EP0407406B1 - Procede et dispositif autodidactique de regulation de moteurs a combustion interne - Google Patents
Procede et dispositif autodidactique de regulation de moteurs a combustion interne Download PDFInfo
- Publication number
- EP0407406B1 EP0407406B1 EP19890902931 EP89902931A EP0407406B1 EP 0407406 B1 EP0407406 B1 EP 0407406B1 EP 19890902931 EP19890902931 EP 19890902931 EP 89902931 A EP89902931 A EP 89902931A EP 0407406 B1 EP0407406 B1 EP 0407406B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- value
- pilot control
- comparison value
- small
- summand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2454—Learning of the air-fuel ratio control
Definitions
- the invention relates to a learning control method with pilot control for setting the lambda value for the air / force mixture to be supplied to an internal combustion engine.
- the invention also relates to a device for carrying out such a method (see in each case 1st part of claims 1, 5).
- the device has a pilot control means, a setpoint generator means, a control means and an adaptation factor memory.
- the method is used, for example, to set the injection time.
- the pilot control means outputs a pilot control value for the injection time as a function of values from operating variables other than the injection time.
- the setpoint generator provides a single controlled variable setpoint, namely the lambda value 1. This is compared with the respective actual lambda value, which is measured by a lambda probe.
- the control means depends on the difference between the above Both values are a manipulated variable, namely a control factor with which the respective pilot control value is corrected by multiplication.
- the pilot control value is also corrected in a controlling manner, with the aid of an adaptation factor which is respectively read out of the adaptation factor memory.
- the adaptation factor memory stores adaptation values in an addressable manner via values of addressing operating variables. To correct the precontrol value, it reads out the adaptation factor that belongs to the set of values of the addressing operating variables that is present at the time. The pilot control value is linked multiplicatively with this factor.
- the adaptation factors are determined again and again with the help of the control factor supplied by the control means.
- the factors of the adaptation factor memory are evaluated in such a way that the average of all factors is formed and this average is incorporated into a so-called multiplicative global factor. This value then takes into account global corrections that are necessary both due to the multiplicative disturbing influences on the injection time and the additive acting disturbing influences.
- the associated device also has a summand determining means which determines a summand which is added to the pilot control value corrected by multiplicative factors.
- the summand is measured at idle, i.e. with short injection times. This is due to the consideration that with short injection times there is a multiplicative effect Interference is relatively weak, but an additive interference has a relatively strong effect.
- the invention is based on the object of specifying a method for learning control with precontrol for setting the lambda value, which takes disturbing influences which have an additive effect on the metering of the fuel quantity into account better than known methods.
- the invention is also based on the object of specifying a device for carrying out such a method.
- the device has the means already described, that is to say a pilot control means, a setpoint generator means, a control means, an adaptation factor memory and a summand determination means. It also has a comparator means and a changing means.
- the comparator means compares a large comparison value with a small comparison value and outputs an increase or a decrease signal.
- the changing means increases the global summand in response to the increase signal by a correction value or decreases the summand in response to the decrease signal.
- the method according to the invention compares a large comparison value with a small comparison value, the large comparison value being formed by averaging adaptation factors for large pilot control values, while the small comparison value is formed by averaging adaptation factors for small pilot control values. If the large comparison value is smaller than the small comparison value, the additive for additively correcting the pilot control value is increased by a correction value, otherwise it is decreased.
- the additive error in the pilot control value is, for example, + 5% and the multiplicative error is also 5%.
- the total error is then 10% and the adaptation factor is 1.1 as long as no additive correction is carried out. If the injection time is five times longer, the fixed additive error is only 1%, while the multiplicative error is still 5%. The total deviation thus amounts to 6% and results in an adaptation factor of 1.06 as long as no additive correction is made.
- the pilot control time is corrected not only by the adaptation factor, but also by a summand, the situation changes.
- FIG. 1 and 2 relate to a single exemplary embodiment, FIG. 1 giving an overall overview of a precontrol / regulation method for setting the injection time for an injection valve of an internal combustion engine 10, while in FIG. 2 the function group most important for the invention within FIG. 1 is shown in detail.
- An injection valve 12 is arranged in the intake manifold 11 of an internal combustion engine 10 and is controlled with a signal for the injection time TI.
- a lambda value is set, which is measured by a lambda probe 14 arranged in the exhaust duct 13 of the internal combustion engine 10.
- the measured actual lambda value is compared with a desired lambda value supplied by a setpoint generator 15 in a comparison step 16, and the control deviation value formed is fed to a control means 17 with integrating behavior, which outputs a control factor FR as a manipulated variable.
- a pilot control time TIV for the injection time is modified by multiplication in a multiplication step 18.
- the pilot control time TIV is provided in the exemplary embodiment shown by a pilot control memory 19 which addressable via values of the speed n and the position of an accelerator pedal FP stores pilot control times TIV.
- the pilot control times TIV are defined for certain operating conditions and certain system properties. Now, however, the operating conditions, for example the air pressure or the system properties, for example leakage air properties or the closing time of the injection valve 12, change during operation of the internal combustion engine Adaptation factor FA (FP, n) modified.
- the respective adaptation factor FA is also multiplied by the multiplying step 18, as is a global factor FG. Strictly speaking, the following multiplicative correction should take place: TIV ⁇ (FG ⁇ FA (FP, n) ⁇ FR).
- TIV ⁇ (FG + FA (FP, n) + FR) TIV ⁇ F.
- the factor F formed by summing the correction factors is multiplicatively linked in multiplication step 18 with the respective pilot control time TIV. Instead, there could also be three multiplier levels.
- the pilot control time is also subjected to an additive correction by a global addend in an adding step 27.
- the adaptation factors FA, the global factor FG and the global summand SG are formed in an adaptation means 22 which has three functional subgroups, namely an adaptation factor calculation means 23, a global summation calculation means 24 and a global factor calculation means 25.
- the function is of particular interest of global summand calculation means 24, which is explained in more detail below with reference to FIG. 2.
- the two calculation means just mentioned can work as described, for example, in DE 3505965A1 already mentioned at the beginning.
- control means FR is fed to the adaptation means 22 via an averaging step 26, and a new value is calculated from this on the basis of the old adaptation factor for a support point whenever the values of the addressing operating variables move in a range that corresponds to the support point under consideration heard, and then this area is left.
- the newly determined adaptation factor is transferred to the adaptation factor memory 21 after it has been determined, so that it is available as an improved value when an operating state occurs again with the same values of the addressing operating variables.
- the average value is formed from all the adaptation factors in the adaptation factor memory 21 and the global factor FG, which previously applied, is modified with this.
- the adaptation factors of previously visited support points are corrected.
- the adaptation factors FA and the global factor FG can be obtained in any way.
- the procedures according to the above-mentioned document serve only as an example. They have no influence on the acquisition of the global addend SG described below.
- the global summand calculation means 24 whose function is shown in detail in FIG. 2, has an average value calculation means 28, a large comparison value means 29.G, a small comparison value means 29.K, a comparator means 30, a correction value memory 31 , a switching step 32 with switch actuating means 33, a linking means step 34 and a sample / hold means (S / H) 35.
- the mean value calculation means 28 calculates the mean value from all pilot times TIV, as they are stored for the k ⁇ l, that is to say 8 ⁇ 8 support points of the pilot control memory 20, and divides the sum by the value k ⁇ l.
- the mean so obtained TIV k, l serves only to be able to distinguish for which values of the indices k and l feedforward times TIV k, l are greater than the mean and for which values of the indices the pilot control times are smaller. This information is important for the two comparison means.
- the large comparison value mean 29.G namely forms the sum of all adaptation factors which are stored under those values of the reference point indices k and l for which the respective pilot control time is greater than the mean value of all pilot control times in the pilot control memory 20 of the same index.
- the small comparison value mean 29.K forms the sum for all adaptation factors FA k, l that belong to pilot control times that are smaller than the mean value of all pilot control times.
- the difference between the two sums is formed by the comparator means 30, which outputs a difference signal D.
- the correction value memory 31 If the large comparison value supplied from the large comparison value mean 29.G is greater than the small comparison value supplied by the small comparison value mean 29.K, ie if the difference D is negative, the correction value memory 31 outputs a negative fixed correction value - ⁇ SG, otherwise one fixed positive correction value + ⁇ SG of the same size.
- the difference signal D is also fed to the switch actuating means 33, which executes the switching step 32 when the amount of the difference exceeds a threshold value D0.
- the positive or negative correction value ⁇ SG is then added to the old global summand SG stored in the sample / hold means 35 in the linking step 34, as a result of which a new increased or decreased global summand SG is formed.
- a difference signal D occurs as long as the global summand SG acting additively on the pilot control time is not correctly determined and the adaptation factors for large injection times deviate from those for small injection times.
- FIG. 3 A variant of the function groups for obtaining the large comparison value and the small comparison value is shown in FIG. 3.
- the mean value calculation means 28 and the two comparison value means 29.G and 29.K there are only the two comparison value means in a different mode of operation, namely a large comparison value means 29.G3 and a small comparison value means 29.K3, to which the adaptation factors FA k, l are supplied.
- the comparison value means itself is stored, the values for which k9 L9 and the indices k and l are valid and for which values k and l k the indices k small pilot control values are relatively large pilot control values. The summation takes place for adaptation factors with the corresponding indices.
- the method according to FIG. 2 with the mean value calculation means 28 has the advantage of great flexibility, but the disadvantage of a certain computing effort.
- the flexibility is due to the fact that devices of the type described here are generally designed in microcomputer technology and that when a device is adapted to a particular engine type, essentially only the values stored in the pilot control memory 20 need to be changed. If the variant according to FIG. 3 is used, the values of those indices for which large or small pilot control times apply now generally have to be specified for the adaptation to a new motor type. However, if these values are stored, the system according to FIG. 3 has the advantage that the calculation effort for forming the mean value of the pilot control times is eliminated.
- the computational effort can be reduced even further, for the fewer adaptation factors, the sum is formed by the comparison value means 29.x.
- the comparison value means 29.x In the borderline case, it would be sufficient compare the adaptation factor that belongs to a support point with a particularly long pilot control time with an adaptation factor that belongs to a support point with a particularly short pilot control time.
- this only works with a method that ensures that these nodes are regularly adapted, for example by a method for adapting distant nodes or by a method that works with a global multiplication factor.
- Such methods are described in DE 3505965A1, which has already been mentioned several times. However, it is safer to calculate the sum of the adaptation factors over as many support points as possible.
- Forming the sum over many support points also has the advantage that a strong change in the adaptation factor of a support point has a relatively weak effect on the sum as a percentage. This reduces the tendency of the system to vibrate.
- the correction value can also be determined according to a variant as indicated in brackets in FIG. 2 in the symbol for the correction value memory 31, namely in that the value is obtained by multiplying the value of the difference signal D by a proportionality constant M.
- the global summand SG is then corrected the more the larger the value of the difference signal D is.
- This has the advantage that the method can react quickly to larger, additive-acting faults.
- the disadvantage is that vibrations can occur due to the existing feedback. As already explained, this tendency to oscillate is reduced if the feedback is weak due to the fact that a changed adaptation value has only a weak effect on the value of the difference signal.
- pilot control times TIV can also be obtained by dividing the signal supplied by an air mass sensor by the rotational speed, as is customary in commercially available devices.
- the variant according to FIG. 2 for obtaining the comparison values is ruled out, and only variants can be carried out in which it is determined in advance for which indices of support points adaptation factors are to be added.
- the setpoint generator 16 does not have to be designed as a map, as shown in FIG. 1, but that the setpoint can also be determined differently, in particular that the only fixed lambda setpoint "1" can be specified.
- the condition for changing the global summand SG was that the magnitude of the difference signal D should be greater than a threshold value D0.
- this has the advantage that the global summand is not immediately changed with every small change in an adaptation factor, which would increase the tendency to oscillate.
- other conditions can also be used, e.g. that the global summand is corrected after a predetermined time or that the correction takes place after a predetermined number of corrections of adaptation factors.
- a global summand is formed depending on the difference between adaptation factors for large pilot control values and adaptation factors for small pilot control values, the summand being increased, if the difference is negative and it is lowered if the difference is positive.
- the correction values by which the global summand is increased or decreased can have different sizes.
- the concrete values are to be determined in such a way that the adaptation is as quick and good as possible with a low tendency to vibrate.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Claims (5)
dispositif caractérisé en ce que le moyen de calcul de terme global de somme comporte les moyens fonctionnels suivants:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3811262 | 1988-04-02 | ||
DE3811262A DE3811262A1 (de) | 1988-04-02 | 1988-04-02 | Lernendes regelungsverfahren fuer eine brennkraftmascchine und vorrichtung hierfuer |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0407406A1 EP0407406A1 (fr) | 1991-01-16 |
EP0407406B1 true EP0407406B1 (fr) | 1991-09-18 |
Family
ID=6351320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19890902931 Expired - Lifetime EP0407406B1 (fr) | 1988-04-02 | 1989-03-04 | Procede et dispositif autodidactique de regulation de moteurs a combustion interne |
Country Status (6)
Country | Link |
---|---|
US (1) | US5065726A (fr) |
EP (1) | EP0407406B1 (fr) |
JP (1) | JPH03503559A (fr) |
KR (1) | KR0137220B1 (fr) |
DE (2) | DE3811262A1 (fr) |
WO (1) | WO1989009334A1 (fr) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04339147A (ja) * | 1991-05-13 | 1992-11-26 | Honda Motor Co Ltd | 内燃エンジンの空燃比制御装置 |
DE4203502A1 (de) * | 1992-02-07 | 1993-08-12 | Bosch Gmbh Robert | Verfahren und vorrichtung zum beurteilen der funktionsfaehigkeit einer lambdaregelung |
US5464000A (en) * | 1993-10-06 | 1995-11-07 | Ford Motor Company | Fuel controller with an adaptive adder |
DE4418731A1 (de) * | 1994-05-28 | 1995-11-30 | Bosch Gmbh Robert | Verfahren zur Steuerung/Regelung von Prozessen in einem Kraftfahrzeug |
JP3750157B2 (ja) * | 1995-08-29 | 2006-03-01 | トヨタ自動車株式会社 | 内燃機関の燃料噴射量制御装置 |
US5558064A (en) * | 1995-10-19 | 1996-09-24 | General Motors Corporation | Adaptive engine control |
DE10338058A1 (de) * | 2003-06-03 | 2004-12-23 | Volkswagen Ag | Verfahren zum Betreiben einer Brennkraftmaschine |
DE102004044463B4 (de) | 2004-03-05 | 2020-08-06 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5954750A (ja) * | 1982-09-20 | 1984-03-29 | Mazda Motor Corp | エンジンの燃料制御装置 |
JPS60156953A (ja) * | 1984-01-27 | 1985-08-17 | Hitachi Ltd | 電子式内燃機関制御装置 |
DE3408223A1 (de) * | 1984-02-01 | 1985-08-01 | Robert Bosch Gmbh, 7000 Stuttgart | Steuer- und regelverfahren fuer die betriebskenngroessen einer brennkraftmaschine |
JPS6143235A (ja) * | 1984-08-03 | 1986-03-01 | Toyota Motor Corp | 空燃比制御方法 |
DE3505965A1 (de) * | 1985-02-21 | 1986-08-21 | Robert Bosch Gmbh, 7000 Stuttgart | Verfahren und einrichtung zur steuerung und regelverfahren fuer die betriebskenngroessen einer brennkraftmaschine |
DE3636810A1 (de) * | 1985-10-29 | 1987-04-30 | Nissan Motor | Kraftstoffeinspritzregelsystem fuer eine brennkraftmaschine |
DE3539395A1 (de) * | 1985-11-07 | 1987-05-14 | Bosch Gmbh Robert | Verfahren und einrichtung zur adaption der gemischsteuerung bei brennkraftmaschinen |
DE3603137C2 (de) * | 1986-02-01 | 1994-06-01 | Bosch Gmbh Robert | Verfahren und Einrichtung zur Steuerung/Regelung von Betriebskenngrößen einer Brennkraftmaschine |
DE3628628C2 (de) * | 1986-08-22 | 1994-12-08 | Bosch Gmbh Robert | Verfahren und Einrichtung zur Adaption der Gemischsteuerung bei Brennkraftmaschinen |
JPH0678738B2 (ja) * | 1987-01-21 | 1994-10-05 | 株式会社ユニシアジェックス | 内燃機関の空燃比の学習制御装置 |
JPS6425440U (fr) * | 1987-08-04 | 1989-02-13 | ||
DE3802274A1 (de) * | 1988-01-27 | 1989-08-03 | Bosch Gmbh Robert | Steuer-/regelsystem fuer instationaeren betrieb einer brennkraftmaschine |
GB2227338B (en) * | 1989-01-19 | 1993-09-08 | Fuji Heavy Ind Ltd | Air-fuel ratio control system for automotive engine |
-
1988
- 1988-04-02 DE DE3811262A patent/DE3811262A1/de not_active Withdrawn
-
1989
- 1989-03-04 US US07/585,104 patent/US5065726A/en not_active Expired - Fee Related
- 1989-03-04 WO PCT/DE1989/000135 patent/WO1989009334A1/fr active IP Right Grant
- 1989-03-04 JP JP1502718A patent/JPH03503559A/ja active Pending
- 1989-03-04 KR KR1019890702226A patent/KR0137220B1/ko not_active IP Right Cessation
- 1989-03-04 DE DE8989902931T patent/DE58900307D1/de not_active Expired - Lifetime
- 1989-03-04 EP EP19890902931 patent/EP0407406B1/fr not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03503559A (ja) | 1991-08-08 |
DE3811262A1 (de) | 1989-10-12 |
WO1989009334A1 (fr) | 1989-10-05 |
US5065726A (en) | 1991-11-19 |
KR0137220B1 (ko) | 1998-04-25 |
DE58900307D1 (de) | 1991-10-24 |
EP0407406A1 (fr) | 1991-01-16 |
KR900700744A (ko) | 1990-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0364522B1 (fr) | Procede et dispositif pour le reglage d'une soupape de degazage d'un reservoir | |
DE2633617C2 (de) | Verfahren und Vorrichtung zur Bestimmung von Einstellgrößen bei einer Brennkraftmaschine, insbesondere der Dauer von Kraftstoffeinspritzimpulsen, des Zündwinkels, der Abgasrückführrate | |
DE2803750C2 (fr) | ||
DE69410043T2 (de) | Luft-Kraftstoff-Verhältnis-Regeleinrichtung für eine Brennkraftmaschine | |
DE69019338T2 (de) | Verfahren und einrichtung zum lernen und steuern des luft/kraftstoffverhältnisses in einem innenverbrennungsmotor. | |
EP0394306B1 (fr) | Unite de regulation pour moteur a combustion interne et procede pour regler les parametres de cette unite | |
EP0416270A1 (fr) | Procédé et dispositif pour commander et régler un moteur à auto-allumage | |
EP0152604A1 (fr) | Méthode de commande et de régulation des paramètres de fonctionnement d'un moteur à C.I. | |
EP0154710A1 (fr) | Dispositif pour la commande des paramètres de fontionnement d'un moteur à C.I. | |
EP0151768B1 (fr) | Système de dosage du mélange air-carburant pour un moteur à combustion | |
DE3901109A1 (de) | Adaptive regeleinrichtung fuer das luft-kraftstoff-verhaeltnis einer brennkraftmaschine | |
DE4414727B4 (de) | Steuerverfahren und Steuereinheit für Mehrzylinder-Brennkraftmaschinen | |
EP1802859A1 (fr) | Procede pour faire fonctionner un systeme d'injection de carburant en particulier d'un vehicule automobile | |
DE3925877C2 (de) | Verfahren und Einrichtung zur Steuerung der Kraftstoffzumessung bei einer Dieselbrennkraftmaschine | |
DE3835766C2 (de) | Verfahren zum Berechnen der Kraftstoffeinspritzmenge für einen Verbrennungsmotor | |
DE3725521C2 (fr) | ||
EP0407406B1 (fr) | Procede et dispositif autodidactique de regulation de moteurs a combustion interne | |
DE3822300A1 (de) | Verfahren und vorrichtung zur tankentlueftungsadaption bei lambdaregelung | |
DE19612453C2 (de) | Verfahren zum Bestimmen der in das Saugrohr oder in den Zylinder einer Brennkraftmaschine einzubringenden Kraftstoffmasse | |
DE19624121A1 (de) | Leerlaufdrehzahl-Steuersystem und -verfahren für einen Dieselmotor | |
EP1705356A2 (fr) | Procédé et dispositif de commande d'un moteur à combustion interne | |
DE3226026A1 (de) | Verfahren und vorrichtung zur elektronischen regelung einer brennkraftmaschine | |
DE3151131A1 (de) | "verfahren und vorrichtung zur brennstoff-einspritzmengenregelung bei einer brennkraftmaschine" | |
EP0757168A2 (fr) | Méthode et dispositif pour la commande d'un moteur à combustion interne | |
DE102018006312B4 (de) | Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900828 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 19910304 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 58900307 Country of ref document: DE Date of ref document: 19911024 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ROBERT BOSCH GMBH |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990223 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990323 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990607 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000304 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010103 |