EP0422194B1 - Systeme d'armes automatise pour la defense de zone - Google Patents

Systeme d'armes automatise pour la defense de zone Download PDF

Info

Publication number
EP0422194B1
EP0422194B1 EP19900907154 EP90907154A EP0422194B1 EP 0422194 B1 EP0422194 B1 EP 0422194B1 EP 19900907154 EP19900907154 EP 19900907154 EP 90907154 A EP90907154 A EP 90907154A EP 0422194 B1 EP0422194 B1 EP 0422194B1
Authority
EP
European Patent Office
Prior art keywords
projectile
mine
target
axis
mines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19900907154
Other languages
German (de)
English (en)
Other versions
EP0422194A1 (fr
Inventor
Jacques Esterlin
Jean-Pierre Frehaut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Brandt Armements SA
Original Assignee
Thomson Brandt Armements SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Brandt Armements SA filed Critical Thomson Brandt Armements SA
Priority to AT90907154T priority Critical patent/ATE101435T1/de
Publication of EP0422194A1 publication Critical patent/EP0422194A1/fr
Application granted granted Critical
Publication of EP0422194B1 publication Critical patent/EP0422194B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C15/00Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
    • F42C15/40Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein the safety or arming action is effected electrically
    • F42C15/42Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein the safety or arming action is effected electrically from a remote location, e.g. for controlled mines or mine fields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/04Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type
    • F42B12/10Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type with shaped or hollow charge
    • F42B12/14Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type with shaped or hollow charge the symmetry axis of the hollow charge forming an angle with the longitudinal axis of the projectile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B23/00Land mines ; Land torpedoes
    • F42B23/10Land mines ; Land torpedoes anti-personnel
    • F42B23/16Land mines ; Land torpedoes anti-personnel of missile type, i.e. all kinds of mines launched for detonation after ejection from ground

Definitions

  • the invention relates to an automated weapons system ensuring the defense of an area, in particular against armored vehicles.
  • the system is more precisely made up of a set of weapons, also called mines, each comprising a indirect fire projectile.
  • an anti-tank defense system according to the preamble of claim 1, described in document DE-A-2,336,040; this system comprises a container comprising projectiles, forming an adjustable launching ramp.
  • anti-tank projectiles comprising releasable submunitions; each of the submunitions, after its release, is put into autorotation so that the axis of the detector which it contains sweeps the ground substantially in a spiral.
  • the mission which the system according to the invention proposes to fulfill is as follows: to form a system made up of a plurality of mines, capable of interacting with each other; the system must be deployable quickly; once initialized, it must be able to ensure a watch of given duration and, during this, to detect the presence of targets in the monitored area, to locate and attack them, all in indirect fire for reasons camouflage, thus prohibiting passage through a given area.
  • the system is optimized for the simultaneous attack on targets according to an ambush tactic, that is to say a massive surprise strike.
  • each of the mines comprises in particular a launching ramp, a projectile containing a military charge, initialization means which ensure in particular the positioning of the launching ramp and means of target detection.
  • the detection of a target has the effect of launching the projectile in the direction of the target.
  • the mine comprises means so that the projectile is launched in self-rotation around its longitudinal axis and maintains on its trajectory a constant flight attitude.
  • the projectile comprises means for detecting the target, rigidly fixed relative to the projectile and characterized by a high directivity according to a beam inclined relative to the axis of rotation, which thus performs a sweep of the ground in successive bands (hyperbolas).
  • the military charge is, for example, of the type with an explosive core.
  • Detection of the target triggers the firing of the military charge.
  • the axis of this makes with the longitudinal axis of the projectile a determined angle so that the footprint on the ground is maximum and taking into account the desired values for the angle of attack of the target (preferably by the roof ).
  • the subject of the invention is a weapon system for the defense of an area as defined by claim 1.
  • FIG. 1 therefore represents the different stages of the operation of the system according to the invention.
  • the system according to the invention consists of a plurality of weapons called mines; each of the mines comprises in particular target detection means and means for launching a projectile in the direction of the target.
  • This system begins with a first step, marked 1, of laying mines on a specific site from which the defense of the area will be ensured. Depending on the mission, the removal of the mines must be able to be very rapid. It is carried out by any known means: manual installation, dropping from a land or air vehicle (helicopter or carrier-carrier vector).
  • the following phase is an initialization phase identified 2, which takes place in several stages: successively the deployment of each of the mines (step 21) then, in a preferred mode, the calibration of the local environmental conditions of each of the mines (step 22).
  • each of the mines comprises means allowing its activation and its inhibition at a distance.
  • Phase 2 then includes an additional activation step (not shown in Figure 2). This activation / inhibition phase can be repeated several times during the use of the system and for possible lifting.
  • Figures 2a to 2d show the different phases of step 21 of deployment of a mine.
  • FIG 2a there is shown a mine 6 as dropped on a ground S, which may not be planar.
  • the mine comprises a launching ramp, for example a ramp 63 in which the projectile is arranged (not visible in the figure), lifting arms 62, folded along the ramp, the whole being covered in this embodiment of the invention.
  • a protective cap 60 ejectable. This cap can be advantageously used to add carrying means (handle for example) or removal (aerodynamic or pyrotechnic brake for example).
  • the ramp is also surrounded by a ring 61 forming a belt, the role of which is specified below.
  • Figure 2b shows the start of the mine deployment phase, the cap 60 having been ejected.
  • the projectile 7 comprises for example in its front part propellant nozzles 71, whose role is specified later.
  • the mine 6 includes a motor (not visible) used in particular to give the ring 61 a downward movement of the ramp 63 (arrows 66), thus spreading the lifting arms 62 (arrows 64), the arms 62 having this effect a lower part skews so that the movement of the belt forces the spacing thereof. This movement continues until the mine tilts and maintains in a stable manner the substantially vertical position, projectile upwards, as illustrated in FIG. 2c. At this time, mechanical means (not shown) ensure the escape of the belt of the motor device and its blocking.
  • this movement has no time constraints and can be greatly increased: in this way, it does not require significant power compared to the mass of the mine.
  • the minimum number of arms (62) required is three, it may be advantageous to have more, six for example, so that the mine can be raised even on very uneven ground. They can then form the mine envelope.
  • the mine is therefore illustrated in a vertical position, the belt 61 being in the low position, keeping the arms 62 apart and releasing the launching platform for the projectile 7; the latter consists of a base, masked in the figure by the belt 61, in which are arranged the means for detecting, controlling, and supplying the mine, a part 65 movable in rotation about the axis AA of the mine, similar to the circular of a turret, and a part 66 forming a mount for the ramp 63.
  • the process then preferably includes a step of vertical alignment of the axis AA of the mine.
  • the lifting arms 63 are mounted on a plate (not visible in the figure), itself connected to the base of the mine by adjustment means; the mine then also includes a sensor vertical and motor means acting on the adjustment means.
  • the next phase consists in rocking the launching ramp 63, of axis ZZ, by an angle ⁇ with respect to a horizontal axis HH normal to the axis AA of the mine, which will be the angle of the projectile's firing site.
  • the angle ⁇ is determined by operating a compromise between the range of the projectile, the travel time and the need to clear the trajectory of the projectile from the local relief; it is for example between 40 and 50 °.
  • the inclination of the ramp 63 is for example obtained by eccentricity of its pivot axis 67 on the carriage 66 relative to its center of gravity, allowing, after unlocking, traction and stabilization of the ramp by gravity.
  • each mine comprises one or more detectors, which may or may not be the same as those used in the later phases of the operation of the system.
  • the calibration is carried out using pyrotechnic charges deposited on the ground according to a given geometry; the laying is carried out either manually or preferably automatically, each mine then comprising for this purpose a pyrotechnic charge ejected during this step.
  • detectors carried by the launching platform of each of the mines have the function of detecting the irruption of targets in the monitored area and of provide an alarm signal intended to put the mine into the target detection phase (phase 4, figure 1).
  • the sensors used for this purpose are for example omnidirectional and / or seismic acoustics.
  • the power supply to the mines is such that monitoring can be ensured for a predefined period, for example of the order of ten days.
  • sensors ensure the location of the target, after a possible step of identifying its type.
  • the localization includes an evaluation of the distance from the target and at least of the direction of the running speed (or tangential speed) of the target to allow the shooting towards the future target.
  • the sensors used can be of several types and the information they provide can be superimposed and correlated to improve their ability to discriminate.
  • these functions are provided by acoustic and / or seismic sensors, which may or may not be the same as those used during the standby phase.
  • the detection is carried out using magnetometers or radiometric sensors, the system then comprising transmitters arranged in the field and a receiver carried by each mine; the detection information is in this case carried by the variation of the propagation conditions due to the target.
  • the transmitters are advantageously placed on the neighboring mines.
  • Mines can also include, in the same way, microwave and / or infrared sensors.
  • the sensors having to be in direct view of the target, the mine comprises a telescopic mast erected during the initialization phase and stopped so that the sensor, mounted turning at the top of the mast, is close to obstacles and close masks.
  • Each mine then calculates, using electronic means of calculation and from the measurements made by the sensor (s), the necessary elements of the trajectory of the target or targets, the optimum deposit for pointing its launching ramp and the optimum moment of launching the projectile.
  • the mine is programmed to fire its projectile only when the speed of movement of the target is sufficiently low compared to the width of the imprint and the travel time of the projectile (i.e. the distance target mine).
  • phase 5 is the engagement of a target (phase 5 in Figure 1) which is broken down into several stages, firstly a stage 51 of launching the projectile.
  • the ramp 63 ( Figure 2) being oriented at the deposit previously calculated by the rotation of the circular 65 under the action of the engine of the platform, which can advantageously be the same as that which actuates the belt 61, the propellant of the projectile is ignited and the latter is launched with the site ⁇ on a trajectory T.
  • the initial propulsion energy is supplied to the projectile 7 by the launching platform, by cannon effect, of the mortar type.
  • the stability of the projectile 7 on its trajectory is ensured by rotation of the latter around its longitudinal axis ZZ, coincident with the launching axis as well as, preferably, by an external geometry and a center of mass adjusted so as to minimize , at any incidence, the aerodynamic moment of pitch.
  • This autorotation effect is obtained either using scratches on the ramp 63, or using a suitable orientation of the gas jets produced by the projectile propellant and coming from the nozzles 71.
  • FIG. 4a is a diagram illustrating the trajectory of the projectile 7 as well as its position at different times.
  • This projectile flight step constitutes the second step (52) of the engagement phase (5).
  • the projectile 7 consists of a substantially cylindrical fairing 70, of axis ZZ carrying on its front part the nozzles 71. These make for example a given angle with the axis ZZ of the projectile (angle not shown in FIG. 3 ), in order to ensure the auto-rotation of the latter around the ZZ axis.
  • the nozzles are preferably placed at the front of the projectile in order to limit parasitic reactions on the launching platform.
  • the nozzles are at least two in number in this embodiment, but their number is preferably greater so as to average any asymmetries in construction.
  • the military charge marked 8; it is constituted for example by a charge with a core, that is to say an explosive charge 81 coated on its front face with a concave metallic layer 80 which, under the effect of the explosion, forms a core ejected at high speed along the longitudinal axis YY of the charge 8.
  • the projectile 7 also comprises target detection means, constituted for example by active and / or passive electromagnetic means, in the infrared and millimeter frequency bands; there is shown, by way of example, infrared detection means 91, as well as an antenna 90, arranged for example in front of the coating 80; the antenna is then produced by example in a very light material so as not to disturb the core of the military charge, such as expanded foam covered with a surface metallization.
  • the projectile also includes means for igniting the charge 8 and, optionally, balancing masses capable of symmetrizing its inertial distribution according to the stability requirements, not shown.
  • FIG. 4b is a perspective diagram illustrating the trajectory and the mode of scanning the terrain by the projectile detection means 7.
  • FIG. 4b an orthonormal reference frame OVRH has been shown, the axis OV representing the vertical and the plane OHR the horizontal, the axis OR carrying the projection on the ground of the trajectory T of the projectile 7.
  • a detection beam 92 of axis BB close to the axis YY of the charge 8, emitted and / or received by the detection means of the projectile 7 and the displacement of which is integral with that of the projectile.
  • the projectile 7 being in rotation about its axis ZZ, it appears that the beam 92 describes a cone whose trace on the ground is marked 93. Due to the combined movement of translation and rotation of the projectile, the ground is swept in strips parallel to each other and parallel to trace 93.
  • Curve 93 is the intersection of a cone by a plane, that is to say, in the general case, a hyperbola.
  • the width of the band surrounding the trace 93 is of course a function of the width of the beam 92 which it is preferable to choose relatively thin to improve the precision of the detection.
  • the distance between the successive traces 93 is a function of the speed of the projectile 7 on its trajectory T and of its angular speed around its axis ZZ.
  • the angular speed being constant and the projection on the ground of the speed of the projectile being approximately it, the step of the tracks 93 is substantially constant.
  • the detection means send a signal to the firing means of the charge 8; the core formed from the coating 80 is then ejected along the YY axis.
  • the detection axis BB must be slightly ahead of the firing axis, which is the YY axis of the military charge, i.e. pass before the YY axis on a target, to allow analysis and processing of detection signals.
  • the angle which the axis of the charge (YY) makes with the longitudinal axis (ZZ) of the projectile is determined so that the surface of the imprint is maximum for an angle of attack of the target as close as possible to the vertical (for example the vertical ⁇ 30 °).
  • the projectile further comprises means for inhibiting the firing when, due to the autorotation, the axis YY of the charge does not intersect the imprint E. This is achieved for example by creation of time slots during which shooting is prohibited (or authorized), for example by using the modulation of detection signals on the ground due to cyclic variations in distance and orientation relative to the vertical.
  • the mines are provided with means enabling them to interact with one another.
  • the system then comprises a plurality of mines, preferably at least four or five, deposited on the ground so as to be distant from each other: typically, a few hundred meters if the area monitored by each mine is of the same order of greatness.
  • these can be brought together in groups of a few units (4 or 5 for example) dialoguing only between units of the same group.
  • the mines also include a transmitter-receiver ensuring dialogue, for example in the form of coded and intermittent radio links. They also each include a clock and means for synchronizing the clocks with one another.
  • the management of exchanges is done according to a predefined procedure: for example, omnidirectional transmission according to a given order and duration.
  • the communication procedure adopted may or may not include the designation of a master mine, organizing the exchanges, and the replacement thereof if it does not work.
  • the initialization phase may also include a phase of assigning an identifier to each of the mines.
  • the plurality of mines capable of interacting is used to form one or more telemetric bases (acoustic, seismic), of large dimensions compared to those of the monitored area, which makes it possible to improve the separating power of the sensors and / or overcome the presence of masks on the ground, which may cause parasitic echoes.
  • an additional step is provided for locating, for each mine, the other mines in the system. This localization can be carried out for example using an acoustic marker launched vertically by each of the mines. The distance between mines and their angular position is then deduced from the propagation time of the sound wave emitted by the marker, between the latter and each of the mines.
  • the sound wave emitted by each marker has a particular signature or is coded, so as to facilitate its identification. The fact of having a marker fired by each of the mines introduces a redundancy making it possible to improve the accuracy of the measurements.
  • the possibility of communication between mines also allows, when several targets are present at the same time in the monitored area, the assignment of each target to a specific mine.
  • each mine is provided with storage means, containing the information allowing a sufficient characterization of the surface of its global field of intervention, the surface of the imprint of its projectile, the typical trajectory of the latter. and an oriented reference of the bearing angles.
  • This information is provided to the mine upon manufacture and, in part, just before removal, by incorporating, for example, an identification memory card which may include several options.
  • the storage means also contain the position of the other mines in the system and, consequently, the overlap zones of the interception areas of each mine relative to the angle of the launch ramp in standby phase.
  • each of the mines transmits, according to the programmed communication procedure, information on the identification of each target (if any), as well as on the angle and the spectrum of the target.
  • each mine Upon receipt of this information, each mine performs a processing, such as elimination of parasitic echoes, classification of bearing angles by spectrum, allowing the location of targets and their allocation and the determination of the engagement time, according to predefined criteria. .
  • each mine after having measured the directions of the targets it has detected, communicates these directions to the other mines.
  • Each of the mines receiving this directional information and also knowing the position of the other mines, calculates the position of the targets, chooses for itself the closest target and makes this assignment for each of the other mines.
  • Each mine deduces the number of possible engagements and compares it to a predefined threshold, identical for all mines. When the threshold is reached, each mine concerned fires its projectile. We thus obtain a simultaneous fire, decided autonomously by each mine.
  • each mine does not fire until after receiving confirmation of activation of a predefined proportion of the other mines in the group.
  • the mines in the system can include the usual safety devices, in particular devices prohibiting their lifting (by explosion of the charge for example) or devices ensuring their self-destruction, at the end of the maximum planned standby time. for example. It is also thus that the standby phase is not essential for the functioning of the system, the latter being able to pass directly from the initialization phase to the detection phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

L'invention a pour objet un système d'armes constitué d'une pluralité de mines, pour la défense d'une zone. Chacune des mines comporte notamment une rampe de lancement dans laquelle est disposé un projectile contenant une charge militaire, des moyens d'initialisation qui assurent notamment la mise en position de la rampe de lancement et des moyens de détection de cible. Selon un mode de réalisation, la détection d'une cible par une mine a pour effet le lancement du projectile dans la direction de la cible, de sorte que celui-ci soit en auto-rotation autour de son axe longitudinal et conserve sur sa trajectoire une attitude de vol constante. Selon un autre mode de réalisation, les mines sont susceptibles de dialoguer entre elles pour opérer une attaque simultanée d'une pluralité de cibles situées dans la zone défendue. Le projectile comporte des moyens de détection de la cible, liés au projectile et émettant un faisceau d'énergie rayonnée qui effectue un balayage du sol en bandes (hyperboles) successives. La détection de la cible entraîne la mise à feu de la charge militaire. L'axe de celle-ci fait avec l'axe longitudinal du projectile un angle déterminé pour que l'empreinte au sol soit maximum et en tenant compte des valeurs désirées pour l'angle d'attaque de la cible (de préférence par le toit).

Description

  • L'invention a pour objet un système d'armes automatisé assurant la défense d'une zone, notamment contre des véhicules blindés. Le système est plus précisément constitué d'un ensemble d'armes, également appelées mines, comportant chacune un projectile à tir indirect.
  • Parmi les systèmes d'armes connus, on peut citer un système de défense antichar selon le préambule de la revendication 1, décrit dans le document DE-A-2.336.040 ; ce système comprend un conteneur comportant des projectiles, formant rampe de lancement orientable. On connaît également, du document FR-A-2.558.585, des projectiles antichar comportant des sous-munitions largables ; chacune des sous-munitions, après son largage, est mise en autorotation de sorte que l'axe du détecteur qu'elle contient balaye le sol sensiblement selon une spirale.
  • La mission que se propose de remplir le système selon l'invention est la suivante : former un système constitué d'une pluralité de mines, susceptibles de dialoguer entre elles ; le système doit être déployable rapidement ; une fois initialisé, il doit être capable d'assurer une veille de durée donnée et, pendant celle-ci, de détecter la présence de cibles dans la zone surveillée, de les localiser et de les attaquer, le tout en tir indirect pour des raisons de camouflage, interdisant ainsi le passage dans une zone donnée. De plus, dans une variante, le système est optimisé pour l'attaque simultanée de cibles selon une tactique d'embuscade, c'est-à-dire de frappe massive par surprise.
  • A cet effet, chacune des mines comporte notamment une rampe de lancement, un projectile contenant une charge militaire, des moyens d'initialisation qui assurent notamment la mise en position de la rampe de lancement et des moyens de détection de cible. Selon un mode de réalisation, la détectlon d'une cible a pour effet le lancement du projectile dans la direction de la cible. La mine comporte des moyens pour que le projectile soit lancé en auto-rotation autour de son axe longitudinal et conserve sur sa trajectoire une attitude de vol constante. Le projectile comporte des moyens de détection de la cible, rigidement fixés par rapport au projectile et caractérisés par une grande directivité selon un faisceau incliné par rapport à l'axe de rotation, qui effectue ainsi un balayage du sol en bandes (hyperboles) successives. La charge militaire est par exemple du type à noyau formé par explosif. La détection de la cible entraîne la mise à feu de la charge militaire. L'axe de celle-ci fait avec l'axe longitudinal du projectile un angle déterminé pour que l'empreinte au sol soit maximum et en tenant compte des valeurs désirées pour l'angle d'attaque de la cible (de préférence par le toit).
  • Plus précisément, l'invention a pour objet un système d'armes pour la défense d'une zone tel que défini par la revendication 1.
  • D'autres objets, particularités et résultats de l'invention ressortiront de la description suivante, illustrée par les dessins annexés qui représentent :
    • la figure 1, les différentes étapes du fonctionnement du système d'armes selon l'invention ;
    • les figures 2a à 2d, différentes phases d'une des étapes de la figure 1 ;
    • la figure 3, un mode de réalisation du projectile utilisé dans le système d'armes selon l'invention ;
    • les figures 4a et 4b, des schémas relatifs à la trajectoire du projectile utilisé dans le système d'armes selon l'invention.
  • Sur ces différentes figures, les mêmes références se rapportent aux mêmes éléments.
  • La figure 1 représente donc les différentes étapes du fonctionnement du système selon l'invention.
  • Le système selon l'invention est constitué d'une pluralité d'armes appelées mines ; chacune des mines comporte notamment des moyens de détection de cibles et des moyens de lancement d'un projectile dans la direction de la cible.
  • Le fonctionnement de ce système commence par une première étape, repérée 1, de dépose des mines sur un terrain déterminé à partir duquel sera assurée la défense de la zone considérée. Selon la mission fixée, la dépose des mines doit pouvoir être très rapide. Elle s'effectue par tout moyen connu : pose manuelle, largage à partir d'un véhicule terrestre ou aérien (hélicoptère ou vecteur-cargo transporteur).
  • La phase suivante est une phase d'initialisation repérée 2, et qui se déroule en plusieurs étapes : successivement le déploiement de chacune des mines (étape 21) puis, dans un mode préféré, l'étalonnage des conditions locales d'environnement de chacune des mines (étape 22).
  • Dans une variante de réalisation, chacune des mines comporte des moyens permettant son activation et son inhibition à distance. La phase 2 comporte alors une étape supplémentaire d'activation (non représentée sur la figure 2). Cette phase d'activation/inhibition peut être répétée plusieurs fois pendant le temps d'utilisation du système et pour un relevage éventuel.
  • Les figures 2a à 2d représentent les différentes phases de l'étape 21 de déploiement d'une mine.
  • Sur la figure 2a, on a représenté une mine 6 telle que larguée sur un sol S, qui peut n'être pas plan.
  • La mine comporte une rampe de lancement, par exemple une rampe 63 dans laquelle est disposé le projectile (non visible sur la figure), des bras de relèvement 62, repliés le long de la rampe, le tout étant recouvert dans ce mode de réalisation d'une coiffe 60 de protection, éjectable. Cette coiffe peut être avantageusement utilisée pour adjoindre des moyens de portage (poignée par exemple) ou de dépose (frein aérodynamique ou pyrotechnique par exemple). La rampe est encore entourée par une bague 61 formant ceinture, dont le rôle est précisé ci-après.
  • La figure 2b représente le début de la phase de déploiement de la mine, la coiffe 60 ayant été éjectée.
  • Sur cette figure, on retrouve la rampe 63, le projectile maintenant visible, repéré 7, et les bras de relèvement 62. Le projectile 7 comporte par exemple dans sa partie avant des tuyères propulsives 71, dont le rôle est précisé plus loin. La mine 6 comporte un moteur (non visible) utilisé notamment pour conférer à la bague 61 un mouvement vers le bas de la rampe 63 (flèches 66), écartant ainsi les bras de relèvement 62 (flèches 64), les bras 62 ayant à cet effet une partie inférieure biaise de sorte que le mouvement de la ceinture force l'écartement de ceux-ci. Ce mouvement se poursuit jusqu'à faire basculer et maintenir de façon stable la mine dans la position sensiblement verticale, projectile vers le haut, comme illustré sur la figure 2c. A ce moment, des moyens mécaniques (non représentés) assurent l'échappement de la ceinture du dispositif moteur et son blocage.
  • Il est à noter que ce mouvement est sans contrainte de temps et peut être très démultiplié : de la sorte, il ne nécessite pas une puissance importante comparativement à la masse de la mine.
  • En outre, si le nombre minimum de bras (62) nécessaires est de trois, il peut être avantageux d'en disposer davantage, six par exemple, pour que la mine puisse se relever même sur un sol très inégal. Ils peuvent alors former l'enveloppe de la mine.
  • Sur la figure 2c on a donc illustré la mine en position verticale, la ceinture 61 étant en position basse, maintenant les bras 62 écartés et dégageant la plate-forme de lancement du projectile 7 ; cette dernière est constituée par un socle, masqué sur la figure par la ceinture 61, dans lequel sont disposés les moyens de détection, de commande, et d'alimentation de la mine, une pièce 65 mobile en rotation autour de l'axe AA de la mine, analogue à la circulaire d'une tourelle, et une pièce 66 formant affût pour la rampe 63.
  • Le processus comporte alors de préférence une étape de mise à la verticale de l'axe AA de la mine. A cet effet, les bras de relèvement 63 sont montés sur un plateau (non visible sur la figure), lui-même relié au socle de la mine par des moyens de réglage ; la mine comporte alors en outre un capteur de verticale et des moyens moteurs agissant sur les moyens de réglage.
  • La phase suivante, illustrée sur la figure 2d, consiste à opérer le basculement de la rampe de lancement 63, d'axe ZZ, d'un angle ϑ par rapport à un axe horizontal HH normal à l'axe AA de la mine, qui sera l'angle de site de tir du projectile. L'angle ϑ est déterminé en opérant un compromis entre la portée du projectile, le temps de parcours et la nécessité de dégager la trajectoire du projectile du relief local ; il est par exemple compris entre 40 et 50°. L'inclinaison de la rampe 63 est par exemple obtenue par excentrement de son axe de pivot 67 sur l'affût 66 par rapport à son centre de gravité, permettant, après déverrouillage, une motricité et une stabilisation de la rampe par gravité.
  • Le projectile étant ainsi prêt à être lancé, le système selon l'invention procède ensuite à l'étalonnage (étape 22) de l'environnement, notamment des conditions locales de propagation. A cet effet, chaque mine comporte un ou plusieurs détecteurs, qui peuvent ou non être les mêmes que ceux qui sont utilisés dans les phases ultérieures du fonctionnement du système.
  • Selon un mode de réalisation, l'étalonnage est pratiqué à l'aide de charges pyrotechniques déposées sur le terrain suivant une géométrie donnée ; la pose s'effectue soit manuellement, soit de préférence automatiquement, chaque mine comportant alors à cet effet une charge pyrotechnique éjectée lors de cette étape.
  • L'initialisation étant ainsi achevée, chacune des mines du système se trouve maintenant en position veille : phase 3 de la figure 1.
  • Durant cette veille, des détecteurs portés par la plate-forme de lancement de chacune des mines ont pour fonction de détecter l'irruption de cibles dans la zone surveillée et de fournir un signal d'alarme destiné à faire passer la mine dans la phase de détection de cible (phase 4, figure 1). Les capteurs utilisés à cet effet sont par exemple acoustiques omnidirectionnels et/ou sismiques.
  • L'alimentation en énergie des mines est telle que la veille puisse être assurée pendant une durée prédéfinie, par exemple de l'ordre de la dizaine de jours.
  • Lors de la phase 4 de détection de cible, des capteurs assurent la localisation de la cible, après une étape éventuelle d'identification de son type. La localisation comporte une évaluation de la distance de la cible et au moins du sens de la vitesse de défilement (ou vitesse tangentielle) de la cible pour permettre le tir en direction de la cible future. Les capteurs utilisés peuvent être de plusieurs types et les informations qu'ils fournissent peuvent être superposées et corrélées pour améliorer leur capacité de discrimination.
  • Selon un premier mode de réalisation, ces fonctions sont assurées par des capteurs acoustiques et/ou sismiques, qui peuvent être ou non les mêmes que ceux utilisés lors de la phase de veille.
  • Selon d'autres modes de réalisation, qui peuvent être utilisés cumulativement avec le précédent pour affiner les mesures, la détection est effectuée à l'aide de magnétomètres ou de capteurs radiométriques, le système comportant alors des émetteurs disposés sur le terrain et un récepteur porté par chaque mine ; l'information de détection est dans ce cas portée par la variation des conditions de propagation dues à la cible. Les émetteurs sont avantageusement disposés sur les mines voisines.
  • Les mines peuvent encore comporter, de la même manière, des capteurs hyperfréquences et/ou infrarouges. Dans ce cas, les capteurs devant être en vue directe de la cible, la mine comporte un mât télescopique érigé lors de la phase d'initialisation et arrêté de manière que le capteur, monté tournant en haut du mât, affleure les obstacles et masques proches.
  • Chaque mine calcule alors, à l'aide de moyens électroniques de calcul et à partir des mesures effectuées par le ou les capteurs, les éléments nécessaires de trajectoire de la cible ou des cibles, le gisement optimum de pointage de sa rampe lanceuse et l'instant optimum de lancement du projectile. De préférence, la mine est programmée pour ne tirer son projectile que lorsque la vitesse de défilement de la cible est suffisamment faible par rapport à la largeur de l'empreinte et le temps de parcours du projectile (c'est-à-dire la distance mine-cible).
  • La phase suivante est l'engagement d'une cible (phase 5 figure 1) qui se décompose en plusieurs étapes, tout d'abord une étape 51 de lancement du projectile.
  • La rampe 63 (figure 2) étant orientée au gisement précédemment calculé par la rotation de la circulaire 65 sous l'action du moteur de la plate-forme, qui peut avantageusement être le même que celui qui actionne la ceinture 61, le propulseur du projectile est mis à feu et ce dernier est lancé avec le site ϑ sur une trajectoire T.
  • Dans une variante de réalisation, l'énergie initiale de propulsion est fournie au projectile 7 par la plate-forme de lancement, par effet canon, de type mortier.
  • La stabilité du projectile 7 sur sa trajectoire est assurée par rotation de celui-ci autour de son axe longitudinal ZZ, confondu avec l'axe de lancement ainsi que, de préférence, par une géométrie extérieure et un centre de masse ajustés de manière à minimiser, à toute incidence, le moment aérodynamique de tangage. Cet effet d'autorotation est obtenu soit à l'aide de rayures de la rampe 63, soit à l'aide d'une orientation convenable des jets de gaz produits par le propulseur du projectile et issus des tuyères 71.
  • La figure 4a est un schéma illustrant la trajectoire du projectile 7 ainsi que sa position à différents instants.
  • Il apparaît que, du fait de sa stabilisation par rotation, le projectile 7 garde une attitude constante sur sa trajectoire T, c'est-à-dire que son axe ZZ reste parallèle à lui-même. Cette étape de vol du projectile constitue la deuxième étape (52) de la phase d'engagement (5).
  • La dernière étape (53) de la phase d'engagement est la mise à feu de la charge militaire contenue dans le projectile. Avant d'en indiquer le déroulement, on décrira tout d'abord la figure 3, qui représente schématiquement un mode de réalisation du projectile 7.
  • Le projectile 7 se compose d'un carénage 70 sensiblement cylindrique, d'axe ZZ portant sur sa partie avant les tuyères 71. Celles-ci font par exemple un angle donné avec l'axe ZZ du projectile (angle non représenté sur la figure 3), afin d'assurer l'auto-rotation de ce dernier autour de l'axe ZZ. En outre les tuyères sont de préférence disposées à l'avant du projectile afin de limiter les réactions parasites sur la plate-forme de lancement. Les tuyères sont au minimum au nombre de deux dans ce mode de réalisation, mais leur nombre est de préférence supérieur de manière à moyenner les dissymétries éventuelles de construction. A l'intérieur du carénage 70 et derrière les tuyères 71 est disposée la charge militaire, repérée 8 ; elle est constituée par exemple par une charge à noyau, c'est-à-dire une charge explosive 81 revêtue sur sa face avant d'une couche métallique concave 80 qui, sous l'effet de l'explosion, forme un noyau éjecté à grande vitesse selon l'axe longitudinal YY de la charge 8. Le projectile 7 comporte encore des moyens de détection de cible, constitués par exemple par des moyens électromagnétiques actifs et/ou passifs, dans les bandes de fréquences infrarouges et millimétriques ; on a représenté, à titre d'exemple, des moyens de détection infrarouge 91, ainsi qu'une antenne 90, disposée par exemple devant le revêtement 80 ; l'antenne est alors réalisée par exemple en un matériau très léger de façon à ne pas perturber le noyau de la charge militaire, tel que mousse expansée recouverte d'une métallisation de surface. Le projectile comporte encore des moyens de mise à feu de la charge 8 et, éventuellement, des masses d'équilibrage propres à symétriser sa répartition inertielle selon les besoins de stabilité, non représentés.
  • La figure 4b est un schéma en perspective illustrant la trajectoire et le mode de balayage du terrain par les moyens de détection du projectile 7.
  • Sur la figure 4b, on a représenté un repère orthonormé OVRH, l'axe OV représentant la verticale et le plan OHR l'horizontale, l'axe OR portant la projection au sol de la trajectoire T du projectile 7.
  • On a représenté également un faisceau 92 de détection, d'axe BB voisin de l'axe YY de la charge 8, émis et/ou reçu par les moyens de détection du projectile 7 et dont le déplacement est solidaire de celui du projectile. Le projectile 7 étant en rotation autour de son axe ZZ, il apparaît que le faisceau 92 décrit un cône dont la trace sur le sol est repérée 93. Du fait du mouvement combiné de translation et de rotation du projectile, le sol est balayé en bandes parallèles les unes aux autres et parallèles à la trace 93. La courbe 93 est l'intersection d'un cône par un plan c'est-à-dire, dans le cas général, une hyperbole. La largeur de la bande entourant la trace 93 est bien entendu fonction de la largeur du faisceau 92 qu'il est préférable de choisir relativement fin pour améliorer la précision de la détection. La distance entre les traces 93 successives est fonction de la vitesse du projectile 7 sur sa trajectoire T et de sa vitesse angulaire autour de son axe ZZ. La vitesse angulaire étant constante et la projection au sol de la vitesse du projectile l'étant approximativement, le pas des traces 93 est sensiblement constant. Ces différents paramètres sont choisis pour que sensiblement la totalité de la zone sont choisis pour que sensiblement la totalité de la zone survolée soit effectivement balayée, compte-tenu de la vitesse de rapprochement de la cible.
  • Lorsque le faisceau 92 identifie une cible, les moyens de détection adressent un signal aux moyens de mise à feu de la charge 8 ; le noyau formé à partir du revêtement 80 est alors éjecté selon l'axe YY.
  • Il est à noter que l'axe de détection BB doit être légèrement en avance par rapport à l'axe de tir, qui est l'axe YY de la charge militaire, c'est-à-dire passer avant l'axe YY sur une cible, pour permettre l'analyse et le traitement des signaux de détection.
  • Par ailleurs, plus le faisceau 92 s'incline par rapport au plan vertical OVR, plus l'axe YY de la charge militaire s'éloigne du plan vertical et plus l'efficacité de la charge contre une cible diminue. Cela conduit à définir une zone E d'efficacité au sol du projectile 7, appelée empreinte, et illustrée sur la figure 4b, la zone E présentant une forme lancéolée avec une largeur variable, proportionnelle à l'altitude de la trajectoire. L'angle que fait l'axe de la charge (YY) avec l'axe longitudinal (ZZ) du projectile est déterminé pour que la surface de l'empreinte soit maximum pour un angle d'attaque de la cible aussi proche que possible de la verticale (par exemple la verticale ± 30°).
  • Dans une variante de réalisation, le projectile comporte en outre des moyens d'inhibition du tir lorsque, du fait de l'autorotation, l'axe YY de la charge ne coupe pas l'empreinte E. Cela est réalisé par exemple par création de créneaux temporels pendant lesquels le tir est interdit (ou autorisé), en utilisant par exemple la modulation des signaux de détection sur le sol due aux variations cycliques de distance et d'orientation par rapport à la verticale.
  • On a décrit ci-dessus une mine fonctionnant de façon autonome jusqu'au lancement du projectile qu'elle contient. Dans une variante préférentielle de réalisation du système selon l'invention, les mines sont munies de moyens leur permettant de dialoguer entre elles.
  • Le système comporte alors une pluralité de mines, de préférence au moins quatre ou cinq, déposées sur le sol de sorte à être distantes les unes des autres : typiquement, de quelques centaines de mètres si la zone surveillée par chaque mine est du même ordre de grandeur. Dans le cas où le système est formé d'un plus grand nombre de mines, celles-ci peuvent être réunies en groupes de quelques unités (4 ou 5 par exemple) dialoguant uniquement entre unités d'un même groupe.
  • Les mines comportent de plus un émetteur récepteur assurant le dialogue, par exemple sous forme de liaisons radios codées et intermittentes. Elles comportent également chacune une horloge et des moyens de synchronisation des horloges entre elles. La gestion des échanges se fait selon une procédure prédéfinie : par exemple, émission omnidirectionnelle selon un ordre et une durée donnés. La procédure de communication retenue peut, ou non, comporter la désignation d'une mine maîtresse, organisant les échanges, et le remplacement de celle-ci en cas de non fonctionnement. La phase d'initialisation peut encore comporter une phase d'affectation d'un identificateur à chacune des mines.
  • Dans une variante de réalisation, la pluralité de mines susceptibles de dialoguer est utilisée pour former une ou plusieurs bases télémétriques (acoustiques, sismiques), de grandes dimensions par rapport à celles de la zone surveillée, ce qui permet d'améliorer le pouvoir séparateur des capteurs et/ou de s'affranchir de la présence de masques sur le terrain, susceptibles de provoquer des échos parasites. A cet effet, lors de la phase d'initialisation et de première activation, il est prévu une étape supplémentaire de localisation, pour chaque mine, des autres mines du système. Cette localisation peut être réalisée par exemple à l'aide d'un marqueur acoustique lancé verticalement par chacune des mines. La distance entre les mines et leur position angulaire est alors déduite du temps de propagation de l'onde sonore émise par le marqueur, entre celui-ci et chacune des mines. De préférence, l'onde sonore émise par chaque marqueur a une signature particulière ou est codée, de façon à faciliter son identification. Le fait de faire tirer un marqueur par chacune des mines introduit une redondance permettant d'améliorer la précision des mesures.
  • La possibilité de communication entre les mines permet également, lorsque plusieurs cibles se présentent en même temps dans la zone surveillée, l'affectation de chaque cible à une mine précise.
  • A cet effet, chaque mine est munie de moyens de mémorisation, contenant les informations permettant une caractérisation suffisante de la surface de son domaine global d'intervention, de la surface de l'empreinte de son projectile, de la trajectoire type de celui-ci et d'une référence orientée des angles de gisement. Ces informations sont fournies à la mine dès la fabrication et, en partie, juste avant la dépose, par incorporation par exemple d'une carte mémoire d'identification pouvant comporter plusieurs options. A la fin de la phase d'initialisation, les moyens de mémorisation contiennent en outre la position des autres mines du système et, par suite, les zones de recouvrement des aires d'interception de chaque mine relativement à l'angle de gisement de la rampe de lancement en phase de veille.
  • En phase de veille, lorsque la présence d'une ou plusieurs cibles est détectée, chacune des mines émet, selon la procédure de communication programmée, des informations sur l'identification de chaque cible (le cas échéant), ainsi que sur l'angle de gisement et le spectre de la cible. A réception de ces informations, chaque mine effectue un traitement, du type élimination des échos parasites, classement des angles de gisement par spectre, permettant la localisation des cibles et leur affectation et la détermination de l'instant d'engagement, selon des critères prédéfinis.
  • Dans un mode de réalisation, chaque mine, après avoir mesuré les directions des cibles qu'elle a détectées, communique ces directions aux autres mines. Chacune des mines, recevant ces informations de direction et connaissant par ailleurs la position des autres mines, calcule la position des cibles, choisit pour elle-même la cible la plus proche et effectue cette affectation pour chacune des autres mines. Chaque mine en déduit le nombre d'engagements possibles et le compare à un seuil prédéfini, identique pour toutes les mines. Lorsque le seuil est atteint, chaque mine concernée tire son projectile. On obtient de la sorte un tir simultané, décidé de façon autonome par chaque mine.
  • Cette approche globale de l'engagement permet de réaliser un tir massif et simultané avec un effet de surprise selon une tactique d'embuscade. Dans ce mode de fonctionnement, le tir de chaque mine est différé jusqu'à ce qu'une fraction optimale des cibles présentes dans la zone couverte par le groupe de mines soit engagée.
  • De plus, la possibilité de communication permet d'accroître, par processus d'inhibition réciproque, la fiabilité de la commande à distance d'inhibition-activation, c'est-à-dire la sécurité d'emploi du système. A cette fin, selon un mode de réalisation, chaque mine ne déclenche son tir qu'après réception d'une confirmation d'activation d'une proportion prédéfinie des autres mines du groupe.
  • La description faite ci-dessus l'a été à titre d'exemple non limitatif et différentes variantes de réalisation peuvent être apportées sans sortir du cadre de l'invention. C'est ainsi notamment que les mines du système peuvent comporter les dispositifs usuels de sécurité, notamment les dispositifs interdisant leur relevage (par explosion de la charge par exemple) ou les dispositifs assurant leur autodestruction, en fin de la durée de veille maximum prévue par exemple. C'est ainsi également que la phase de veille n'est pas indispensable au fonctionnement du système, celui-ci pouvant passer directement de la phase d'initialisation à la phase de détection.

Claims (17)

  1. Système d'armes pour la défense d'une zone, comportant au moins une mine, la mine (6) comportant :
    - un projectile (7) comportant une charge militaire (8) ;
    - une rampe (63) de lancement du projectile ;
    - des moyens d'initialisation, assurant le déploiement de la rampe de lancement ;
    - des moyens de détection et de localisation d'une cible dans la zone ;
    - des moyens d'orientation de la rampe et de lancement du projectile, commandés par les moyens de détection ;
    le système étant caractérisé par le fait que la rampe et/ou le projectile comportant des moyens assurant la mise en rotation du projectile autour de son axe longitudinal (ZZ) et la stabilisation du projectile sur sa trajectoire (T) avec une attitude de vol constante ;
    - que l'axe (YY) de la charge militaire (8) fait avec l'axe (ZZ) longitudinal du projectile un angle déterminé pour que l'empreinte au sol soit maximum et déterminé en fonction de l'angle recherché d'attaque de la cible ;
    et que le projectile comporte en outre :
    - des moyens (90, 91) de détection de la cible, émettant et/ou recevant un faisceau (92) dont le déplacement est solidaire de celui du projectile (7), le faisceau décrivant ainsi un cône et effectuant un balayage de la zone en bandes (93) successives ;
    - des moyens de mise à feu de la charge déclenchés par les moyens de détection.
  2. Système selon la revendication 1, caractérisé par le fait que les moyens d'initialisation comportent des bras de relèvement (62), initialement disposés le long de la rampe (63), et des moyens mécaniques (61) assurant leur écartement de sorte qu'ils assurent le maintien de la mine dans une position sensiblement verticale.
  3. Système selon la revendlcation 2, caractérisé par le fait que les moyens d'initialisation comportent en outre des moyens assurant la mise précise de l'axe longitudinal (AA) de la mine dans la position verticale.
  4. Système selon l'une des revendications précédentes, caractérisé par le fait que les moyens d'initialisation comportent des moyens de basculement de la rampe de sorte que l'axe (ZZ) de cette dernière fasse un angle (ϑ) donné avec la normale à l'axe (AA) de la mine.
  5. Système selon la revendication 4, caractérisé par le fait que l'angle (ϑ) est compris entre 40 et 50°.
  6. Système selon l'une des revendications précédentes, caractérisé par le fait que les moyens d'initialisation comportent des capteurs assurant en outre un étalonnage de l'environnement de la mine.
  7. Système selon l'une des revendications précédentes, caractérisé par le fait que chaque mine comporte en outre des moyens d'activation et/ou d'inhibition.
  8. Système selon l'une des revendications précédentes, caractérisé par le fait que chaque mine comporte en outre des capteurs assurant une fonction de veille, détectant l'irruption d'au moins une cible dans la zone et activant alors les moyens de détection.
  9. Système selon l'une des revendications précédentes, caractérisé par le fait que les moyens de détection comportent des capteurs acoustiques et/ou sismiques.
  10. Système selon l'une des revendications précédentes, caractérisé par le fait que le projectile (7) comporte des moyens de propulsion (71).
  11. Système selon la revendication 10, caractérisé par le fait que les moyens de propulsion (71) du projectile assurent sa rotation autour de son axe longitudinal.
  12. Système selon l'une des revendications précédentes, caractérisé par le fait que la charge militaire (8) est une charge à noyau, le noyau étant émis selon l'axe (YY) de la charge lors de la mise à feu de cette dernière.
  13. Système selon l'une des revendications précédentes, csractérisé par le fait que les moyens (90, 91) de détection de la cible, embarqués sur le projectile (7), sont des moyens actifs, émettant un faisceau d'énergie rayonnée.
  14. Système selon l'une des revendications précédentes, caractérisé par le fait que l'axe (BB) du faisceau (92) des moyens de détection est voisin de l'axe (YY) de la charge militaire (8), mais en avance par rapport à ce dernier.
  15. Système selon l'une des revendications précédentes, caractérisé par le fait qu'il comporte une pluralité de mines comportant des moyens leur permettant de dialoguer entre elles.
  16. Système selon la revendication 15, caractérisé par le fait que les moyens de dialogue comportent, pour chaque mine, des moyens d'émission-réception radio.
  17. Système selon l'une des revendications 15 ou 16, caractérisé par le fait que chaque mine comporte en outre des moyens de calcul et des moyens de mémorisation programmés, assurant l'affectation respective des cibles aux mines et la détermination de l'instant d'engagement.
EP19900907154 1989-04-25 1990-04-25 Systeme d'armes automatise pour la defense de zone Expired - Lifetime EP0422194B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90907154T ATE101435T1 (de) 1989-04-25 1990-04-25 Automatisches waffensystem fuer die flaechenverteidigung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8905455A FR2646232B1 (fr) 1989-04-25 1989-04-25 Systeme d'armes automatise pour la defense de zone
FR8905455 1989-04-25

Publications (2)

Publication Number Publication Date
EP0422194A1 EP0422194A1 (fr) 1991-04-17
EP0422194B1 true EP0422194B1 (fr) 1994-02-09

Family

ID=9381093

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900907154 Expired - Lifetime EP0422194B1 (fr) 1989-04-25 1990-04-25 Systeme d'armes automatise pour la defense de zone

Country Status (5)

Country Link
EP (1) EP0422194B1 (fr)
CA (1) CA2031535A1 (fr)
DE (1) DE69006564T2 (fr)
FR (1) FR2646232B1 (fr)
WO (1) WO1990012997A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4019148A1 (de) * 1990-06-15 1991-12-19 Dynamit Nobel Ag Flaechenverteidigungsmine mit vergroessertem wirkfeld
DE4037173A1 (de) * 1990-11-22 1992-05-27 Dynamit Nobel Ag Abwurfkoerper mit verbessertem aufrichtverhalten
DE4041767A1 (de) * 1990-12-24 1992-06-25 Dynamit Nobel Ag Mine mit einer verlegeeinrichtung fuer eine sensorleitung
FR2682181B1 (fr) * 1991-10-02 1995-02-24 Giat Ind Sa Mine a defense de zone.
FR2695992B1 (fr) * 1992-09-21 1994-12-30 Giat Ind Sa Sous munition à effet dirigé.
US5599305A (en) * 1994-10-24 1997-02-04 Cardiovascular Concepts, Inc. Large-diameter introducer sheath having hemostasis valve and removable steering mechanism
FR2733317B1 (fr) * 1995-04-20 1997-05-23 Tda Armements Sas Procede de communication pour mines d'un champ de mines et mines le mettant en oeuvre
FR2751064A1 (fr) * 1996-07-09 1998-01-16 Luchaire Defense Sa Procede de detection du tir d'une charge formee, application de ce procede a la defense rapprochee de vehicule, au controle de l'etat d'un champ de mines ainsi qu'a l'inhibition du fonctionnement d'une mine
WO2001033253A2 (fr) * 1999-11-03 2001-05-10 Metal Storm Limited Moyens de defense fixes
US20040237762A1 (en) 1999-11-03 2004-12-02 Metal Storm Limited Set defence means
GB2380244B (en) * 2001-08-13 2006-02-15 Joseph Zabrana Michael Automated Sound Missile and Associated Defence System
FR2914054B1 (fr) * 2007-03-19 2009-06-05 Nexter Systems Sa Dispositif de protection rapprochee
IL214102A (en) 2011-07-14 2017-02-28 Orlev Nahum Neutralizes wide range

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1605558A (en) * 1968-09-18 1980-07-25 Small ground-to-ground missile - has multiple detector including IR, seismic or magnetic sensors for guidance in triple phase trajectory
DE2336040C3 (de) * 1973-07-14 1980-06-19 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Abwehrsystem mit mehreren Geschossen
DE2547593C2 (de) * 1975-10-24 1982-12-02 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Verfahren zur Errichtung und zum Betrieb eines Minensperrsystems
US4356770A (en) * 1979-11-09 1982-11-02 Avco Corporation Overflying munitions device and system
FR2492966B1 (fr) * 1980-10-29 1986-01-31 Serat Perfectionnements aux projectiles a trajectoire corrigee
FR2523717B1 (fr) * 1982-03-17 1987-04-30 Stauff Emile Systeme d'arme, notamment antichar
FR2541444A1 (fr) * 1982-06-25 1984-08-24 Thomson Csf Dispositif de detection a distance du type mine et systeme de tir comportant de tels dispositifs
FR2558585B1 (fr) * 1984-01-19 1987-10-23 Stauff Emile Sous-munitions largables pour projectile, notamment antichar
DE3720672C2 (de) * 1987-06-23 1995-04-27 Diehl Gmbh & Co Abwurfmine

Also Published As

Publication number Publication date
FR2646232A1 (fr) 1990-10-26
WO1990012997A1 (fr) 1990-11-01
EP0422194A1 (fr) 1991-04-17
FR2646232B1 (fr) 1994-03-11
CA2031535A1 (fr) 1990-10-26
DE69006564T2 (de) 1994-05-26
DE69006564D1 (de) 1994-03-24

Similar Documents

Publication Publication Date Title
EP0422194B1 (fr) Systeme d'armes automatise pour la defense de zone
AU2003223737B2 (en) Method for protecting an aircraft against a threat that utilizes an infrared sensor
US6738012B1 (en) Protecting commercial airliners from man portable missiles
EP0273787B1 (fr) Mine à tir indirect d'attaque de véhicule blindé
US9019375B1 (en) Target locator and interceptor imaging and sensing assembly, system and method
FR2739921A1 (fr) Dispositif de protection pour vehicule blinde
CA2138152C (fr) Systeme d'arme a defense de zone
EP0800054B1 (fr) Projectile dont la charge explosive est déclenchée au moyen d'un désignateur de cible
FR2541444A1 (fr) Dispositif de detection a distance du type mine et systeme de tir comportant de tels dispositifs
US4819561A (en) Sensor for attacking helicopters
FR2518734A1 (fr) Systeme de defense de zone a effet de saturation
FR2667139A1 (fr) Systeme de barrage d'espace pour la reconnaissance et respectivement la lutte contre des objectifs terrestres, des objectifs aeriens ou analogues.
FR2643143A1 (fr) Mine de defense contre des objets en mouvement
FR2712687A1 (fr) Système de mise à feu pour projectile explosif.
EP0388264A1 (fr) Marqueur d'objectif pour attirer des projectiles munis d'un autodirecteur
EP2600097B1 (fr) Procédé de contrôle du déclenchement d'une charge militaire, dispositif de contrôle et fusée de projectile mettant en oeuvre un tel procédé
US20220097843A1 (en) Incoming threat protection system and method of using same
FR2771166A1 (fr) Projectile ayant une direction d'action radiale
FR2712683A1 (fr) Bombe de protection des avions et procédé d'utilisation.
US8424444B2 (en) Countermeasure systems including pyrotechnically-gimbaled targeting units and methods for equipping vehicles with the same
FR2747185A1 (fr) Projectile generateur d'eclats dont la charge explosive est declenchee au moyen d'un designateur de cible
FR2715465A1 (fr) Bombe de protection des avions et procédé de protection associé.
EP0352237A1 (fr) Fusée antimissile pour projectiles de canon
FR2694389A1 (fr) Dispositif de défense.
FR3005359A1 (fr) Procede et dispositif de protection des aeronefs basse altitude vis-a-vis des missiles sol/air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB IT LI NL SE

17Q First examination report despatched

Effective date: 19920514

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19940209

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940209

Ref country code: NL

Effective date: 19940209

Ref country code: AT

Effective date: 19940209

REF Corresponds to:

Ref document number: 101435

Country of ref document: AT

Date of ref document: 19940215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69006564

Country of ref document: DE

Date of ref document: 19940324

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940430

Ref country code: LI

Effective date: 19940430

Ref country code: CH

Effective date: 19940430

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
BERE Be: lapsed

Owner name: THOMSON-BRANDT ARMEMENTS

Effective date: 19940430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EAL Se: european patent in force in sweden

Ref document number: 90907154.0

REG Reference to a national code

Ref country code: CH

Ref legal event code: AUV

Free format text: LE BREVET CI-DESSUS EST TOMBE EN DECHEANCE, FAUTE DE PAIEMENT, DE LA 5E ANNUITE.

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960319

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960321

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970426

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970425

EUG Se: european patent has lapsed

Ref document number: 90907154.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040506

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101