EP0408468A1 - Procédé d'obtention d'uranium à partir d'oxyde et utilisant une voie chlorure - Google Patents

Procédé d'obtention d'uranium à partir d'oxyde et utilisant une voie chlorure Download PDF

Info

Publication number
EP0408468A1
EP0408468A1 EP90420314A EP90420314A EP0408468A1 EP 0408468 A1 EP0408468 A1 EP 0408468A1 EP 90420314 A EP90420314 A EP 90420314A EP 90420314 A EP90420314 A EP 90420314A EP 0408468 A1 EP0408468 A1 EP 0408468A1
Authority
EP
European Patent Office
Prior art keywords
uranium
ucl4
cathode
chlorine
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90420314A
Other languages
German (de)
English (en)
Other versions
EP0408468B1 (fr
Inventor
Yves Bertaud
Jean Boutin
Pierre Brun
Roger Durand
Antoine Floreancig
Airy-Pierre Lamaze
Roland Tricot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uranium Pechiney
Compagnie Europeenne du Zirconium Cezus SA
Original Assignee
Uranium Pechiney
Compagnie Europeenne du Zirconium Cezus SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uranium Pechiney, Compagnie Europeenne du Zirconium Cezus SA filed Critical Uranium Pechiney
Publication of EP0408468A1 publication Critical patent/EP0408468A1/fr
Application granted granted Critical
Publication of EP0408468B1 publication Critical patent/EP0408468B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0213Obtaining thorium, uranium, or other actinides obtaining uranium by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0286Obtaining thorium, uranium, or other actinides obtaining uranium refining, melting, remelting, working up uranium

Definitions

  • the invention relates to a process for obtaining uranium metal in stages, from an oxidized compound, for example UO3, U3O8, using a chloride route.
  • a process is usually used which successively involves reduction to the state of UO2 at high temperature using hydrogen or a carrier gas d hydrogen, such as NH3 for example, followed by fluoridation using hydrofluoric acid at high temperature or in the aqueous phase, to obtain UF4, and metallothermic reduction, for example with Mg or Ca, to obtain on the one hand l uranium in the form of ingots, on the other hand a byproduct which is a fluoride (for example Mg or Ca) which it is necessary to decontaminate before rejection.
  • the Applicant has sought to develop a process which makes it possible to avoid the use of expensive and particularly dangerous products, such as hydrofluoric acid, the production of a byproduct also expensive to treat and to eliminate. It also sought a process which, preferably, is continuous and insensitive to the presence of impure tees in the starting oxide or better operates a purification.
  • This reduction is generally: - Either an igneous electrolysis, preferably in the middle of molten alkali or alkaline earth chlorides, to obtain on the one hand solid uranium, on the other hand chlorine in elementary form which is directly recycled in the first step. - or a metallothermic reduction using at least one metallic reducing agent, such as Mg, Ca, Na, K, giving on the one hand uranium in the solid state, on the other hand chlorine in the form of metal chloride, this by-product being transformed into elementary form to be recycled, that is to say into its constituent elements which are also recycled: chlorine at the first stage and the metal in reduction.
  • metallic reducing agent such as Mg, Ca, Na, K
  • the starting product is any oxidized compound of uranium, pure or impure, for example an oxide such as UO2, U3O8, UO3, UO4 or a mixture thereof, usually U3O8 and rather UO3 is used, or a uranate, preferably ammonium diuranate because the presence of alkali or alkaline earth is not always desirable.
  • the starting uranium-containing compound is preferably mixed in dry and divided form (powder, scales, granules, etc.) with carbon (coke, carbon, graphite, etc.) also in divided form.
  • This mixture is introduced as it is, or possibly after granulation or agglomeration, in a high temperature reactor where it reacts with chlorine gas, diluted or not in an inert gas such as argon, helium, nitrogen, introduced preferably against the current when operating continuously and / or so that it percolates through the load.
  • an inert gas such as argon, helium, nitrogen
  • the reaction generally produces UCl4 and is written: UO3 + 3C + 2 Cl2 ⁇ UCl4 + 3 CO (and / or CO2) but it can also form UCl5 and UCl6.
  • One operates at a temperature above about 600 ° C and preferably between 900 and 1100 ° C, to preferably obtain UCl4 and limit the formation of UCl5 or UCl6, and at any pressure; however for practical reasons, it is easier to use a pressure close to atmospheric pressure.
  • the proportion of Co and / or CO2 obtained depends on the reaction temperature. The reaction is complete.
  • the reaction can be conducted in a wide variety of modes.
  • the molten salt bath is then regularly fed with the mixture of said uranium-oxidized compound and carbon, while bubbling the chlorine.
  • Such a process is particularly advantageous when the starting uranium-containing compound is an impure concentrate, containing in particular troublesome elements such as alkali or alkaline-earth, rare earths or others.
  • This bath containing UCl4 can optionally be used for electrolysis, but it is preferable to recover UCl4 in gaseous form.
  • the uranium-bearing compound alone or preferably in admixture with carbon, can then be introduced directly into a reactor containing a carbon bed which ensures the excess of carbon.
  • reactor or furnace can be suitable, for example belt, rotary, sliding bed furnace ..., but the most interesting is the fluid bed reactor, comprising a carbon bed fluidized by chlorine and the reaction gases, which is supplied with said mixture of uranium compound and carbon preferably in the form of powder.
  • the supply of the different types of reactors can also be in the form of granules, tablets, balls, etc. This type of process is especially advantageous when the uranium-containing compound contains few alkaline elements and preferably a low level of impurities.
  • Sublimated UCl4 obtained during the reaction is filtered at the outlet of the reactor, for example on quartz cloth or silica.
  • UCl4 contains volatile impurities
  • UCl4 contains higher chlorides such as UCl5, UCl6, it is possible to carry out a disproportionation operation consisting in demoting said higher chlorides to UCl4.
  • This operation consists simply in heating the mixture of chlorides either in the solid phase at a temperature of 150 to 500 ° C under reduced pressure, generally about 6 mm of mercury, or in the gas phase at a temperature at least equal to 800 ° C . Downshifting can also be done by electrolysis as will be seen below.
  • the reduction is carried out in order to obtain the uranium metal according to any of the variants already mentioned.
  • An igneous electrolysis is carried out in the medium of molten salt preferably in a bath based on chlorides, for example alkaline and / or alkaline-earth, making it possible to recover the solid uranium at the cathode and a release of chlorine at the anode.
  • chlorides for example alkaline and / or alkaline-earth
  • NaCl or a mixture of Na Cl + KCl is used.
  • a bath containing exclusively fluorides, although possible, is not recommended because it tends to stabilize the presence of oxyfluorides which are difficult to reduce without significantly increasing the oxygen content of the deposited metal.
  • the composition of the bath can vary within wide limits. In general, it is adjusted so that the molten bath has a low vapor pressure in UCl4, and so that the temperature corresponds to the desired morphological structure of the uranium deposit at the cathode. Indeed, the crystalline morphology and the quality of the cathodic deposit depends to a large extent on the temperature at which it is carried out, on the chemical constitution of the bath and on its concentration of UCl4 and / or UCl3. The average uranium content of the bath is very variable.
  • UCl4 is introduced in solid, liquid or gas form.
  • a fluoride generally alkaline such as NaF or KF.
  • the molar ratio F U adequate is generally less than 6, the amount by weight.
  • the electrolysis temperature is approximately 25 ° C to 100 ° C above the melting point of the chosen bath. In general, it is carried out between 650 and 850 ° C and preferably between 650 and 750 ° C.
  • the current density is adapted to the composition of the bath and is generally less than 0.8 A / cm2 and preferably less than 0.2 A / cm2, otherwise it forms fine particles of U which can fall to the bottom of tank with the sludge and present a danger due to their high oxidizability.
  • the electrolysis tank is metallic and equipped with a heating device, to facilitate operation, and cathodic protection.
  • the anode assembly comprises at least one anode made of carbonaceous material, such as graphite, or of metal which cannot be corroded by bath or chlorine and is equipped with a device for capturing released Cl2 -
  • the cathode assembly comprises at least one metal cathode, for example uranium or steel, or other metal so that the deposited uranium is easily detachable.
  • a diaphragm between the anode and the cathode to prevent the recombination of the elements and facilitate the collection of chlorine. It must be sufficiently porous (10 to 60% of vacuum preferably 20 to 40%) and is made of a material resistant to temperature and to corrosion of the bath. It is preferable to use a conductive material, for example a metal, or better a graphite material which can be cathodically polarized to avoid any migration of U towards the anode and re-formation of chloride. A metal deposit can be made there tending to clog it; the metal deposited is then redissolved by depolarization. The polarization of the diaphragm leads to different concentrations in the anode (anolyte) and cathode (catholyte) compartments.
  • the metal deposited on the cathode must be sufficiently adherent not to fall to the bottom of the tank and be unrecoverable, but not too much either to be easily recoverable.
  • the crystal form of the deposit and its characteristics are a function, as has already been said, of a certain number of factors such as the nature of the bath, its composition, its concentration, its temperature, the current density, etc.
  • the interpolar distance between electrodes is variable and depends largely on the form in which the metal is deposited; it is advantageous to fix the electrolysis conditions so as to avoid strong growths of said metal, therefore to deposit it in a fairly collected form, while preventing it from being too compact to then facilitate harvesting.
  • the interpolar distance is between 50 and 200 mm.
  • the cathode is sufficiently charged with a deposit of uranium contaminated by bath inclusions, it is washed and it is harvested either by mechanical means, such as scraping, machining, etc., leading to a metal. in divided form which is washed with acidulated water and / or melted to eliminate the said inclusions, either by physical means such as fusion ..., leading to a purified ingot surmounted by a layer of slag coming from the bath inclusions .
  • the chlorine obtained at the anode is recycled in the previous step, after a possible addition of fresh Cl2 intended to compensate for the losses.
  • An improvement in this electrolysis is particularly interesting; it allows both to deposit uranium metal, to carry out its electrorefining, to downgrade the higher chlorides to UCl4 and to do without diaphragm between anode and cathode. It consists : . surrounding the anode, immersed in the bath, with a perforated basket, also submerged, forming a cathode, for example in a wire mesh; it may consist of two vertical coaxial cylinders, delimiting a vertical annular space, integral with a bottom . to have at the outside of said basket at least one complementary submerged cathode . applying a voltage to said complementary cathode which makes it cathodically polarized with respect to the basket .
  • Metallothermic reduction methods for obtaining uranium metal are well known, in particular the reduction of UF d'U by Mg or Ca where the reaction products go through a molten state. Given the thermal balances, such a process is not possible in the context of the reduction of UCl4. It is therefore preferable to operate in the following manner using the reaction: UCl4 + 4M ⁇ U + 4M Cl M represents a fusible metal capable of reducing UCl4 at temperatures below about 1100 ° C, if necessary with an external energy supply.
  • Mg, Ca, but also Na, K or one of their mixture is used.
  • This step of the process according to the invention consists in reacting the liquid reducing metal contained in a closed reactor or crucible generally made of ordinary steel or stainless steel, with UCl4 introduced regularly. ment, generally in liquid or gaseous form, at a temperature and under conditions such that UCl4 reacts in the gaseous state with the reducing agent, that the resulting chloride is liquid and that the uranium produced remains solid.
  • This is usually carried out between about 600 ° C and 1100 ° C and preferably between about 800 ° and 1000 ° C, under a reducing or inert atmosphere (H2, He, Ar ...), in a reactor generally made of steel which can be heated from the outside, possibly in several zones regulated at different temperatures.
  • a charge of reducing metal is introduced into the crucible in solid or liquid form, it is closed with a cover, the air is purged by evacuation and / or sweeping with a reducing or neutral gas, it is heated so as to bring the enclosure to the chosen reaction temperature, and bring or maintain the reducing metal in liquid form.
  • UCl4 is then introduced, for example in gaseous form, which reacts with the molten reducing agent, U collects at the bottom of the crucible and / or along the walls in more or less agglomerated solid form; the liquid chloride of the reducing metal and the unreacted liquid reducing metal float above the uranium in two successive layers classified in order of their density; usually the layer of reducing agent is above and the liquid salt in contact with uranium. It is advantageous to regularly withdraw said liquid chloride, to increase the processing capacity of the crucible. At the end of the reaction, therefore, a more or less compact mass of uranium is obtained which is contaminated by inclusions of reducing metal and of salt (chloride) formed.
  • To purify the U obtained from these inclusions it is possible either to heat the crucible under vacuum to distil the reducing metal, or to wash the uranium-bearing mass with acidulated water, after having extracted it from the reactor and possibly crushed, to remove the inclusions from the salt formed. It is also possible to effect a fusion, a decantation and a pouring of the uranium, previously extracted from the crucible, either before or preferably after distillation of the excess reducing agent.
  • This fusion is carried out according to techniques known to those skilled in the art: for example induction furnace with electronic bombardment, crucible graphite coated with a refractory inert towards uranium, cold crucible ..., and the casting can be done in the form of ingot, wire, ribbon etc ... using all known methods of one skilled in the art.
  • the reducing metal chloride by-product is preferably subjected to electrolysis to recover the chlorine and the reducing metal, respectively recycled in the first and in the second stage, according to methods well known to those skilled in the art.
  • the process according to the invention therefore avoids the production of annoying by-products or effluents to be treated and eliminated, is economical and makes it possible to obtain a metal of a purity at least sufficient to be used in particular in an enrichment process isotopic by laser; If one starts from an oxidized compound of nuclear pure uranium, such as that obtained in conventional conversion processes, the quality obtained according to the invention is as follows: C ⁇ 50 ppm O ⁇ 200 ppm ⁇ Fe and transition metals ⁇ 250 ppm Cl ⁇ 20 ppm expressed by weight with respect to U the contents of the other impurities being lower than those present in the starting product.
  • the reduction is carried out by electrolysis (first variant), it is possible to add to it a simultaneous electroraffinage by introducing into the bath at least one complementary electrode, cathodically polarized with respect to the main cathode where the crude uranium is deposited.
  • This example illustrates the implementation of the invention according to the first variant, that is to say that after having transformed UO3 into UCl4, the metal is then obtained by electrolysis.
  • the operation is carried out in a vertical pilot reactor made of silica glass with a diameter of 50 mm, a height of 800 mm, its outlet is equipped with a silica cloth filter, followed by a condenser by quenching on a wall cooled with water.
  • the sort of nuclear nucleus pure uranium oxide is introduced, at a rate of 600 g / h, with the carbon in approximately stoichiometric quantity, in the form of a mixture of powders.
  • the chlorine gas flow rate is 335 g / h.
  • the temperature in the reaction zone is 980-1000 ° C, and the pressure slightly higher by a few millimeters of mercury at atmospheric pressure, filtration is carried out at 800 ° C.
  • UCl4 is obtained at the rate of 789 g / h containing less than 2.5% by weight of UCl4 and UCl6.
  • the residual gases, CO2, CO, Cl in excess are removed.
  • - second step obtaining U metal by igneous electrolysis. .
  • the bath temperature is 725-750 ° C and the cathode current density of 0.18 A / cm2.
  • the electrolysis is carried out at 200 A and UCl4 is added continuously at the rate of 400 gU / h.
  • the cathode was extracted and mechanically recovered the deposit of U soiled with bath inclusions.
  • the deposit is washed with acidulated water and then with pure water, and 8 kg of a metallic uranium powder are thus recovered, of which: 7.2 kg grain size> 0.85 mm 0.8 kg grain size ⁇ 0.85 mm
  • the FARADAY cathodic yield is approximately 90%.
  • the quality of the particle size fraction> 0.85 mm is as follows: C ⁇ 10 ppm WHERE 120 to 170 ppm Fe ⁇ 20 ppm Cr ⁇ 10 ppm Ni ⁇ 10 ppm other metals ⁇ 150 ppm Cl ⁇ 20 ppm
  • This example illustrates the implementation of the invention according to the second variant, that is to say that after the transformation of UO3 into UCl4 the latter is reduced by metallothermy.
  • - first step obtaining UCl4 It is carried out in an identical manner to that of Example 1.
  • - second step the operation is carried out in a pilot reactor made up of an AISI 304 steel tube with a diameter of 150 mm and a useful height of 250 mm, supplied by a powder UCl4 distributor. This reactor can be put under vacuum for the purification operation, it is placed in a thermostatically controlled enclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Procédé d'obtention d'uranium métallique à partir d'un composé oxydé de l'uranium caractérisé en ce que, dans une première étape, on traite ce composé oxydé par du chlore et du carbone pour obtenir un chlorure que l'on réduit, dans une deuxième étape, par électrolyse ou par métallothermie à l'aide d'un métal réducteur.

Description

    DOMAINE TECHNIQUE
  • L'invention concerne un procédé d'obtention d'uranium métal par étapes, à partir d'un composé oxydé, par exemple UO₃, U₃O₈, en utilisant une voie chlorure.
  • ETAT DE LA TECHNIQUE
  • Pour produire l'uranium métal à partir d'un oxyde, en général UO₃, on utilise habituellement un procédé comportant successivement une réduction à l'état d'UO₂ à haute température à l'aide d'hydrogène ou d'un gaz vecteur d'hydrogène, comme par exemple NH₃, puis une fluoruration à l'aide d'acide fluorhydrique à haute température ou en phase aqueuse, pour obtenir UF₄, et une réduction métallothermique, par exemple par Mg ou Ca, pour obtenir d'une part l'uranium sous forme de lingots, d'autre part un sous produit qui est un fluorure (par exemple de Mg ou Ca) qu'il est nécessaire de décontaminer avant rejet.
    Bien que couramment utilisé ce procédé présente quelques inconvénients. En particulier il nécessite l'emploi d'acide fluorhydrique qui est à la fois un produit dangereux, donc très difficile à manipuler, et cher, d'un réducteur comme Mg ou Ca qui sont également coûteux. Par ailleurs ces deux produits coûteux (fluor et réducteur) se retrou­vent "in fine" sous forme d'un fluorure alcalino-terreux sous-produit nécessitant un procédé de décontamination par voie humide onéreux et générateur lui-même d'effluents liquides. Par ailleurs, cette décontamination, nécessaire pour éliminer et récupérer l'uranium contenu, en laisse subsister quelques traces qui limitent les possibi­lités d'une éventuelle valorisation dudit fluorure.
  • Ainsi la demanderesse a cherché à mettre au point un procédé permettant d'éviter l'emploi de produits chers et particulièrement dangereux, comme l'acide fluorhydrique, la production d'un sous produit également coûteux à traiter et à éliminer. Elle a également recherché un procédé qui, de préférence, soit continu et insensible à la présence d'impure­ tés dans l'oxyde de départ ou mieux en opère une purification.
  • Description de l'invention
  • L'invention est un procédé de production d'uranium, à partir d'un de ses composés oxydés, ne générant pas d'effluent liquide en solide, caractérisé par l'enchaînement des étapes suivantes :
    • (1) on fait réagir un mélange, tel quel ou aggloméré, d'une poudre dudit composé oxydé et d'un excès de poudre de carbone avec du chlore gazeux à une température supérieure à 600° C pour obtenir UCl₄ gazeux qui est filtré et condensé après épuration éventuelle par distillation,
    • (2) on réduit UCl₄ à température élevée inférieure à la température de fusion de l'uranium de façon à générer de l'uranium sous forme solide et un ou des sous- produits, et
    • (3) on recycle ledit sous-produit dans le procédé, éventuellement après transformation pour le mettre sous forme élémentaire recyclable.
  • Cette réduction est en général :
    - soit une électrolyse ignée, de préférence en milieu de chlorures alcalins ou alcalinoterreux fondus, pour obtenir d'une part l'uranium solide, d'autre part du chlore sous forme élémentaire qui est directement recyclé à la première étape.
    - soit une réduction métallothermique à l'aide d'au moins un agent réducteur métallique, tel que Mg, Ca, Na, K, donnant d'une part l'uranium à l'état solide, d'autre part le chlore sous forme de chlorure métallique, ce sous-produit étant transformé sous forme élémentaire pour être recyclé, c'est-à-dire en ses éléments constitutifs qui sont également recyclés : le chlore à la première étape et le métal en réduction. Cesdits élements constitutifs sont en général obtenus, ou séparés, par électrolyse.
  • On voit que ce procédé ne met en oeuvre que des produits bon marché (C), les autres réactifs étant recyclés, et qu'il ne produit pas d'effluent solide ou liquide. Le seul effluent gazeux produit est du CO/CO₂ qu'il est aisé de filtrer avant rejet.
  • Un tel procédé permet ainsi des gains importants en coût de fabrication : ni traitement, ni rejet d'effluent solides, et installations simplifiées dues à l'absence de F₂ et/ou d'HF.
  • Selon l'invention, le produit de départ est un composé oxydé quelconque d'uranium, pur ou impur, par exemple un oxyde comme UO₂, U₃O₈, UO₃, UO₄ ou un de leurs mélanges, habituellement on utilise U₃O₈ et plutôt UO₃, ou un uranate, de préférence le diuranate d'ammonium car la présence d'alcalins ou d'alcalinoterreux n'est pas toujours souhaitable. On mélange le composé uranifère de départ de préférence sous forme sèche et divisée (poudre, écailles, granulés...) à du carbone (coke, charbon, graphite...) également sous forme divisée. Ce mélange est introduit tel quel, ou éventuellement après granulation ou agglomération, dans un réacteur à haute température où il réagit avec du chlore gazeux, dilué ou non dans un gaz inerte comme l'argon, l'hélium, l'azote, introduit de préférence à contre courant lorsqu'on opère en continu et/ou de façon à ce qu'il percole à travers la charge.
  • Avec UO₃, la réaction produit en général de l'UCl₄ et s'écrit :
    UO₃ + 3C + 2 Cl₂ → UCl₄ + 3 CO (et/ou CO₂)
    mais il peut se former également UCl₅ et UCl₆.
    On opère à une température supérieure à environ 600° C et de préférence entre 900 et 1100°C, pour obtenir de préférence UCl₄ et limiter la formation d'UCl₅ ou UCl₆, et à pression quelconque; cependant pour des raisons pratiques, il est plus aisé d'utiliser une pression voisine de la pression atmosphérique. De la température de réaction dépend la proportion de Co et/ou CO₂ obtenue. La réaction est complète. On préfère opérer en présence d'un excès de carbone d'au moins 5% en poids pour éviter la formation d'oxychlorures, et obtenir UCl₄ sous forme gazeuse. La quantité de Cl₂ utilisée est au moins suffisante pour consommer la totalité de l'uranium, un léger excès est favorable mais doit être limité pour éviter la formation des chlorures supérieurs UCl₅ et UCl₆.
  • On peut conduire la réaction selon une grande variété de modes. On peut par exemple opérer en milieu de sel fondu, tels que les chlorures alcalins, ne réagissant pas avec les réactifs utilisés. On alimente alors régulièrement le bain de sel fondu avec le mélange dudit composé oxydé uranifère et de carbone, tout en faisant barboter le chlore. Un tel procédé est particulièrement intéressant quand le composé uranifère de départ est un concentré impur, contenant notamment des éléments gênants comme les alcalins ou alcalino-terreux, les terres rares ou autres. Ce bain contenant UCl₄ peut éventuellement servir à l'électrolyse, mais on préfère récupérer UCl₄ sous forme gazeuse.
  • On peut aussi opérer en phase solide.
    Le composé uranifère, seul ou de préférence en mélange avec le carbone, peut alors être introduit directement dans un réacteur contenant un lit de carbone qui assure l'excès de carbone. Toutes sortes de réacteur ou four peuvent convenir, par exemple four à bande, tournant, à lit coulant..., mais le plus intéressant est le réacteur à lit fluide, comportant un lit de carbone fluidisé par le chlore et les gaz de réaction, que l'on alimente avec ledit mélange de composé uranifère et de carbone préférentiellement sous forme de poudre. Mais de façon plus générale, l'alimentation des différents types de réacteurs peut se faire également sous forme de granulés, comprimés, boulets etc.... Ce type de procédé est surtout intéressant quand le composé uranifère contient peu d'éléments alcalins et de préférence un taux d'impuretés peu élevé.
  • UCl₄ sublimé obtenu lors de la réaction est filtré à la sortie du réacteur, par exemple sur toile de quartz ou silice.
    Dans le cas où UCl₄ contiendrait des impuretés volatiles, on peut alors procéder à une épuration par distillation et condensation. Si cette épuration n'est pas nécessaire, on condense directement UCl₄, sous forme solide (neige) ou liquide, ce qui permet de le séparer du Cl₂ éventuellement présent et/ou des gaz de dilutions et incondensables comme Ar, He, N₂, CO, CO₂.....
    Quand UCl₄ contient des chlorures supérieurs comme UCl₅, UCl₆, on peut procéder à une opération de dismutation consistant à rétrograder lesdits chlorures supérieurs en UCl₄. Cette opération consiste simplement à chauffer le mélange des chlorures soit en phase solide à une température de 150 à 500° C sous pression réduite, généralement d'environ 6 mm de mercure, soit en phase gaz à une température au moins égale à 800°C. La rétrogradation peut également être faite par électrolyse comme cela sera vu plus loin.
  • On procède ensuite, lors de la deuxième étape, à la réduction pour obtenir l'uranium métal selon l'une quelconque des variantes déjà citées.
  • 1ère variante : Electrolyse d'UCl₄
  • On effectue une électrolyse ignée en milieu de sel fondu de préférence dans un bain à base de chlorures, par exemple alcalin et/ou alcalino-terreux, permettant de récupérer l'uranium solide à la cathode et un dégagement de chlore à l'anode. On utilise en général NaCl ou un mélange de Na Cl + KCl. Un bain contenant exclusivement des fluorures, bien que possible, n'est pas recommandé, car il a tendance à stabiliser la présence d'oxyfluorures difficiles à réduire sans augmenter notablement la teneur en oxygène du métal déposé.
  • La composition du bain peut varier dans de larges proportions. En général, on la règle de façon à ce que le bain fondu ait une faible tension de vapeur en UCl₄, et de façon à ce que la température corresponde à la structure morphologique souhaitée du dépot d'uranium à la cathode. En effet la morphologie cristalline et la qualité du dépôt cathodique dépend dans une large mesure de la température à laquelle il est effectué, de la constitution chimique du bain et de sa concentration en UCl₄ et/ou UCl₃.
    La teneur moyenne du bain en uranium est très variable. En général elle est supérieure à environ 2% poids (exprimé en U) pour avoir une vitesse de diffusion suffisante, et inférieure à environ 25% poids pour éviter de trop importants départs d'UCl₄ en phase vapeur; une teneur comprise entre 5 et 12% poids est satisfaisante. UCl₄ est introduit sous forme solide, liquide ou gaz.
  • Néanmoins, de façon à stabiliser la valence IV du chlorure d'uranium, il est intéressant d'ajouter au bain une quantité limitée d'un fluorure, en général alcalin comme NaF ou KF. En l'absence d'un tel ajout on note la formation d'UCl₃, dont la présence a une influence sur le dépôt cathodique.
    Le rapport molaire F U
    Figure imgb0001
    adéquat est en général inférieur à 6, la quantité pondérale.
  • du fluorure alcalin introduit dans le bain étant en général comprise entre 2,5 et 5%.
    La température d'électrolyse est environ de 25°C à 100°C au-dessus du point de fusion du bain choisi. En général on opère entre 650 et 850°C et de préférence entre 650 et 750°C.
    La densité de courant est adaptée à la composition du bain et est en général inférieure à 0,8 A/cm² et de préférence à 0,2 A/cm², sinon il se forme de fines particules d'U qui peuvent tomber en fond de cuve avec les boues et présenter un danger dû à leur grande oxydabilité. Habituellement:
    - la cuve d'électrolyse est métallique et équipée d'un dispositif de chauffage, pour en faciliter l'exploitation, et d'une protection cathodique.
    - l'ensemble anodique comprend au moins une anode en matière carbonée, comme le graphite, ou en métal non corrodable par le bain ou le chlore et est équipé d'un dispositif de captation de Cl₂ dégagé
    - l'ensemble cathodique comprend au moins une cathode métallique, par exemple uranium ou acier, ou autre métal de façon que l'uranium déposé soit aisément détachable.
  • Il est souhaitable de disposer un diaphragme entre l'anode et la cathode pour empêcher la recombinaison des éléments et faciliter la collecte du chlore. Il doit être suffisamment poreux (10 à 60% de vide préférentiellement 20 à 40%) et est constitué d'un matériau résistant à la température et à la corrosion du bain. On préfère utiliser un matériau conducteur, par exemple un métal, ou mieux un matériau graphité que l'on peut polariser cathodiquement pour éviter toute migration de U vers l'anode et re-formation de chlorure. Un dépôt de métal peut s'y effectuer tendant à le boucher; on redissout alors le métal déposé par une dépolarisation. La polarisation du diaphragme entraîne des concentrations différentes dans les comparti­ments anodiques (anolyte) et cathodique (catholyte).
  • Le métal déposé sur la cathode doit être suffisamment adhérent pour ne pas tomber en fond de cuve et être irrécupérable, mais pas trop non plus pour être facilement récupérable.
    La forme cristalline du dépôt et ses caractéristiques sont fonction, comme cela a déjà été dit, d'un certain nombre de facteurs comme la nature de bain, sa composition, sa concentration, sa température, la densité de courant etc...
  • La distance interpolaire entre électrodes est variable et dépend en grande partie de la forme sous laquelle est déposé le métal; on a intérêt à fixer les conditions d'électrolyse de façon à éviter les fortes excroissances dudit métal, donc à le déposer sous forme assez ramassée, tout en évitant qu'il soit trop compact pour en facili­ter ensuite la récolte. Habituellement la distance interpolaire se situe entre 50 et 200 mm.
  • Une fois la cathode suffisamment chargée d'un dépôt d'uranium souillé par des inclusions de bain, on le lave et on procède à sa récolte soit par des moyens mécaniques, comme le grattage, l'usinage..., conduisant à un métal sous forme divisée qui est lavé à l'eau acidulé et/ou fondu pour en éliminer lesdites inclusions, soit par des moyens physiques comme la fusion..., conduisant à un lingot épuré surmonté d'une couche de scories venant des inclusions de bains.
    Le chlore obtenu à l'anode est recyclé à l'étape précédente, après un éventuel appoint de Cl₂ frais destiné à compenser les pertes.
  • Un perfectionnement de cette électrolyse est particulièrement intéressant; il permet à la fois de déposer l'uranium métal, de procéder à son électroraffinage, de rétrograder les chlorures supérieurs en UCl₄ et de se passer de diaphragme entre anode et cathode.
    Il consiste :
    . à entourer à distance l'anode, plongeant dans le bain, d'un panier ajouré, également immergé, formant cathode, par exemple en treillis métallique; il peut être constitué de deux cylindres coaxiaux verticaux, délimitant un espace annulaire vertical, solidaires d'un fond
    . a disposer à l'extérieur dudit panier au moins une cathode complémentaire immergée
    . à appliquer à ladite cathode complémentaire une tension qui la rend polarisée cathodiquement par rapport au panier
    . à alimenter le bain électrolytique en introduisant lesdits chlorures ou chlorures d'uranium dans le panier, de préférence dans l'espace annulaire.
    On observe alors dans le panier, formant cathode, le dépôt d'uranium brut, la réduction des chlorures supérieurs en UCl₄, tandis que se dépose sur la ou les cathodes complémentaires l'uranium raffiné.
  • 2ème variante : réduction métallothermique d'UCl₄.
  • Des méthodes de réduction métallothermique permettant d'obtenir l'uranium métal sont bien connues, en particulier la réduction d'UF₄ par Mg ou Ca où les produits de la réaction passent par un état fondu. Compte tenu des bilans thermiques, un tel procédé n'est pas possible dans le cadre de la réduction de UCl₄.
    Il est ainsi préférable d'opérer de la façon suivante en utilisant la réaction :
    UCl₄ + 4M → U + 4M Cl
    M représente un métal fusible et capable de réduire UCl₄ à des températures inférieures à environ 1100°C, au besoin avec apport d'énergie extérieur. On utilise de préférence Mg, Ca, mais aussi Na, K ou un de leur mélange.
    Cette étape du procédé selon l'invention, consiste à faire réagir le métal réducteur liquide contenu dans un réacteur ou creuset fermé généralement en acier ordinaire ou inox, avec UCl₄ introduit régulière­ ment, généralement sous forme liquide ou gazeuse, à une température et dans des conditions telles que UCl₄ réagisse à l'état gazeux avec le réducteur, que le chlorure résultant soit liquide et que l'uranium produit reste solide.
  • On opère ainsi habituellement entre environ 600°C et 1100°C et de préférence entre environ 800° et 1000°C, sous atmosphère réductrice ou inerte (H₂, He, Ar...), dans un réacteur en général en acier pouvant être chauffé de l'extérieur, éventuellement selon plusieurs zones régulées à des températures différentes.
    On introduit tout d'abord dans le creuset une charge de métal réducteur sous forme solide ou liquide, on ferme par un couvercle, purge l'air par mise sous vide et/ou balayage par un gaz réducteur ou neutre, on chauffe de façon à porter l'enceinte à la température de réaction choisie, et à amener ou maintenir le métal réducteur sous forme liquide. On introduit alors UCl₄, par exemple sous forme gazeuse, qui réagit avec le réducteur fondu, U se rassemble au fond du creuset et/ou le long des parois sous forme solide plus ou moins agglomérée; le chlorure liquide du métal réducteur et le métal réducteur liquide non encore réagi surnagent au-dessus de l'uranium en deux couches successives classées dans l'ordre de leur densité; habituellement la couche de réducteur se trouve en dessus et le sel liquide au contact de l'uranium.
    Il est avantageux de soutirer régulièrement ledit chlorure liquide, pour augmenter la capacité de traitement du creuset.
    En fin de réaction on obtient donc une masse d'uranium plus ou moins compacte souillée par des inclusions de métal réducteur et de sel (chlorure) formé. Le métal réducteur non consommé, donc l'excès à prévoir, peut atteindre 20% à 30% par rapport à la stoechiométrie de l'UCl₄ mis en oeuvre.
    Pour purifier l'U obtenu de ces inclusions on peut soit chauffer sous vide le creuset pour distiller le métal réducteur, soit laver à l'eau acidulée la masse uranifère, après l'avoir extraite du réacteur et éventuellement concassée, pour éliminer les inclusions du sel formé. On peut également opérer une fusion, une décantation et une coulée de l'uranium, préalablement extrait du creuset, soit avant, soit de préférence, après distillation du réducteur en excès.
    Cette fusion se fait selon des techniques connues de l'homme de l'art: par exemple four à induction à bombardement électronique, creuset graphite revêtu d'un réfractaire inerte vis-à-vis de l'uranium, creuset froid..., et la coulée peut être faite sous forme de lingotin, fil, ruban etc...à l'aide de tous procédés connus de l'homme de l'art.
  • Le chlorure de métal réducteur sous-produit est de préférence soumis à électrolyse pour récupérer le chlore et le métal réducteur, respecti­vement recyclés à la première et à la deuxième étape, selon des procédés bien connus de l'homme de l'art.
    Le procédé selon l'invention évite donc la production de sous-produits ou effluents gênants à traiter et à éliminer, est économique et permet d'obtenir un métal d'une pureté au moins suffisante pour être utilisé en particulier dans un procédé d'enrichissement isotopique par laser; Si on part d'un composé oxydé d'uranium nucléairement pur, tel que celui obtenu dans les procédés classiques de conversion, la qualité obtenue selon l'invention est la suivante:
    C < 50 ppm
    O < 200 ppm
    Σ Fe et métaux de transition < 250 ppm
    Cl < 20 ppm
    exprimé en poids par rapport à U
    les teneurs des autres impuretés étant inférieures à celles présentes dans le produit de départ.
    Si on part d'un composé impur, on obtient une qualité identique à la précédente en ce qui concerne C, O, Cl, Fe et également en ce qui concerne les autres impuretés à condition d'opérer la première étape en milieu fondu, une distillation d'UCl₄ comme cela a été décrit, et éventuellement un électroraff inage, par exemple au moyen du disposi­tif à panier.
    On peut évidemment améliorer la qualité de l'U métal obtenu en opérant des purifications par tous procédés connus de l'homme de l'art. On peut par exemple pratiquer un électroraff inage par anode soluble avec un bain du type de ceux décrits dans la première variante. Si on effectue la réduction par électrolyse (première variante) on peut y adjoindre un électroraff inage simultané en introduisant dans le bain au moins une électrode complémentaire, polarisée cathodiquement par rapport à la cathode principale où se dépose l'uranium brut.
  • EXEMPLE 1
  • Cet exemple illustre la mise en oeuvre de l'invention selon la première variante, c'est-à-dire qu'après avoir transformé UO₃ en UCl₄, le métal est ensuite obtenu par électrolyse.
    - première étape: obtention d'UCl₄
    On opère dans un réacteur pilote vertical en verre de silice de diamètre 50 mm, de hauteur 800 mm, sa sortie est équipée d'un filtre en toile de silice, suivi d'un condenseur par trempe sur paroi refroidie à l'eau.
  • On dispose en fond de réacteur un pied de poudre de carbone de 200 cm3; le tri oxyde d'uranium nucléairement pur est introduit, à raison de 600 g/h, avec le carbone en quantité approximativement stoechiomé­trique, sous forme d'un mélange de poudres. Le débit de chlore gazeux est de 335 g/h.
    La température dans la zone réactionnelle est de 980-1000°C, et la pression légèrement supérieure de quelques millimètres de mercure à la pression atmosphérique, la filtration est effectuée à 800°C.
  • On obtient UCl₄ à raison de 789 g/h contenant moins de 2,5%poids d'UCl₄ et UCl₆.
    Les gaz résiduaires, CO₂, CO, Cl en excès sont évacués.
    - deuxième étape obtention d'U métal par électrolyse ignée.
    . On opère dans une cellule en acier inox de diamètre 800 mm, avec une anode en graphite de diamètre 50 mm, un diaphragme en toile compo­site nickel matériau carboné de porosité 30%, une cathode en acier, un espace interpolaire de 150 mm.
  • Le bain est un mélange équimoléculaire NaCl-KCl; il a une hauteur de 600 mm pour un volume approximativement de 300 l et une concentra­tion en élément U de 10+2% poids. On y ajoute NaF en quantité telle que le rapport molaire F U
    Figure imgb0002
    = 5 ± 1
  • La température du bain est 725-750°C et la densité de courant cathodi­que de 0,18 A/cm².
    Après avoir vérifier la teneur en U, l'électrolyse est effectuée sous 200 A et on ajoute UCl₄ en continu à raison de 400 gU/h.
  • Au bout de 20 h, après avoir arrêté l'électrolyse, on a extrait la cathode et récupéré mécaniquement le dépôt d'U souillé par des inclu­sions de bain.
  • Le dépôt est lavé à l'eau acidulée puis à l'eau pure, et on récupère ainsi 8 kg d'une poudre d'uranium métallique dont:
    7,2 kg de granulométrie > 0,85 mm
    0,8 kg de granulométrie < 0,85 mm
  • Cette dernière fraction a été récupérée puis compactée pour servir d'anode soluble dans une opération d'électroraffinage.
  • Le rendement FARADAY cathodique est d'environ 90%.
  • La qualité de la fraction granulométrique > 0,85 mm est la suivante:
    C < 10 ppm
    O₂ 120 à 170 ppm
    Fe < 20 ppm
    Cr < 10 ppm
    Ni < 10 ppm
    autres métaux < 150 ppm
    Cl < 20 ppm
  • EXEMPLE 2
  • Cet exemple illustre la mise en oeuvre de l'invention selon la deuxième variante c'est-à-dire qu'après la transformation de UO₃ en UCl₄ ce dernier est réduit par métallothermie.
    - première étape: obtention d'UCl₄
    Elle est conduite de façon identique à celle de l'exemple 1.
    - deuxième étape:
    on opère dans un réacteur pilote constitué d'un tube en acier AISI 304 de diamètre 150 mm et hauteur utile 250 mm, alimenté par un distri­buteur d'UCl₄ en poudre.
    Ce réacteur peut être mis sous vide en vue de l'opération de purifica­tion, il est placé dans une enceinte thermostatée.
  • On y introduit 2,265 kg de Mg en lingot et on porte l'enceinte à 840-860°C.
    Après fusion de Mg on introduit régulièrement pendant 1h30 environ 16 kg d'UCl₄ en poudre. On siphone à intervalles réguliers le Mg Cl₂ formé.
    Après consommation de tout UCl₄, le réacteur est relié à un condenseur à paroi refroidie par l'eau, est mis sous vide (10⁻² à 10⁻³ mm de mercure) puis chauffé à 930-950°C pour distiller et condenser, par cryopompage, le Mg excédentaire et le MgCl₂ restant contenus dans le pain poreux d'U solide formé au cours de la réduction. Après 5 h on a pratiquement récupéré la totalité de Mg (soit 225 g) et de MgCl₂ (soit 400 g).
  • Après refroidissement du réacteur, on en extrait un pain d'U métal sain pesant 9,1 kg après écroutage.
  • Son analyse effectuée sur plusieurs échantillons a donné les résultats suivants:
    C 20 ppm
    O 150 à 200 ppm
    Fe 20 à 30 ppm
    Cr 20 ppm
    Ni 10 à 20 ppm
    autres métaux : < 150 ppm
    Cl < 20 ppm
    Mg < 10 ppm

Claims (26)

1. Procédé de production d'uranium, à partir d'un de ses composés oxydés, ne générant pas d'effluent liquide ou solide, caractérisé par l'enchainement des étapes suivantes :
(1) on fait réagir un mélange tel quel ou aggloméré d'une poudre dudit composé oxydé et d'un excès de poudre de carbone avec du chlore gazeux à une température supérieure à 600° C pour obtenir UCl₄ gazeux qui est filtré et condensé après épuration éventuelle par distillation,
(2) on réduit UCl₄ à température élevée inférieure à la température de fusion de l'uranium de façon à générer de l'uranium sous forme solide et un ou des sous- produits, et
(3) on recycle ledit sous-produit dans le procédé, éventuellement après transformation pour le mettre sous forme élementaire recyclable.
2. Procédé selon la revendication 1 caractérisé en ce que le composé oxydé est choisi parmi les oxydes ou les uranates.
3. Procédé selon la revendication 2 caractérisé en ce que le composé oxydé est UO₃.
4. Procédé selon l'une quelconque des revendications 1 à 3 caractérisé en ce que le carbone est en excès d'au moins 5% poids.
5. Procédé selon l'une quelconque des revendications 1 à 4 caractérisé en ce que UCl₄ contient également des chlorures supérieurs comme UCl₅ et UCl₆.
6. Procédé selon l'une quelconque des revendications 1 à 5 caractérisé en ce que dans la première étape, la température est comprise entre 900 et 1100°C.
7. Procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce que la réaction de la première étape a lieu dans un milieu de chlorures fondus.
8. Procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce que la réaction de la première étape a lieu en phase solide, dans un lit de carbone fluidisé alimenté avec ledit mélange de poudres et traversé par le chlore.
9. Procédé selon l'une quelconque des revendications 1 à 8 caractérisé en ce que la réduction de la deuxième étape est effectuée par électrolyse ignée pour obtenir l'uranium solide à la cathode et un dégagement de chlore à l'anode.
10. Procédé selon la revendication 9 caractérisé en ce que l'électrolyse est effectuée dans un bain de chlorure fondu d'un mélange KCl-NaCl.
11. Procédé selon l'une quelconque des revendications 9 ou 10 caractérisé en ce que la teneur en U du bain est comprise entre 2 et 25% poids et de préférence entre 5 et 12% poids.
12. Procédé selon l'une quelconque des revendications 9 à 11 caractérisé en ce que le bain fondu contient un fluorure, en quantité telle que le rapport molaire F U
Figure imgb0003
est inférieur à 6.
13. Procédé selon l'une quelconque des revendications 9 à 12, caractérisé en ce que la température d'électrolyse est environ de 25° C à 100° C supérieure à la température de fusion du bain, et en général comprise entre 650° C et 850°C.
14. Procédé selon l'une quelconque des revendications 9 à 13 caractérisé en ce que l'électrolyse se fait en présence d'un diaphragme, disposé entre l'anode et la cathode, de préférence conducteur.
15. Procédé selon la revendication 14 caractérisé en ce que le diaphragme est en matière graphitée, et polarisée.
16. Procédé selon l'une quelconque des revendications 9 à 15 caractérisé en ce qu'on effectue une réduction des chlorures supérieurs et un électro-raffinage de l'uranium déposé à la cathode, grâce à une dite cathode constituée dans ce cas d'un panier ajouré entourant l'anode, et à l'aide d'au moins une cathode complémentaire polarisée cathodiquement par rapport à ladite cathode.
17. Procédé selon l'une quelconque des revendications 9 à 16 caractérisé en ce que l'uranium déposé est récupéré par des moyens mécaniques tels que grattage, usinage, ou physiques tels que la fusion.
18. Procédé selon l'une quelconque des revendications 9 à 17 caractérisé en ce que le chlore récupéré à l'anode est recyclé à la première étape.
19. Procédé selon l'une quelconque des revendications 1 à 8 caractérisé en ce que la réduction de la deuxième étape est effectuée par métallothermie à l'aide d'un agent réducteur métallique, pour donner l'uranium solide et un chlorure dudit agent.
20. Procédé selon la revendication 19 caractérisé en ce que l'agent réducteur est Mg, Ca, Na ou K ou un de leur mélange.
21. Procédé selon l'une quelconque des revendications 19 et 20 caractérisé en ce que la réaction se fait entre l'agent réducteur liquide et UCl₄ gazeux, dans un réacteur fermé en acier ordinaire ou inox, la température étant généralement comprise entre 600 et 1100°C.
22. Procédé selon l'une quelconque des revendications 19 à 21 caractérisé en ce que l'agent réducteur est en excès.
23. Procédé selon l'une quelconque des revendications 19 à 22 caractérisé en ce que l'uranium solide obtenu est purifié par distillation sous vide pour éliminer les inclusions de métal réducteur et ensuite par lavage pour éliminer les inclusions du chlorure formé.
24. Procédé selon l'une quelconque des revendications 19 à 23 caractérisé en ce que le chlorure formé est électrolysé pour regénérer le chlore et l'agent réducteur.
25. Procédé selon la revendication 24 caractérisé en ce que le chlore est recyclé à la première étape et l'agent réducteur à la deuxième étape.
26. Procédé selon l'une quelconque des revendications 19 à 25 caractérisé en ce que l'uranium obtenu est soumis à fusion, décantation et coulée.
EP90420314A 1989-07-06 1990-07-04 Procédé d'obtention d'uranium à partir d'oxyde et utilisant une voie chlorure Expired - Lifetime EP0408468B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8909454 1989-07-06
FR8909454A FR2649417B1 (fr) 1989-07-06 1989-07-06 Procede d'obtention d'uranium a partir d'oxyde et utilisant une voie chlorure

Publications (2)

Publication Number Publication Date
EP0408468A1 true EP0408468A1 (fr) 1991-01-16
EP0408468B1 EP0408468B1 (fr) 1993-12-08

Family

ID=9383760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90420314A Expired - Lifetime EP0408468B1 (fr) 1989-07-06 1990-07-04 Procédé d'obtention d'uranium à partir d'oxyde et utilisant une voie chlorure

Country Status (9)

Country Link
US (1) US5164050A (fr)
EP (1) EP0408468B1 (fr)
JP (1) JP2562985B2 (fr)
CA (1) CA2020494C (fr)
DD (1) DD298001A5 (fr)
DE (1) DE69005051T2 (fr)
FR (1) FR2649417B1 (fr)
RU (1) RU1836468C (fr)
ZA (1) ZA905320B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0521608A1 (fr) * 1991-05-31 1993-01-07 British Nuclear Fuels PLC Procédé de production d'uranium métallique
EP0592231A1 (fr) * 1992-10-07 1994-04-13 British Nuclear Fuels PLC Appareil pour la production d'uranium

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421855A (en) * 1993-05-27 1995-06-06 The United States Of America As Represented By The United States Department Of Energy Process for continuous production of metallic uranium and uranium alloys
US5380406A (en) * 1993-10-27 1995-01-10 The United States Of America As Represented By The Department Of Energy Electrochemical method of producing eutectic uranium alloy and apparatus
KR100514094B1 (ko) * 2003-03-19 2005-09-13 한국원자력연구소 우라늄 산화물 금속전환 및 여과회수 장치
US7011736B1 (en) * 2003-08-05 2006-03-14 The United States Of America As Represented By The United States Department Of Energy U+4 generation in HTER
US7638026B1 (en) * 2005-08-24 2009-12-29 The United States Of America As Represented By The United States Department Of Energy Uranium dioxide electrolysis
CA2710432C (fr) 2007-12-26 2016-04-26 Thorium Power, Inc. Reacteur nucleaire, dispositif combustible compose de modules de production pilote pour un reacteur nucleaire et une pile a combustible pour un dispositif combustible
US8116423B2 (en) 2007-12-26 2012-02-14 Thorium Power, Inc. Nuclear reactor (alternatives), fuel assembly of seed-blanket subassemblies for nuclear reactor (alternatives), and fuel element for fuel assembly
US9355747B2 (en) 2008-12-25 2016-05-31 Thorium Power, Inc. Light-water reactor fuel assembly (alternatives), a light-water reactor, and a fuel element of fuel assembly
US10170207B2 (en) 2013-05-10 2019-01-01 Thorium Power, Inc. Fuel assembly
US10192644B2 (en) 2010-05-11 2019-01-29 Lightbridge Corporation Fuel assembly
WO2011143172A1 (fr) 2010-05-11 2011-11-17 Thorium Power, Inc. Assemblage de combustible à noyau d'alliage de combustibles métalliques et son procédé de fabrication
FR2969660B1 (fr) * 2010-12-28 2013-02-08 Commissariat Energie Atomique Procede de preparation d'une poudre d'un alliage a base d'uranium et de molybdene
CN109913901B (zh) * 2019-04-28 2023-06-02 哈尔滨工程大学 一种金属铀的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2756138A (en) * 1944-04-28 1956-07-24 Meister George Process of vacuum refining uranium
US2773825A (en) * 1944-04-28 1956-12-11 Frank A Newcombe Electrolysis apparatus
US2777809A (en) * 1948-03-25 1957-01-15 Kolodney Morris Preparation of uranium
US2887356A (en) * 1955-09-21 1959-05-19 Horizons Titanium Corp Production of oxygen-free and anhydrous fused salt electrolyte from oxygen containing compounds of uranium
US3847596A (en) * 1968-02-28 1974-11-12 Halomet Ag Process of obtaining metals from metal halides

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2890099A (en) * 1956-06-06 1959-06-09 Harrison B Rhodes Recovery of uranium from low grade uranium bearing ores
US2867501A (en) * 1956-06-06 1959-01-06 William R Hanley Volatile chloride process for the recovery of metal values
US3895097A (en) * 1969-09-16 1975-07-15 Dynamit Nobel Ag Process for reacting carbon, silicon or metal oxides and chlorine
US4188266A (en) * 1978-04-11 1980-02-12 Forman Richard A Method and apparatus for changing the concentration of molecules or atoms
US4217181A (en) * 1978-06-09 1980-08-12 National Research Development Corporation Recovery of uranium oxides by electrolysis
US4222826A (en) * 1978-10-10 1980-09-16 Kerr-Mcgee Corporation Process for oxidizing vanadium and/or uranium
US4225396A (en) * 1978-10-10 1980-09-30 Kerr-Mcgee Corporation Vanadium and uranium oxidation by controlled potential electrolysis
US4214956A (en) * 1979-01-02 1980-07-29 Aluminum Company Of America Electrolytic purification of metals
US4297174A (en) * 1979-03-09 1981-10-27 Agip Nucleare, S.P.A. Pyroelectrochemical process for reprocessing irradiated nuclear fuels
US4234393A (en) * 1979-04-18 1980-11-18 Amax Inc. Membrane process for separating contaminant anions from aqueous solutions of valuable metal anions
GB8707782D0 (en) * 1987-04-01 1987-05-07 Shell Int Research Electrolytic production of metals
US4913884A (en) * 1988-11-09 1990-04-03 Westinghouse Electric Corp. Uranium-preextraction in zirconium/hafnium separations process
USH659H (en) * 1989-04-06 1989-08-01 The United States Of America As Represented By The United States Department Of Energy Process for electrolytically preparing uranium metal
USH857H (en) * 1990-07-26 1990-12-04 The United States Of America As Represented By The United States Department Of Energy Electrolytic process for preparing uranium metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2756138A (en) * 1944-04-28 1956-07-24 Meister George Process of vacuum refining uranium
US2773825A (en) * 1944-04-28 1956-12-11 Frank A Newcombe Electrolysis apparatus
US2777809A (en) * 1948-03-25 1957-01-15 Kolodney Morris Preparation of uranium
US2887356A (en) * 1955-09-21 1959-05-19 Horizons Titanium Corp Production of oxygen-free and anhydrous fused salt electrolyte from oxygen containing compounds of uranium
US3847596A (en) * 1968-02-28 1974-11-12 Halomet Ag Process of obtaining metals from metal halides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GMELIN, URAN UND ISOTOPE *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0521608A1 (fr) * 1991-05-31 1993-01-07 British Nuclear Fuels PLC Procédé de production d'uranium métallique
US5322545A (en) * 1991-05-31 1994-06-21 British Nuclear Fuels, Plc Method of producing uranium metal
EP0592231A1 (fr) * 1992-10-07 1994-04-13 British Nuclear Fuels PLC Appareil pour la production d'uranium

Also Published As

Publication number Publication date
CA2020494A1 (fr) 1991-01-07
CA2020494C (fr) 2001-09-18
US5164050A (en) 1992-11-17
JPH0339494A (ja) 1991-02-20
DE69005051T2 (de) 1994-04-28
FR2649417A1 (fr) 1991-01-11
ZA905320B (en) 1991-04-24
RU1836468C (ru) 1993-08-23
JP2562985B2 (ja) 1996-12-11
FR2649417B1 (fr) 1992-05-07
EP0408468B1 (fr) 1993-12-08
DE69005051D1 (de) 1994-01-20
DD298001A5 (de) 1992-01-30

Similar Documents

Publication Publication Date Title
EP0408468B1 (fr) Procédé d&#39;obtention d&#39;uranium à partir d&#39;oxyde et utilisant une voie chlorure
CA1286507C (fr) Procede de preparation de lithiothermie de poudres metalliques
FR2582019A1 (fr) Procede pour la production de metaux par reduction de sels metalliques, metaux ainsi obtenus et dispositif pour sa mise en oeuvre
CH643000A5 (fr) Procede de production d&#39;aluminium d&#39;extreme purete.
WO1986002108A1 (fr) Procede de production de calcium ou d&#39;alliages de calcium de haute purete
Wartman et al. Some observations on the Kroll process for titanium
FR2512799A1 (fr) Procede pour l&#39;obtention d&#39;un tetrachlorure de titane largement exempt de chlorure d&#39;aluminium, a partir de matieres premieres titaniferes contenant des composes d&#39;aluminium
EP0089353A1 (fr) Procede de chloruration selective de melanges d&#39;oxydes metalliques d&#39;origine naturelle ou synthetique.
FR2651799A1 (fr) Procede de separation du zirconium-hafnium.
FR2527644A1 (fr) Procede de separation du fer et de ses metaux allies de produits oxydes bruts a grain fin
EP0024987B1 (fr) Procédé de traitement des solutions de chlorure de plomb
EP0285515B1 (fr) Procédé de préparation de tétrafluorure d&#39;uranium et de fluorures desoufre par réduction d&#39;hexafluorure d&#39;uranium.
CA1177775A (fr) Procede d&#39;obtention continu de l&#39;aluminium par carbochloration de l&#39;alumine et electrolyse ignee du chlorure obtenu
US3269830A (en) Production of niobium from niobium pentachloride
EP0118352B1 (fr) Procédé de préparation d&#39;iodure mercurique alpha de haute pureté destiné à être utilisé comme source de matière première pour la croissance de monocristaux pour la détection nucléaire
JPH01502916A (ja) 4b族遷移金属ーアルカリ金属ーフッ化物塩の製造方法および精製方法
US5147450A (en) Process for purifying magnesium
US3157493A (en) Production of niobium
FR2615848A1 (fr) Procede de separation du hafnium du zirconium par electrolyse d&#39;un sel fondu
Martinot An electrochemical method for the preparation of high-purity metallic neptunium from molten chlorides at 450° C
US691822A (en) Extraction of metals from sulfid ores by treatment with chlorid or sulfur and electrolysis.
BE568117A (fr)
BE449561A (fr)
FR2519026A1 (fr) Procede d&#39;affinage de plomb impur
Bubola Apparatus for Electrochemical Treatment of Ores

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB SE

17P Request for examination filed

Effective date: 19901218

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: URANIUM PECHINEY

Owner name: CEZUS COMPAGNIE EUROPEENNE DU ZIRCONIUM

17Q First examination report despatched

Effective date: 19930224

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931216

REF Corresponds to:

Ref document number: 69005051

Country of ref document: DE

Date of ref document: 19940120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90420314.8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010704

Year of fee payment: 12

Ref country code: GB

Payment date: 20010704

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010724

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020704

EUG Se: european patent has lapsed