EP0423257A1 - Dispositif pour pompes hydrostatiques a refoulement variable. - Google Patents
Dispositif pour pompes hydrostatiques a refoulement variable.Info
- Publication number
- EP0423257A1 EP0423257A1 EP19900903003 EP90903003A EP0423257A1 EP 0423257 A1 EP0423257 A1 EP 0423257A1 EP 19900903003 EP19900903003 EP 19900903003 EP 90903003 A EP90903003 A EP 90903003A EP 0423257 A1 EP0423257 A1 EP 0423257A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- control
- pump
- line
- throttle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002706 hydrostatic effect Effects 0.000 title claims description 4
- 238000006073 displacement reaction Methods 0.000 title 1
- 230000001105 regulatory effect Effects 0.000 claims abstract description 5
- 230000007704 transition Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/08—Regulating by delivery pressure
Definitions
- the device according to the invention with the characterizing features of the main claim has the advantage that the control piston is supplied in the different positions of the control valve from different control pressure sources. In this way, both a high actuating speed and an extremely precise setting of the pump or of the pressure medium flow conveyed by it are obtained. Further advantages of the invention result from the subclaims and the following description and drawing.
- FIG. 1 which - as mentioned above - shows a device for regulating the delivery flow and - optionally - also the delivery pressure of an adjustable pump according to the prior art - 10 is an adjustable pump, the actuator 11 of which is actuated by means of two pressurized pumps , uneven area piston 12, 13 is set.
- the pump 10 sucks pressure medium from a container 14 and displaces it into a delivery line 15 in which an adjustable measuring throttle 16 is arranged.
- a line 17 is connected to the delivery line 15, which leads to the smaller-area control piston 13.
- a line 19, which leads to an adjustable pilot valve 20 and in which a throttle 18 is arranged, is connected to the feed line 15 behind the measuring throttle 16.
- a line 21 leads to the right end face 22A of a 3/3 control valve 22 with the switching positions I to III with a smooth transition.
- a regulator spring 23 also acts on the end face 22A.
- a line 24 opens, which starts from a line 25 which is connected to the delivery line 15 and which via a first check valve 69 leads to a line 33, via a second check valve 70 to a line 36 and to a pressure accumulator 25 leads.
- a line 27 continues from the delivery line 15 and opens into the line 36 via a check valve 28 and a throttle 35.
- the control valve 22 is therefore moved to position I, whereupon more pressure medium to the tank 14 from line 31 via line 34, control valve and line 29 drains off than can flow through the throttle 32.
- the pressure in the control piston 12 drops, and the delivery pressure prevailing in the control piston 13 adjusts the pump to a smaller delivery volume.
- the pressure difference at the measuring throttle 16 is smaller than specified by the control spring 23, and the control valve is moved to position III. Thereupon the outflow from line 31 via control edge 67 to the tank is interrupted and instead a further connection to line 30 is opened, via which pressure medium flows to line 31. Now the pressure in the control piston 12 rises and adjusts the pump to a larger delivery volume.
- a line 76 with a built-in throttle 72 is led from line 25 to a line 71 which starts from control valve 22 and leads to actuating piston 12 .
- This is part of the line 31 according to the exemplary embodiment in FIG. 1, but is now omitted in its area from line 30 to line 34.
- the high-pressure line 25 is now connected directly to the control line 71 to the control piston 12 via the throttle 72.
- the actuating piston 12 is supplied in the different switching positions of the regulating valve 22 by different control pressure sources. That is, directly from the pump delivery pressure via line 76, another time via line 30 from the pressure accumulator 26, provided that its pressure is higher than the pump pressure.
- Position I The differential pressure force generated by the pressure drop at the measuring throttle 16 or the throttle 18 is greater than the average force of the regulator spring 23, that is to say in the case of the current regulator
- control piston 12 is now connected to the container via the control valve. Due to the pressure acting on the actuating piston 13, the pump is adjusted in the direction of a smaller stroke volume.
- a small pressure medium flow flows from the high pressure side of the pump to the control piston 12 via the throttle 72.
- pump position equals setpoint
- an equally large pressure medium flow flows from the control piston connection to the tank via the throttle control edge 67.
- the current delivery position of the pump is therefore retained, even small deviations from the setpoint briefly change the equilibrium position and the discharge cross-section. Such deviations thus lead to a sensitive correction of the delivery volume in the usual way.
- the system pressure of the pump and not the pressure from the pressure accumulator 26 is applied to the pressure divider (throttle 72, control edge 67) in the usual way, the function of the regulator in switch position II does not differ from a conventional regulator with its high accuracy and sensitivity. This also applies to the flow control function at low pressure.
- the choke 72 in line 76 which here as external Throttle is shown, can also within the control valve 22, for. B. be formed as a bevel on a control collar.
- the differential pressure force is less than the average force of the measuring spring 23, that is, Q is less than Q should for current control, and is actual for pressure control
- Line 33, 30 a pressure medium flow to line 71 and to the actuating piston 12. Since the higher level in line 33 from
- the pump controller according to the invention thus combines the high control accuracy of a conventional controller with the high actuating speed of a pump adjustment supplied with external pressure.
- FIG. 3 shows a variant of the exemplary embodiment according to FIG. 2.
- the storage line 36 is routed to a special connection of the control valve 22.
- four different switching positions are drawn for the control valve 22 (any number of intermediate positions can be represented in the smooth transition between the positions).
- the mode of operation corresponds to the exemplary embodiment according to FIG. 3.
- the control valve behaves in the switching positions I-III like a conventional regulator (eg that according to FIG. 1 without the external pressure line 36). The usual accuracy of a current or pressure current regulator is therefore fully retained.
- Control pressure supply switches from the pump pressure.
- the invention can also be implemented in a design with two separate control valves for current and pressure control.
- the current regulator is designated 80, the pressure regulator 81.
- the connection from the pressure accumulator 26 leads through both valves and then has a connection to the actuating piston 12.
- the current regulator 80 is the one
- Differential pressure at the measuring throttle 16, at the pressure regulator 81 the absolute delivery pressure of the pump.
- the direct connecting line from the high-pressure side of the pump to the pressure connection for the actuating piston 12 is designated 82, the throttle arranged in it is 83.
- a compression spring can be used as a counterforce to the actuating piston 12 instead of the actuating piston 13.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3907409 | 1989-03-08 | ||
DE3907409A DE3907409A1 (de) | 1989-03-08 | 1989-03-08 | Einrichtung an einer verstellbaren hydrostatischen pumpe |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0423257A1 true EP0423257A1 (fr) | 1991-04-24 |
EP0423257B1 EP0423257B1 (fr) | 1993-07-21 |
Family
ID=6375787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90903003A Expired - Lifetime EP0423257B1 (fr) | 1989-03-08 | 1990-02-16 | Dispositif pour pompes hydrostatiques a refoulement variable |
Country Status (4)
Country | Link |
---|---|
US (1) | US5173031A (fr) |
EP (1) | EP0423257B1 (fr) |
DE (2) | DE3907409A1 (fr) |
WO (1) | WO1990010793A1 (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5133644A (en) * | 1991-01-17 | 1992-07-28 | Halliburton Company | Multi-pressure compensation of variable displacement pump |
DE4141108A1 (de) * | 1991-12-13 | 1993-06-17 | Putzmeister Maschf | Einrichtung zur regelung des ausgangsdruckes einer verstellpumpe |
US5344288A (en) * | 1993-01-28 | 1994-09-06 | Kabushiki Kaisha Komatsu Seisakusho | Device for controlling displacement of variable displacement hydraulic pump |
DE4420619A1 (de) * | 1994-06-13 | 1995-12-14 | Rexroth Mannesmann Gmbh | Antriebssystem mit hydrostatischen Maschinen |
US6179223B1 (en) * | 1999-08-16 | 2001-01-30 | Illinois Tool Works | Spray nozzle fluid regulator and restrictor combination |
DE19956553B4 (de) * | 1999-11-24 | 2010-11-25 | Robert Bosch Gmbh | Verfahren zum Abschätzen des Druckes in einem Radbremszylinder und Steuereinheit zur Durchführung des Verfahrens |
DE102017206415A1 (de) * | 2017-04-13 | 2018-10-18 | Danfoss Power Solutions Gmbh & Co. Ohg | Selbsterhaltende stromversorgung für hydrostatische pumpen und motoren |
DE102018212042A1 (de) * | 2018-07-19 | 2020-01-23 | Robert Bosch Gmbh | Hydromaschine mit geregeltem Verdrängungsvolumen |
US11391300B2 (en) | 2019-12-20 | 2022-07-19 | Clark Equipment Company | Externally regulated control for drive pump |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1922145A1 (de) * | 1969-04-25 | 1970-10-29 | Bellows Valvair Kaemper Gmbh | Kombinationsregler |
BE757640A (fr) * | 1969-10-16 | 1971-04-16 | Borg Warner | Systemes hydrauliques, notamment pour la regulation d'une pompea debit variable |
DE2206788A1 (de) * | 1972-02-12 | 1973-08-23 | Rexroth Gmbh G L | Verstellbare hydropumpe mit druckregelung |
DE2349124C2 (de) * | 1973-09-29 | 1985-09-05 | Mannesmann Rexroth GmbH, 8770 Lohr | Steuervorrichtung für eine im Speicherbetrieb arbeitende hydraulische Verstellpumpe |
DE2551088C2 (de) * | 1975-11-14 | 1984-06-28 | Mannesmann Rexroth GmbH, 8770 Lohr | Vorrichtung zur Mengen- und Druckregelung für Verstellpumpen |
DE2904474A1 (de) * | 1979-02-07 | 1980-08-28 | Bosch Gmbh Robert | Stromregeleinrichtung fuer eine verstellbare pumpe |
DE2913534A1 (de) * | 1979-04-04 | 1980-10-16 | Bosch Gmbh Robert | Einrichtung zur regelung des foerderstroms und zur begrenzung des foerderdrucks einer verstellbaren pumpe |
DE2952083A1 (de) * | 1979-12-22 | 1981-06-25 | Robert Bosch Gmbh, 7000 Stuttgart | Regeleinrichtung fuer eine verstellbare pumpe |
-
1989
- 1989-03-08 DE DE3907409A patent/DE3907409A1/de not_active Ceased
-
1990
- 1990-02-16 DE DE9090903003T patent/DE59002027D1/de not_active Expired - Fee Related
- 1990-02-16 US US07/601,741 patent/US5173031A/en not_active Expired - Fee Related
- 1990-02-16 EP EP90903003A patent/EP0423257B1/fr not_active Expired - Lifetime
- 1990-02-16 WO PCT/DE1990/000100 patent/WO1990010793A1/fr active IP Right Grant
Non-Patent Citations (1)
Title |
---|
See references of WO9010793A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1990010793A1 (fr) | 1990-09-20 |
US5173031A (en) | 1992-12-22 |
EP0423257B1 (fr) | 1993-07-21 |
DE3907409A1 (de) | 1990-09-20 |
DE59002027D1 (de) | 1993-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2505780A1 (de) | Regeleinrichtung fuer eine pumpe | |
DE4036720C2 (de) | Steuerschaltung für die lastunabhängige Aufteilung eines Druckmittelstromes | |
DE2906166A1 (de) | Einrichtung zur regelung des foerderstroms und zur begrenzung des foerderdrucks einer verstellbaren pumpe | |
EP0423257B1 (fr) | Dispositif pour pompes hydrostatiques a refoulement variable | |
DE2840687C2 (fr) | ||
DE2227898B2 (de) | Regeleinrichtung fuer die veraenderbare verdraengung einer hydropumpe | |
EP0236750B1 (fr) | Système hydraulique | |
DE2913534A1 (de) | Einrichtung zur regelung des foerderstroms und zur begrenzung des foerderdrucks einer verstellbaren pumpe | |
DE2400765C3 (de) | Vorrichtung zum Steuern der Fördermenge einer im Hub einstellbaren Pumpe | |
EP0100784B1 (fr) | Soupape de limitation de pression à tarrage réglable électriquement | |
DE2925236A1 (de) | Steuergeraet fuer eine pumpe mit verstellbarer foerdermenge | |
DE3508432C2 (fr) | ||
DE2537957A1 (de) | Steuer- bzw. regelanordnung fuer pumpen mit variabler verdraengung | |
DE2800814A1 (de) | Hydraulische steuereinrichtung | |
DE3200126C2 (fr) | ||
DE2813791A1 (de) | Regelvorrichtung fuer pumpen mit veraenderlichem ausstoss | |
DE3703576A1 (de) | Steueranordnung fuer mindestens zwei von mindestens einer pumpe gespeiste hydraulische verbraucher | |
DE3421458A1 (de) | Variable druckregelvorrichtung | |
DE3140397A1 (de) | Vorgesteuerte vorrichtung zur lastunabhaengigen regelung eines druckmittelstroms proportional zu einem elektrischen eingangssignal | |
DE2841083C2 (fr) | ||
DE3607138A1 (de) | Hydraulikanlage mit einer steuereinrichtung | |
DE3200885A1 (de) | Leistungsregler fuer eine hydrostatische pumpe | |
DE2908190C2 (de) | Elektromagnetische Pumpe | |
DE3711050C2 (fr) | ||
DE3711049C2 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900928 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROBERT BOSCH GMBH |
|
17Q | First examination report despatched |
Effective date: 19920515 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930727 |
|
REF | Corresponds to: |
Ref document number: 59002027 Country of ref document: DE Date of ref document: 19930826 |
|
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010420 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020211 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020221 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030216 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050216 |