welding of the joints of the elements, so that the underside of the elements is also protected against crevice corrosion which occurs as a result of the welding. It is also possible to insert the test lines into the expansion areas before welding the joints of the elements and then to carry out the welding of the joints under protective gas, protective gas being simultaneously introduced into the test lines. By introducing the protective gas into the test lines during the welding of the joints, it cannot spread as quickly and it is ensured that it remains in the expansion areas and gaps along the joints of the elements to be connected during the welding.
  • the element 1 is rectangular with a handy length 1 of about 1 to 2 m, a width b1 of about 50 to 100 cm and a thickness of 0.8 to 1.2 mm.
  • the element 1 is channel-shaped, the edge strips 10 and 11 being angled obliquely upwards along the longitudinal sides parallel to one another. The angle ⁇ is about 85 to 88 °.
  • the edge strips 14 of the element 1 are bent downwards at right angles on the two transverse sides.
  • These plate-shaped elements 1 are joined to form a closed sealing surface, see FIG. 2, and are tightly welded to one another along their abutting sides, forming expansion regions. This creates continuous welded longitudinal joints 6 and continuous welded transverse joints 2.
  • the transverse joints 2 lie in the element plane, i.e. in the area of the bearing surface 12, while the longitudinal joints 6 protrude above the element plane.
  • FIG. 4 shows the joining of the plate elements 1 to form the longitudinal joints on the edged edge strips 10, 11 can be seen.
  • a smooth fine layer 4 for example a screed, is applied on the upper side.
  • the fine layer can be slightly inclined in a desired drainage direction with a gradient of 1 to 2%.
  • a cold-binding reactive resin adhesive 5 is applied to the entire surface of the fine layer 4, for example based on polyisocyanate reactive resins, which sets by contact pressure and does not require a long service life.
  • the elements 1 are placed on the adhesive layer 5 and butted almost without a gap on the butt joint 15 with the edged edge strips 11, 10. Elements 1 can be weighed down for better gluing to the substrate.
  • the adjacent edge strips of two elements form a V-shaped expansion fold 20, the size of which is determined by the height h of the edge strips 10, 11 and the angle ⁇ , see FIG. 1.
  • the distance a should be such that thermal expansions of the elements can be compensated for.
  • the distance a at the foot of the expansion fold 20 should be approximately 3 to 5 mm.
  • the seal to be produced from the elements 1 according to FIG. 4 is equipped with a permanent test device which enables the seal to be checked for leaks again and again over the years, both directly after manufacture and in use.
  • test lines 40 in the form of perforated tubes made of corrosion-resistant metals are inserted into the expansion folds 20 before assembly.
  • the test lines 40 have perforations in the form of small holes 41, through which the test gas introduced into the test lines 40 can enter the expansion areas and, in the event of leaks in the sealing layer, escape from the welded elements 1 upwards. Leakage points can then be found by scanning the top of the sealing layer with a leak detector.
  • the test lines 40 are only supplied with a test gas for the purpose of testing.
  • edge strips 10, 11 are first spot-welded to one another at intervals after the gapless compression to the butt joint 15, see welding points 9, also under the influence of a protective gas. Only after the entire surface has been laid, glued and tacked by spot welding, are the butt joints 15 continuously welded tightly under the influence of protective gas, so that the welded longitudinal joints 6, see FIG. 2, are formed.
  • the test line 40 is, for example, as shown in FIG. 6, in the form of a tube made of stainless steel with an outside diameter of 3 mm and an inside diameter of 1 mm, in the tube wall of which small holes 41 are made at a distance of 30 to 40 mm by means of a laser beam Perforation are provided.
  • Such a pipe 40 as a test line is continuously introduced, for example, continuously into the longitudinal expansion joints 20 of the sealing layer formed by the upstanding edge strips 10, 11.
  • the pipe end 46 of the pipe is led out of the seal, as shown in detail in FIG. 7, for example.
  • Such a pipe end 46, accessible as a connection is preferably provided on a rising wall 30 of the structure to be sealed.
  • the elements 1 are also angled on such rising walls in the corner area and led up with the angled part 13 to form expansion joints.
  • the end of the element 1, 13 is also sealed against the wall 30 in the area 18, for example by means of an adhesive or sealing tape.
  • the test line 40 is laid in the cavity H formed by the expansion joint and is led out at an angle through the recess 43 in the element part 13.
  • the pipe socket 42 is welded onto the element part 13, see weld seam 44 and at the end of the pipe socket 42 the test line 40 is fastened in a sealed manner by means of a braze 45.
  • a test gas for example helium, can be placed in the gas bottle 50 by placing it on the pipe end 46 in the direction of arrow F. Pipe 40 and through the holes 41 in the cavity H in the expansion folds and expansion areas below the sealing layer of the elements 1 are introduced.
  • test gas introduced through the test line 40 will fill all cavities beneath the sealing layer and tends to emerge upwards through the sealing layer if there are any leaks. Such test gas escaping on the sealing layer can be detected with a leak detector and displayed. The leaks found in the sealing layer can then be resealed.
  • the gas supply is switched off and the pipe socket 42 is closed by screwing on the screw cap 51.
  • the next section can now be tested by introducing the test gas into the test line of the next expansion fold 20, see FIG. 8.
  • a sealing layer, as already described with reference to FIG. 4, in the area of the longitudinal joints 6 on bent elements 1 with a transition to a wall 30 is shown in part in FIG.
  • the seal is tight both for liquids in the direction of arrow B, that is to the substructure, and in the direction of arrow C, out of the substructure. If the sealing layer is to be accessible, e.g. Gratings 7 of suitable material are placed on the elements 1.
  • FIG. 3 shows an advantageous embodiment of a transverse joint 2 with an associated expansion area according to section AA of FIG. 2.
  • a groove 31 is milled into the substructure, ie the fine layer 4 and possibly also the lower layer 3 .
  • This groove is advantageously created before the adhesive 5 is applied.
  • a U-shaped profile strip 22, for example made of copper sheet, is hung into the groove 31 with lateral support flanges and glued to the support flanges with the adhesive layer 5 on the fine layer 4.
  • the elements 1 are designed to produce transverse joints, as shown in FIG. 1, with edge strips 14 which are angled downwards.
  • the elements 1 are hooked into the groove 23 according to FIG. 3 with the edge strips 14.
  • the two adjacent elements 1 are then continuously welded tightly to the butt joint in the presence of protective gas, as a result of which the transverse joint 2 located in the element plane is created.
  • This transverse weld seam does not interfere with the outflow of liquids over the elements parallel to the longitudinal joints.
  • the protective gas entering and remaining in the area of the expansion joint formed during welding prevents stress and crevice corrosion from occurring on the elements as a result of welding.
  • test line 40 can be led up at least on one side and led out of the sealing layer in order to form a connection, for example as shown schematically in FIG. 7, for blowing in test gas.
  • This connection can then be sealed with a screw cap. So it is possible, for example every longitudinal joint and every transverse joint to be checked separately for leaks via a connection.
  • FIG. 5 schematically shows a cross section through a sealed collecting trough with a substructure made of concrete 3, which is delimited by laterally rising walls 30 and which has the collecting channel 21 for waste water or the like on one side.
  • the trough runs to the collecting trough 21 with a slight slope in the direction of arrow E.
  • the seal see also FIG. 8, is applied to the bottom of the collecting trough.
  • the elements 1 are led up from the bottom of the tub to the adjacent ascending wall surfaces 30 via bends 13, the expansion joints also being formed and led up and all the joints being welded tightly.
  • the collecting trough 21 is also lined with a sealing layer made of elements 1 b made of corrosion-resistant metals, which are glued to the substrate via an adhesive layer.
  • expansion joints are formed according to the type of transverse joints, see FIG. 3, or where permissible, by upstanding edge strips with expansion folds 20 and weld seams 6.
  • the elements are made of corrosion-resistant metals in the necessary configuration, for example as a U-profile 1b or angle 1a.
  • Adapted elements with welded joints and expansion areas are also formed at the connection points of these configurations of the building, in particular in the transition to the flat elements of the sealing layer or the lateral connections.
  • An additional point-by-point fixation can be carried out for large-area elements 1 on the substructure by means of additional fastening strips or tabs.
  • tabs are attached in the joint and expansion area of the plate elements, in particular of longitudinal joints with edged edge strips between adjacent elements, so that the tab with its part not resting on the substructure can be welded to the butt seam 6 at the top.
  • the upstanding joints 6 are disruptive.
  • the elements 1 required for this, as shown in FIG. 9, are only on the transverse sides with edge strips 14 bent downwards formed, while the long sides are only slightly chamfered 101.
  • the elements 1 adjacent to one another in accordance with FIG. 12 then form a V-seam in the region of the long sides, which is welded.
  • an additional, approximately hat-shaped profile strip 60 see FIGS. 10 and 11, is provided, which is arranged below the butt seam 6.
  • the hat-shaped profile strip 60 according to FIG.
  • the profile strip 60 according to FIG. 10 is intended for flat sealing surfaces, while in the case of sealing surfaces with a gradient, the profile strip 60, as shown in FIG. 11, can also be provided with a corresponding gradient by forming rising side legs 608.
  • the hat-shaped profile strip 60 is now, see FIG. 12, applied to the substructure, the concrete layer 3, for example glued on and additionally fastened by means of bolts guided through the fastening holes 3.
  • the fine layer 4 is then applied, specifically via the lateral support flanges of the profile strip 60, but flush with the top of the central web 604.
  • the adhesive layer is then applied continuously to the fine layer and the central web 604 and the elements 1 according to FIG. 9 are applied and glued thereon.
  • the weld seam is formed between the two longitudinal grooves of the profile strip on the remaining intermediate web. In this way, an expansion area 20 is created by means of the hat-shaped profile strip in the area of the longitudinal joint 6 lying in the element plane.
  • welded longitudinal joint 6 with expansion area 20 can now be checked for leaks at any time by means of a test gas.
  • the channels 40a and 40b formed by the longitudinal grooves 605, 606 and sealed on the upper side by elements 1 are suitable, which serve as test lines instead of the metal pipes.
  • the grooves 605, 606 with the chambers they form also run along each joint and can be connected at the end via a pipe socket to a supply for test gas.
  • the area directly below the welded longitudinal joint 6 can also be checked by gluing a sealing tape 61 on the underside of the profile strip 60, connecting the longitudinal grooves 605, 606 to the latter. In this way, an additionally closed chamber 40c is created between the two longitudinal grooves, into which test gas can also be introduced in order to test the tightness of the weld seam.
  • Elements with a V-shaped weld seam lying in the element plane with an associated underlying expansion area including the possibility of testing by means of blown-in protective gases according to FIG. 12 can be provided in such areas of a surface seal that should be accessible, for example, by forklifts or the like.
  • the cross joints, as described in Figure 3, do not interfere with the passability.
  • the entire seal After completion of the sealing layer from elements 1 and special additional elements adapted to the building configuration, such as 1b, 1a, the entire seal, see FIG. 8, is tested in sections with test gas which is filled into all gaps and joints via the pipes 40.
  • the weld seams 6, 2 are scanned from the outside using a leak test device in order to locate escaping helium. Leaks can be re-welded.
  • a cap After completion of the test process, a cap is screwed onto the pipe socket and so that the pipe outlet is sealed. Such a leak check for leaks in the seal can be repeated at any time.
  • high-quality corrosion-resistant materials must be used for all materials involved in the sealing layer, for which stainless steel sheets and pipes are particularly suitable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

Une garniture d'étanchéité pour ouvrages d'art ou similaire comporte une couche inférieure structurale rigide (3, 4), telle qu'une couche de béton (3) avec une couche de fines (4), sur laquelle est appliquée et collée (5) une couche d'étanchéité constituée d'éléments en forme de plaque (1) en tôle résistante à la corrosion, telle que de la tôle d'acier spécial. Les jonctions (10, 11, 14) des éléments adjacents (1) se présentent sous la forme de joints de dilatation et sont soudées (2, 6) sur leur longueur. Des canalisations d'essai tubulaires (40) sont agencées dans les joints de dilatation (19, 20). Après achèvement de la garniture d'étanchéité, un gaz rare est introduit dans les canalisations d'essai (40), et la garniture et les jonctions soudées (10, 11, 14) sont explorées. L'échappement de gaz rare révèle la présence d'une fuite.

Claims (12)

  1. Garniture d'étanchéité pour constructions du génie comme les bassins industriels, cuves et terrains industriels ou autres avec une couche d'étanchéité collée sur toute sa surface sur une couche de base de fondation solide, comme du béton avec une couche fine (4), composée d'éléments en forme de plaque (1) en métal résistant à la corrosion, des joints longitudinaux et des joints transversaux avec des zones de dilatation et des espace vides (19, 20) fixés de manière étanche l'un à l'autre en continu étant conçus sur le long de leurs côtés et présentant des bandes de bordure (10, 11, 14) adjacentes éventuellement coudées et des conduites d'essai tubulaires (40) pourvues de raccords externes, étant éventuellement disposées dans les espaces vides dans la zone de dilatation des joints longitudinaux et transversaux pour le contrôle des défauts d'étanchéité le long des joints longitudinaux et transversaux, caractérisée en ce que les zones de dilatation formées sur les joints transversaux (2) et les joints longitudinaux (6) des éléments en forme de plaque (1) sont de configuration différente et en ce que les joints transversaux (2) au moins sont placés dans le plan des éléments (12) ainsi que la zone de dilatation correspondante sous le plan des éléments (12), les conduites d'essai (40) présentant des perforations sous forme de trous (41) ou des fentes dans la paroi du tube pour la sortie d'un gaz d'essai introduit ou, en cas de joints longitudinaux (6) conçus dans le plan des éléments de la couche d'étanchéité sous le plan des éléments, un profilé (60) en forme de U en coupe en matériau résistant à la corrosion recouvrant le joint longitudinal (6) en étant adjacent aux éléments (1), avec une âme centrale (604) et présentant deux cannelures longitudinales (605, 606) parallèles l'une à l'autre formées sur l'âme centrale (604), les cannelures longitudinales (605, 606) étant fermées par les éléments appliqués (1) de la couche d'étanchéité en canaux (62) continus faisant office de conduites d'essai (40a, 40b) qui sont pourvues de raccords externes pour l'introduction d'un gaz d'essai et les joints longitudinaux (6) et les joints transversaux (2) étant reliés par une soudure sous gaz protecteur.
  2. Garniture d'étanchéité selon la revendication 1 caractérisée en ce que les éléments (1) pour la formation de plis de dilatation (20), en forme de V et dépassant par rapport au plan des éléments sur les soudures longitudinales (6), présentent sur deux de leurs côtés parallèles opposés l'un à l'autre des bandes de bordure (10, 11) légèrement inclinées vers l'extérieur par rapport à la verticale et coudée vers le haut et en ce qu'une bande de bordure (14) est coudée vers le bas pour la formation de joints de dilatation (19) sur les joints transversaux (2) sur un ou les deux côtés perpendiculaires des éléments (1) par rapport auxdits côtés.
  3. Garniture d'étanchéité selon la revendication 2, caractérisée en ce que les éléments (1) présentent une bande de bordure (10, 11) légèrement inclinée vers l'extérieur par rapport à la verticale d'environ 2 à 10°, en particulier d'environ 2 à 5°.
  4. Garniture d'étanchéité selon la revendication 1 ou 2, caractérisée en ce que, dans la zone du joint transversal (2), un profilé (22) continu en forme approximative de U en métal résistant à la corrosion est disposé sur la face inférieure des éléments (1) dans la construction de base dans laquelle s'élèvent des bandes de bordure (14) coudées vers le bas d'éléments (1) adjacents avec suffisamment de jeu pour les mouvements de dilatation.
  5. Garniture d'étanchéite selon la revendication 1, caractérisée en ce que la perforation des conduites d'essai se compose de très petits trous pratiqués dans les parois du tube au moyen d'un rayon laser.
  6. Garniture d'étanchéité selon la revendication 5, caractérisée en ce que des tubes métalliques résistant à la corrosion d'un diamètre externe inférieur à 4 mm, en particulier égal, voire inférieur à 3 mm et un diamètre interne inférieur à 2 mm, en particulier égal ou inférieur à 1 mm sont prévus comme conduites d'essai (40).
  7. Garniture d'étanchéité selon la revendication 1, caractérisée en ce que la rainure formée entre les deux cannelures longitudinales (605, 606) sur la face interne du profilé en forme de U (60) est conçue pour former avec une bande d'étanchéité collée (61) une autre conduite d'essai (40c).
  8. Procédé de fabrication de garnitures d'étanchéité pour constructions du génie telles que des bassins industriels, des cuves, des sols industriels et autres dans lequel une couche fine (4) légèrement inclinée dans le sens d'écoulement vers un dispositif collecteur pour les liquides à recueillir est appliquée sur une couche de base solide (3), comme du béton, sur laquelle une couche d'étanchéité en éléments (1 ) en forme de plaque en métal résistant à la corrosion est collée sur toute sa surface et dans lequel les éléments adjacents présentant des bandes de bordure (10, 11, 14) éventuellement coudées latéralement sont fixés l'un à l'autre sur les joints pour former des zones de dilatation et des espaces vides et des conduites d'essai tubulaires sont utilisées dans les espaces vides formés dans les zones de dilatation pour le contrôle des défauts d'étanchéité le long des joints longitudinaux et des joints transversaux, lesquelles conduites peuvent être raccordées à un contrôle central, caractérisé en ce que dans les espaces vides (19, 20) formés sur les joints longitudinaux des éléments (1) par des plis de dilatation (20) qui s'étendent en dessous ou au-dessus du plan des éléments et dans les joints de dilatation sur les joints transversaux des éléments s'étendant sous le plan des éléments, sont introduites les conduites d'essai (40) tubulaires munies de perforations sous la forme de trous ou de fentes dans la paroi du tube ou en ce qu'un profilé (60) en forme de U dont l'âme centrale (604) comporte deux cannelures longitudinales (605, 606) parallèles l'une à l'autre est utilisé, profilé sur l'âme centrale (604) duquel les éléments (1) sont appliqués de sorte que le joint longitudinal (6 ) se trouve entre les deux cannelures longitudinales (605, 606) et que les cannelures longitudinales soient fermées en canaux continus (40a, 40b) qui servent de conduites d'essai, les joints longitudinaux (6) et les joints transversaux (2) des éléments (1) adjacents étant soudés à l'abri d'un gaz protecteur et, une fois la couche d'étanchéité terminée, un gaz, en particulier un gaz rare, est introduit dans les conduites d'essai perforées (40) ou dans les canaux faisant office de conduites d'essai (40a, 40b) et la couche d'étanchéité est balayée par l'extérieur le long des joints soudés (6, 2) pour détecter la sortie de gaz à des endroits non étanches.
  9. Procédé selon la revendication 8, caractérisé en ce que, pour la formation de joint de dilatation sur les joints transversaux, sont utilisés des éléments avec une bande de bordure (14) coudée vers le bas sur deux côtés opposés l'un à l'autre et en ce que des rainures (23) sont fraisées dans la fine couche (4) et, éventuellement, dans la couche de base (3) transversalement par rapport au sens d'écoulement à des intervalles correspondant à la longueur des éléments (1), en ce qu'un profilé (22) en forme approximative de U en métal résistant à la corrosion est accroché dans les cannelures (23), où sont mises en oeuvre les bandes de bordure (14) des éléments (1) coudées vers le bas des éléments (1) avec un jeu suffisant pour les mouvements de dilatation et en ce qu'ensuite, les joints (2) sont soudés dans le plan des éléments.
  10. Procédé selon la revendication 8 ou 9 caractérisé en ce que les éléments (1) avec des bandes de bordure surélevées (10, 11) sur deux côtés opposés l'un à l'autre sont utilisés et sont appliqués parallèlement au sens d'écoulement sur la construction de base et en ce que les bords supérieurs des bandes de bordure sont pressés pour former un joint presque sans fente et sont ensuite soudés l'un sous l'autre par points et à intervalles à l'abri d'un gaz protecteur et les joints (6) sont ensuite soudés de manière étanche en continu le long des bords supérieurs à l'abri d'un gaz protecteur.
  11. Procédé selon la revendication 8 ou 9, caractérisé en ce que des éléments (1) sans bande de bordure parallèle au sens d'écoulement sont utilisés et en ce qu'un profilé (60) en forme de U est appliqué et fixé sur la construction de base (3) parallèlement au sens d'écoulement à des intervalles correspondants à la largeur des éléments (1), la couche fine (4) étant alors appliquée définitivement sur la couche de base (3) pour affleurer au bord supérieur du profilé (60) et les éléments (1) sont ensuite collés par toute leur surface sur la couche mince et l'âme centrale (604) du profilé (60), le joint longitudinal (6) des éléments adjacents (1) étant disposé et soudé au centre du profilé (60).
  12. Procédé selon la revendication 8, caractérisé en ce qu'une bande d'étanchéité (61) continue reliant les deux cannelures longitudinales (605, 606) est collée à la face interne de la bande profilée en forme de U, formant ainsi un canal supplémentaire (40c) qui peut servir de conduite d'essai pour détecter les défauts d'étanchéité par injection de gaz.
EP89909192A 1988-08-18 1989-08-17 Garniture d'etancheite pour ouvrages d'art et procede pour sa fabrication Expired - Lifetime EP0429505B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89909192T ATE90305T1 (de) 1988-08-18 1989-08-17 Abdichtung fuer ingenieurbauten und verfahren zum herstellen der abdichtung.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3827990 1988-08-18
DE19883827990 DE3827990A1 (de) 1988-08-18 1988-08-18 Abdichtung fuer ingenieurbauten
DE3904594 1989-02-16
DE19893904594 DE3904594A1 (de) 1989-02-16 1989-02-16 Verfahren zum herstellen einer abdichtung fuer ingenieurbauten und pruefen der dichtigkeit der abdichtung

Publications (2)

Publication Number Publication Date
EP0429505A1 EP0429505A1 (fr) 1991-06-05
EP0429505B1 true EP0429505B1 (fr) 1993-06-09

Family

ID=25871246

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89909192A Expired - Lifetime EP0429505B1 (fr) 1988-08-18 1989-08-17 Garniture d'etancheite pour ouvrages d'art et procede pour sa fabrication

Country Status (4)

Country Link
EP (1) EP0429505B1 (fr)
AU (1) AU4053589A (fr)
DE (1) DE58904658D1 (fr)
WO (1) WO1990002089A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4015349A1 (de) * 1990-05-12 1991-11-14 Annette Becker Tragwanne fuer lastkraftwagen zum auffangen von fluessigen stoffen
DE4339739A1 (de) * 1992-11-20 1994-05-26 Hermann Messinger Abdichtung für Ingenieurbauten
WO2012074348A1 (fr) * 2010-11-30 2012-06-07 Enrique Sergio Borjes Velazquez Mécanisme de jonction hermétique entre les bordures des panneaux d'une membrane interne flottante de type nid d'abeille

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE342838C (fr) *
FR839060A (fr) * 1937-12-02 1939-03-23 Forges Ateliers Const Electr Réservoirs souterrains ou en tranchée
DE2329525A1 (de) * 1973-06-07 1975-01-02 Mannesmann Ag Doppelwandiger lagerbehaelter mit einer leckanzeigeeinrichtung
DE8423651U1 (de) * 1984-08-09 1985-12-12 Wayss & Freytag Ag, 6000 Frankfurt Vorrichtung zur Befestigung eines dünnen nicht selbständig standfesten Liners in einem Behälter
DE3608950A1 (de) * 1986-03-18 1987-09-24 Bilfinger Berger Bau Fluessigkeitsdichte und diffusionsdichte auskleidung von behaeltern

Also Published As

Publication number Publication date
EP0429505A1 (fr) 1991-06-05
AU4053589A (en) 1990-03-23
DE58904658D1 (de) 1993-07-15
WO1990002089A1 (fr) 1990-03-08

Similar Documents

Publication Publication Date Title
DE2737723C2 (de) Mit einer Auskleidung versehener Tank
EP1083133B1 (fr) Reservoir à fond plat avec revêtement antifuite
EP0269871B1 (fr) Revêtement de sol
DE3904594C2 (fr)
DE3937638C2 (fr)
EP0429505B1 (fr) Garniture d'etancheite pour ouvrages d'art et procede pour sa fabrication
DE3827990C2 (fr)
DE4008747C2 (de) Gleistragwanne mit einer Betonwanne mit einer Abdichtungsschicht
DE3927126C2 (fr)
DE3719443A1 (de) Bodenbelag
WO1998013278A1 (fr) Cuve pour liquides, en particulier pour liquides chimiquement corrosifs
DE3834654C2 (fr)
DE4015349C2 (fr)
DE19503345C1 (de) Vorrichtung zur Belüftung und Entwässerung von abgelagerten Materialien
WO2001028893A1 (fr) Revetement antifuite pour reservoirs et procede pour equiper des reservoirs d'un tel revetement
DE2346806C3 (de) Für den Weinbau geeigneter doppelwandiger Tank
DE4124609C2 (de) Bodenaufbau für Gefahrgutzonen, insbesondere für Gefahrgutdeponien
DE2203310A1 (de) Verfahren zum abdichten eines unbekiesten warmdaches
DE4134209A1 (de) Gleisanlage mit einer abdichtung fuer gefahrgutzonen
DE4038403A1 (de) Vorrichtung zum abdichten von dehnfugen zwischen angrenzenden dichtungsschichten, insbesondere zwischen metallplatten, bei bauwerken
DE3611652A1 (de) Auskleidung von wannen oder behaeltern, insbesondere aus beton oder stahlblech
EP2708680A2 (fr) Ouvrage réservoir et procédé d'étanchéification de celui-ci
EP0599242B1 (fr) Garniture d'étanchéité pour ouvrages d'art
EP3176330B1 (fr) Couverture d'un support
DE10315559A1 (de) Verfahren und Vorrichtung zum Sanieren einer Schachtanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19910723

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BECKER, ANNETTE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ECOLOGY ENGINEERING CONSULTING ESTABLISHMENT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19930609

Ref country code: SE

Effective date: 19930609

REF Corresponds to:

Ref document number: 90305

Country of ref document: AT

Date of ref document: 19930615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58904658

Country of ref document: DE

Date of ref document: 19930715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930831

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930907

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960215

Year of fee payment: 7

Ref country code: GB

Payment date: 19960215

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960220

Year of fee payment: 7

Ref country code: BE

Payment date: 19960220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960227

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960228

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960314

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960817

Ref country code: GB

Effective date: 19960817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960831

Ref country code: LI

Effective date: 19960831

Ref country code: CH

Effective date: 19960831

BERE Be: lapsed

Owner name: ECOLOGY ENGINEERING CONSULTING ESTABLISHMENT

Effective date: 19960831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960817

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST