EP0407406B1 - Learning control process and device for internal combustion engines - Google Patents

Learning control process and device for internal combustion engines Download PDF

Info

Publication number
EP0407406B1
EP0407406B1 EP19890902931 EP89902931A EP0407406B1 EP 0407406 B1 EP0407406 B1 EP 0407406B1 EP 19890902931 EP19890902931 EP 19890902931 EP 89902931 A EP89902931 A EP 89902931A EP 0407406 B1 EP0407406 B1 EP 0407406B1
Authority
EP
European Patent Office
Prior art keywords
value
pilot control
comparison value
small
summand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19890902931
Other languages
German (de)
French (fr)
Other versions
EP0407406A1 (en
Inventor
Martin Klenk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0407406A1 publication Critical patent/EP0407406A1/en
Application granted granted Critical
Publication of EP0407406B1 publication Critical patent/EP0407406B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Definitions

  • the invention relates to a learning control method with pilot control for setting the lambda value for the air / force mixture to be supplied to an internal combustion engine.
  • the invention also relates to a device for carrying out such a method (see in each case 1st part of claims 1, 5).
  • the device has a pilot control means, a setpoint generator means, a control means and an adaptation factor memory.
  • the method is used, for example, to set the injection time.
  • the pilot control means outputs a pilot control value for the injection time as a function of values from operating variables other than the injection time.
  • the setpoint generator provides a single controlled variable setpoint, namely the lambda value 1. This is compared with the respective actual lambda value, which is measured by a lambda probe.
  • the control means depends on the difference between the above Both values are a manipulated variable, namely a control factor with which the respective pilot control value is corrected by multiplication.
  • the pilot control value is also corrected in a controlling manner, with the aid of an adaptation factor which is respectively read out of the adaptation factor memory.
  • the adaptation factor memory stores adaptation values in an addressable manner via values of addressing operating variables. To correct the precontrol value, it reads out the adaptation factor that belongs to the set of values of the addressing operating variables that is present at the time. The pilot control value is linked multiplicatively with this factor.
  • the adaptation factors are determined again and again with the help of the control factor supplied by the control means.
  • the factors of the adaptation factor memory are evaluated in such a way that the average of all factors is formed and this average is incorporated into a so-called multiplicative global factor. This value then takes into account global corrections that are necessary both due to the multiplicative disturbing influences on the injection time and the additive acting disturbing influences.
  • the associated device also has a summand determining means which determines a summand which is added to the pilot control value corrected by multiplicative factors.
  • the summand is measured at idle, i.e. with short injection times. This is due to the consideration that with short injection times there is a multiplicative effect Interference is relatively weak, but an additive interference has a relatively strong effect.
  • the invention is based on the object of specifying a method for learning control with precontrol for setting the lambda value, which takes disturbing influences which have an additive effect on the metering of the fuel quantity into account better than known methods.
  • the invention is also based on the object of specifying a device for carrying out such a method.
  • the device has the means already described, that is to say a pilot control means, a setpoint generator means, a control means, an adaptation factor memory and a summand determination means. It also has a comparator means and a changing means.
  • the comparator means compares a large comparison value with a small comparison value and outputs an increase or a decrease signal.
  • the changing means increases the global summand in response to the increase signal by a correction value or decreases the summand in response to the decrease signal.
  • the method according to the invention compares a large comparison value with a small comparison value, the large comparison value being formed by averaging adaptation factors for large pilot control values, while the small comparison value is formed by averaging adaptation factors for small pilot control values. If the large comparison value is smaller than the small comparison value, the additive for additively correcting the pilot control value is increased by a correction value, otherwise it is decreased.
  • the additive error in the pilot control value is, for example, + 5% and the multiplicative error is also 5%.
  • the total error is then 10% and the adaptation factor is 1.1 as long as no additive correction is carried out. If the injection time is five times longer, the fixed additive error is only 1%, while the multiplicative error is still 5%. The total deviation thus amounts to 6% and results in an adaptation factor of 1.06 as long as no additive correction is made.
  • the pilot control time is corrected not only by the adaptation factor, but also by a summand, the situation changes.
  • FIG. 1 and 2 relate to a single exemplary embodiment, FIG. 1 giving an overall overview of a precontrol / regulation method for setting the injection time for an injection valve of an internal combustion engine 10, while in FIG. 2 the function group most important for the invention within FIG. 1 is shown in detail.
  • An injection valve 12 is arranged in the intake manifold 11 of an internal combustion engine 10 and is controlled with a signal for the injection time TI.
  • a lambda value is set, which is measured by a lambda probe 14 arranged in the exhaust duct 13 of the internal combustion engine 10.
  • the measured actual lambda value is compared with a desired lambda value supplied by a setpoint generator 15 in a comparison step 16, and the control deviation value formed is fed to a control means 17 with integrating behavior, which outputs a control factor FR as a manipulated variable.
  • a pilot control time TIV for the injection time is modified by multiplication in a multiplication step 18.
  • the pilot control time TIV is provided in the exemplary embodiment shown by a pilot control memory 19 which addressable via values of the speed n and the position of an accelerator pedal FP stores pilot control times TIV.
  • the pilot control times TIV are defined for certain operating conditions and certain system properties. Now, however, the operating conditions, for example the air pressure or the system properties, for example leakage air properties or the closing time of the injection valve 12, change during operation of the internal combustion engine Adaptation factor FA (FP, n) modified.
  • the respective adaptation factor FA is also multiplied by the multiplying step 18, as is a global factor FG. Strictly speaking, the following multiplicative correction should take place: TIV ⁇ (FG ⁇ FA (FP, n) ⁇ FR).
  • TIV ⁇ (FG + FA (FP, n) + FR) TIV ⁇ F.
  • the factor F formed by summing the correction factors is multiplicatively linked in multiplication step 18 with the respective pilot control time TIV. Instead, there could also be three multiplier levels.
  • the pilot control time is also subjected to an additive correction by a global addend in an adding step 27.
  • the adaptation factors FA, the global factor FG and the global summand SG are formed in an adaptation means 22 which has three functional subgroups, namely an adaptation factor calculation means 23, a global summation calculation means 24 and a global factor calculation means 25.
  • the function is of particular interest of global summand calculation means 24, which is explained in more detail below with reference to FIG. 2.
  • the two calculation means just mentioned can work as described, for example, in DE 3505965A1 already mentioned at the beginning.
  • control means FR is fed to the adaptation means 22 via an averaging step 26, and a new value is calculated from this on the basis of the old adaptation factor for a support point whenever the values of the addressing operating variables move in a range that corresponds to the support point under consideration heard, and then this area is left.
  • the newly determined adaptation factor is transferred to the adaptation factor memory 21 after it has been determined, so that it is available as an improved value when an operating state occurs again with the same values of the addressing operating variables.
  • the average value is formed from all the adaptation factors in the adaptation factor memory 21 and the global factor FG, which previously applied, is modified with this.
  • the adaptation factors of previously visited support points are corrected.
  • the adaptation factors FA and the global factor FG can be obtained in any way.
  • the procedures according to the above-mentioned document serve only as an example. They have no influence on the acquisition of the global addend SG described below.
  • the global summand calculation means 24 whose function is shown in detail in FIG. 2, has an average value calculation means 28, a large comparison value means 29.G, a small comparison value means 29.K, a comparator means 30, a correction value memory 31 , a switching step 32 with switch actuating means 33, a linking means step 34 and a sample / hold means (S / H) 35.
  • the mean value calculation means 28 calculates the mean value from all pilot times TIV, as they are stored for the k ⁇ l, that is to say 8 ⁇ 8 support points of the pilot control memory 20, and divides the sum by the value k ⁇ l.
  • the mean so obtained TIV k, l serves only to be able to distinguish for which values of the indices k and l feedforward times TIV k, l are greater than the mean and for which values of the indices the pilot control times are smaller. This information is important for the two comparison means.
  • the large comparison value mean 29.G namely forms the sum of all adaptation factors which are stored under those values of the reference point indices k and l for which the respective pilot control time is greater than the mean value of all pilot control times in the pilot control memory 20 of the same index.
  • the small comparison value mean 29.K forms the sum for all adaptation factors FA k, l that belong to pilot control times that are smaller than the mean value of all pilot control times.
  • the difference between the two sums is formed by the comparator means 30, which outputs a difference signal D.
  • the correction value memory 31 If the large comparison value supplied from the large comparison value mean 29.G is greater than the small comparison value supplied by the small comparison value mean 29.K, ie if the difference D is negative, the correction value memory 31 outputs a negative fixed correction value - ⁇ SG, otherwise one fixed positive correction value + ⁇ SG of the same size.
  • the difference signal D is also fed to the switch actuating means 33, which executes the switching step 32 when the amount of the difference exceeds a threshold value D0.
  • the positive or negative correction value ⁇ SG is then added to the old global summand SG stored in the sample / hold means 35 in the linking step 34, as a result of which a new increased or decreased global summand SG is formed.
  • a difference signal D occurs as long as the global summand SG acting additively on the pilot control time is not correctly determined and the adaptation factors for large injection times deviate from those for small injection times.
  • FIG. 3 A variant of the function groups for obtaining the large comparison value and the small comparison value is shown in FIG. 3.
  • the mean value calculation means 28 and the two comparison value means 29.G and 29.K there are only the two comparison value means in a different mode of operation, namely a large comparison value means 29.G3 and a small comparison value means 29.K3, to which the adaptation factors FA k, l are supplied.
  • the comparison value means itself is stored, the values for which k9 L9 and the indices k and l are valid and for which values k and l k the indices k small pilot control values are relatively large pilot control values. The summation takes place for adaptation factors with the corresponding indices.
  • the method according to FIG. 2 with the mean value calculation means 28 has the advantage of great flexibility, but the disadvantage of a certain computing effort.
  • the flexibility is due to the fact that devices of the type described here are generally designed in microcomputer technology and that when a device is adapted to a particular engine type, essentially only the values stored in the pilot control memory 20 need to be changed. If the variant according to FIG. 3 is used, the values of those indices for which large or small pilot control times apply now generally have to be specified for the adaptation to a new motor type. However, if these values are stored, the system according to FIG. 3 has the advantage that the calculation effort for forming the mean value of the pilot control times is eliminated.
  • the computational effort can be reduced even further, for the fewer adaptation factors, the sum is formed by the comparison value means 29.x.
  • the comparison value means 29.x In the borderline case, it would be sufficient compare the adaptation factor that belongs to a support point with a particularly long pilot control time with an adaptation factor that belongs to a support point with a particularly short pilot control time.
  • this only works with a method that ensures that these nodes are regularly adapted, for example by a method for adapting distant nodes or by a method that works with a global multiplication factor.
  • Such methods are described in DE 3505965A1, which has already been mentioned several times. However, it is safer to calculate the sum of the adaptation factors over as many support points as possible.
  • Forming the sum over many support points also has the advantage that a strong change in the adaptation factor of a support point has a relatively weak effect on the sum as a percentage. This reduces the tendency of the system to vibrate.
  • the correction value can also be determined according to a variant as indicated in brackets in FIG. 2 in the symbol for the correction value memory 31, namely in that the value is obtained by multiplying the value of the difference signal D by a proportionality constant M.
  • the global summand SG is then corrected the more the larger the value of the difference signal D is.
  • This has the advantage that the method can react quickly to larger, additive-acting faults.
  • the disadvantage is that vibrations can occur due to the existing feedback. As already explained, this tendency to oscillate is reduced if the feedback is weak due to the fact that a changed adaptation value has only a weak effect on the value of the difference signal.
  • pilot control times TIV can also be obtained by dividing the signal supplied by an air mass sensor by the rotational speed, as is customary in commercially available devices.
  • the variant according to FIG. 2 for obtaining the comparison values is ruled out, and only variants can be carried out in which it is determined in advance for which indices of support points adaptation factors are to be added.
  • the setpoint generator 16 does not have to be designed as a map, as shown in FIG. 1, but that the setpoint can also be determined differently, in particular that the only fixed lambda setpoint "1" can be specified.
  • the condition for changing the global summand SG was that the magnitude of the difference signal D should be greater than a threshold value D0.
  • this has the advantage that the global summand is not immediately changed with every small change in an adaptation factor, which would increase the tendency to oscillate.
  • other conditions can also be used, e.g. that the global summand is corrected after a predetermined time or that the correction takes place after a predetermined number of corrections of adaptation factors.
  • a global summand is formed depending on the difference between adaptation factors for large pilot control values and adaptation factors for small pilot control values, the summand being increased, if the difference is negative and it is lowered if the difference is positive.
  • the correction values by which the global summand is increased or decreased can have different sizes.
  • the concrete values are to be determined in such a way that the adaptation is as quick and good as possible with a low tendency to vibrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

In a learning process for regulating and presetting the lambda value of an air/fuel mixture to be supplied to an internal combustion engine (11), a large comparison value is compared with a small comparison value. The large comparison value is obtained by averaging adaptation factors for large pilot control values and the small comparison factors for small pilot control values. If the large comparison value is smaller than the small comparison value, a global summand is increased by a correction value, and decreased in other cases. The advantage of a device which operates according to this process is that disturbances having a cumulative effect on the injection time are compensated with a high degree of precision.

Description

Die Erfindung betrifft ein lernendes Regelungsverfahren mit Vorsteuerung zum Einstellen des Lambdawertes für das einer Brennkraftmaschine zuzuführende Luft/Kraftstaffgemisch. Die Erfindung betrifft außerdem eine Vorrichtung zum Durchführen eines solchen Verfahrens (Siehe jeweils 1. Teil der Ansprüche 1, 5).The invention relates to a learning control method with pilot control for setting the lambda value for the air / force mixture to be supplied to an internal combustion engine. The invention also relates to a device for carrying out such a method (see in each case 1st part of claims 1, 5).

Stand der TechnikState of the art

Ein derartiges Verfahren und eine zugehörige Vorrichtung sind aus der DE 3505965A1 (US-Ser. No. 831476/1986) bekannt. Die Vorrichtung weist ein Vorsteuerungsmittel, ein Sollwertgebermittel, ein Regelungsmittel und einen Adaptionsfaktorenspeicher auf. Das Verfahren dient z.B. zum Einstellen der Einspritzzeit. Das Vorsteuerungsmittel gibt abhängig von Werten von anderen Betriebsgrößen als der Einspritzzeit einen Vorsteuerungswert für die Einspritzzeit aus. Das Sollwertgebermittel liefert einen einzigen Regelgrößen-Sollwert, nämlich den Lambdawert 1. Dieser wird mit dem jeweiligen Lambda-Istwert verglichen, der durch eine Lambdasonde gemessen wird. Das Regelungsmittel bildet abhängig von der Differenz zwischen den genannten beiden Werten einen Stellwert, nämlich einen Regelfaktor, mit dem der jeweilige Vorsteuerungswert regelnd durch Multiplikation korrigiert wird. Der Vorsteuerungswert wird jedoch auch steuernd korrigiert, und zwar mit Hilfe eines aus dem Adaptionsfaktorenspeicher jeweils ausgelesenen Adaptionsfaktors. Der Adaptionsfaktorenspeicher speichert Adaptionswerte adressierbar über Werte von Adressierbetriebsgrößen. Er liest zum Korrigieren des Vorsteuerungswertes jeweils denjenigen Adaptionsfaktor aus, der zum jeweils vorliegenden Satz von Werten der Adressierbetriebsgrößen gehört. Mit diesem Faktor wird der Vorsteuerungswert multiplikativ verknüpft. Die Adaptionsfaktoren werden mit Hilfe des vom Regelungsmittel gelieferten Regelfaktors immer wieder neu bestimmt. In vorgegbenen größeren Zeitabschnitten werden die Faktoren des Adaptionsfaktorenspeichers dahingehend ausgewertet, daß der Mittelwert aller Faktoren gebildet wird und dieser Mittelwert in einen sogenannten multiplikativen globalen Faktor eingearbeitet wird. Dieser Wert berücksichtigt dann global Korrekturen, die sowohl wegen multiplikativ auf die Einspritzzeit wirkender Störeinflüsse wie auch additiv wirkender Störeinflüsse erforderlich sind.Such a method and an associated device are known from DE 3505965A1 (US Ser. No. 831476/1986). The device has a pilot control means, a setpoint generator means, a control means and an adaptation factor memory. The method is used, for example, to set the injection time. The pilot control means outputs a pilot control value for the injection time as a function of values from operating variables other than the injection time. The setpoint generator provides a single controlled variable setpoint, namely the lambda value 1. This is compared with the respective actual lambda value, which is measured by a lambda probe. The control means depends on the difference between the above Both values are a manipulated variable, namely a control factor with which the respective pilot control value is corrected by multiplication. However, the pilot control value is also corrected in a controlling manner, with the aid of an adaptation factor which is respectively read out of the adaptation factor memory. The adaptation factor memory stores adaptation values in an addressable manner via values of addressing operating variables. To correct the precontrol value, it reads out the adaptation factor that belongs to the set of values of the addressing operating variables that is present at the time. The pilot control value is linked multiplicatively with this factor. The adaptation factors are determined again and again with the help of the control factor supplied by the control means. In predetermined larger time periods, the factors of the adaptation factor memory are evaluated in such a way that the average of all factors is formed and this average is incorporated into a so-called multiplicative global factor. This value then takes into account global corrections that are necessary both due to the multiplicative disturbing influences on the injection time and the additive acting disturbing influences.

Additiv wirkende Störeinflüsse werden bei einem Verfahren besser berücksichtigt, wie es aus dem SAE-Paper No. 860594, 1986 ebenfalls zum Einstellen der Einspritzzeit bekannt ist. Die zugehörige Vorrichtung weist außer den oben genannten Funktionsstufen noch ein Summanden-Ermittlungsmittel auf, das einen Summanden ermittelt, der zu dem durch multiplikative Faktoren korrigierten Vorsteuerwert addiert wird. Der Summand wird im Leerlauf gemessen, also bei kleinen Einspritzzeiten. Dies aufgrund der Überlegung, daß sich bei kleinen Einspritzzeiten ein multiplikativ wirkender Störeinfluß relativ schwach, ein additiv wirkender Störeinfluß jedoch relativ stark auswirkt.Interfering influences that have an additive effect are better taken into account in a process as described in SAE paper no. 860594, 1986 is also known for adjusting the injection time. In addition to the above-mentioned functional levels, the associated device also has a summand determining means which determines a summand which is added to the pilot control value corrected by multiplicative factors. The summand is measured at idle, i.e. with short injection times. This is due to the consideration that with short injection times there is a multiplicative effect Interference is relatively weak, but an additive interference has a relatively strong effect.

Das soeben genannte System hat den folgenden Nachteil. Es kann ohne weiteres der Fall eintreten, daß sich auch bei kleinen Einspritzzeiten ein additiv wirkender Störeinfluß mit einem gegenläufigen multiplikativ wirkenden kompensiert. Dann wird die Vorsteuerzeit nicht additiv (und gegenläufig multiplikativ) korrigiert, obowhl dies eigentlich erforderlich wäre. Dieser Fehler, der von der Bestimmung im Leerlauf herrührt, wirkt sich im gesamten Last- und Drehzahlbereich der Brennkraftmaschine aus.The system just mentioned has the following disadvantage. It can easily happen that even with short injection times, an additive disturbing influence is compensated by an opposing multiplicative one. Then the pre-control time is not corrected additively (and counter-multiplicatively), although this would actually be necessary. This error, which results from the determination during idling, affects the entire load and speed range of the internal combustion engine.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum lernenden Regeln mit Vorsteuerung zum Einstellen des Lambdawertes anzugeben, das Störeinflüsse, die additiv auf die Zumessung der Kraftstoffmenge wirken, besser berücksichtigt als bekannte Verfahren. Der Erfindung liegt weiterhin die Aufgabe zugrunde, eine Vorrichtung zum Durchführen eines solchen Verfahrens anzugeben.The invention is based on the object of specifying a method for learning control with precontrol for setting the lambda value, which takes disturbing influences which have an additive effect on the metering of the fuel quantity into account better than known methods. The invention is also based on the object of specifying a device for carrying out such a method.

Vorteile der ErfindungAdvantages of the invention

Die Erfindung ist für das Verfahren durch die Merkmale von Anspruch 1 und für die Vorrichtung durch die Merkmale von Anspruch 5 gegeben. Vorteilhafte Weiterbildungen und Ausgestaltungen sind Gegenstand der Unteransprüche.The invention is given for the method by the features of claim 1 and for the device by the features of claim 5. Advantageous further developments and refinements are the subject of the dependent claims.

Die Vorrichtung gemäß Anspruch 5 weist die bereits beschriebenen Mittel auf, also ein Vorsteuerungsmittel, ein Sollwertgebermittel, ein Regelungsmittel, einen Adaptionsfaktorenspeicher und ein Summanden-Ermittlungsmittel. Dazuhin weist sie ein Komparatormittel und ein Änderungsmittel auf. Das Komparatormittel vergleicht einen Groß-Vergleichswert mit einem Klein-Vergleichswert und gibt ein Erhöhungs- oder ein Erniedrigungssignal aus. Das Änderungsmittel erhöht den Globalsummanden auf das Erhöhungssignal hin um einen Korrekturwert bzw. erniedrigt den Summanden auf das Erniedrigungssignal hin.The device according to claim 5 has the means already described, that is to say a pilot control means, a setpoint generator means, a control means, an adaptation factor memory and a summand determination means. It also has a comparator means and a changing means. The comparator means compares a large comparison value with a small comparison value and outputs an increase or a decrease signal. The changing means increases the global summand in response to the increase signal by a correction value or decreases the summand in response to the decrease signal.

Das erfindungsgemäße Verfahren vergleicht einen Groß-Vergleichswert mit einem Klein-Vergleichswert, wobei der Groß-Vergleichswert durch Mittelung von Adaptionsfaktoren für große Vorsteuerwerte gebildet wird, während der Klein-Vergleichswert durch Mittelung von Adaptionsfaktoren für kleine Vorsteuerwerte gebildet wird. Ist der Groß-Vergleichswert kleiner als der Klein-Vergleichswert, wird der Summand zum additiven Korrigieren des Vorsteuerwertes um einen Korrekturwert erhöht, andernfalls erniedrigt.The method according to the invention compares a large comparison value with a small comparison value, the large comparison value being formed by averaging adaptation factors for large pilot control values, while the small comparison value is formed by averaging adaptation factors for small pilot control values. If the large comparison value is smaller than the small comparison value, the additive for additively correcting the pilot control value is increased by a correction value, otherwise it is decreased.

Dieser Maßnahme liegt die folgende Erkenntnis zugrunde. Bei einer kurzen Einspritzzeit, also einem kleinen Vorsteuerwert, betrage der additive Fehler im Vorsteuerwert z.B.  +5% und der multiplikative Fehler ebenfalls 5%. Der Gesamtfehler ist dann 10% und der Adaptionsfaktor somit 1,1, solange keine additive Korrektur ausgeführt wird. Bei fünffach längerer Einspritzzeit macht der feste additive Fehler nur noch 1% aus, während der multiplikative nach wie vor 5% beträgt. Die Gesamtabweichung macht somit 6% aus und hat einen Adaptionsfaktor von 1,06 zur Folge, solange nicht additive korrigiert wird. Wird aber die Vorsteuerzeit nicht nur durch den Adaptionsfaktor, sondern auch durch einen Summanden korrigiert, ändern sich die Verhältnisse. Es sei angenommen, daß der Summand genau richtig ermittelt sei, also gerade diejenige kurze Zeitspanne zur Vorsteuerungszeit addiere, die zum Ausgleich des additiv wirkenden Fehlers erforderlich ist. Dann bleibt nur noch der multiplikativ wirkende Fehler übrig, der sowohl für kurze wie auch für lange Einspritzzeiten zu einem Fehler von 5% im Beispielsfall, also einem Adaptionsfaktor von 1,05 führt. Das Beispiel veranschaulicht die Erkenntnis, daß ein kleinerer Adaptionsfaktor für große Einspritzzeiten im Vergleich zum Adaptionsfaktor für kurze Einspritzzeiten ein Zeichen dafür ist, daß ein additiv wirkender Fehler vorliegt und daß zweckmäßigerweise zur Korrektur ein Summand zur jeweiligen Vorsteuerungszeit addiert wird.This measure is based on the following finding. With a short injection time, i.e. a small pilot control value, the additive error in the pilot control value is, for example, + 5% and the multiplicative error is also 5%. The total error is then 10% and the adaptation factor is 1.1 as long as no additive correction is carried out. If the injection time is five times longer, the fixed additive error is only 1%, while the multiplicative error is still 5%. The total deviation thus amounts to 6% and results in an adaptation factor of 1.06 as long as no additive correction is made. However, if the pilot control time is corrected not only by the adaptation factor, but also by a summand, the situation changes. It is assumed that the summand has been determined exactly correctly, that is to say add the short period of time to the pilot control time that is required to compensate for the additive error. Then only the multiplicative error remains, both for short and Even for long injection times, an error of 5% in the example case, i.e. an adaptation factor of 1.05. The example illustrates the knowledge that a smaller adaptation factor for long injection times in comparison to the adaptation factor for short injection times is a sign that an additive error is present and that a summand is expediently added to the respective pilot control time for correction.

Diese Maßnahme behebt auch den oben beschriebenen Mangel der vorgetäuschten nicht erforderlichen Korrektur aufgrund der Wirkung entgegengesetzter Einflüsse. Existieren bei kurzer Einspritzzeit ein additiv wirkender Fehler von z.B.  +5% und ein multiplikativ wirkender Fehler von  -5%, führt dies zu einem Adaptionsfaktor von 1,0 für die betrachtete kurze Einspritzzeit, jedoch zu einem Faktor von 0,96 für eine fünffach längere Einspritzzeit ( +1% additiv,  -5% multiplikativ). Auch in diesem Fall ist der Adaptionsfaktor für die große Einspritzzeit kleiner als der Adaptionsfaktor für die kurze Einspritzzeit, was, wie erläutert, das Zeichen für das Erfordernis des Addierens eines Korrektursummanden ist.This measure also remedies the above-described lack of the simulated unnecessary correction due to the effect of opposite influences. If there is an additive error, e.g. + 5% and a multiplicative error of -5%, this leads to an adaptation factor of 1.0 for the short injection time considered, but to a factor of 0.96 for a five times longer injection time (+ 1% additive, -5% multiplicative). In this case too, the adaptation factor for the long injection time is smaller than the adaptation factor for the short injection time, which, as explained, is the sign of the need to add a correction sum.

Im soeben beschriebenen Beispiel zum Erläutern des Prinzips der Erfindung wurde im Vergleich jeweils nur eines Adaptionsfaktors für eine kurze und eine lange Einspritzzeit ausgegangen. Für die Praxis vorteilhafter ist es jedoch, aus mehreren Adaptionsfaktoren für große Vorsteuerwerte durch Mittelung einen Groß-Vergleichswert zu bilden und entsprechend für kleine Vorsteuerwerte einen Klein-Vergleichswert zu berechnen. Es werden dann nicht nur zwei Adaptionsfaktoren, sondern die beiden Vergleichswerte durch die Komparatorstufe miteinander verglichen. Für das Bilden dieser Vergleichswerte sind für unterschiedliche Systemaufbauten unterschiedliche Methoden von Vorteil, was weiter unten anhand von Ausführungsbeispielen näher erläutert wird.In the example just described to explain the principle of the invention, only one adaptation factor for a short and a long injection time was assumed in comparison. In practice, however, it is more advantageous to form a large comparison value from a plurality of adaptation factors for large input control values and to calculate a small comparison value accordingly for small input control values. Then not only two adaptation factors, but the two comparison values are compared with one another by the comparator stage. For the formation of these comparison values are for different system structures Different methods are advantageous, which will be explained in more detail below using exemplary embodiments.

Von besonderem Vorteil in Bezug auf die Schwingstabilität eines durch dieses Verfahren geregelten Systemes ist es, den Summanden nicht bei jeder kleinen Abweichung zwischen Groß- und Klein-Vergleichswert zu ändern, sondern eine Änderung erst vorzunehmen, wenn ein vorgegebener Schwellwert überschritten wird. Kleinere Schwankungen führen dann nicht zu Änderungen der Systemparameter.With regard to the vibration stability of a system controlled by this method, it is particularly advantageous not to change the summand with every small deviation between the large and small comparison value, but rather to make a change only when a predetermined threshold value is exceeded. Smaller fluctuations then do not lead to changes in the system parameters.

Ebenfalls zur Stabilisierung gegen Schwingungsneigungen trägt es bei, den Summanden nur jeweils um einen kleinen vorgegebenen festen Korrekturwert zu ändern, unabhängig von der Differenz zwischen Groß- und Klein-Vergleichswert. Ein Abweichen davon und ein Verwenden eines Korrekturwertes, dessen Größe proportional zur Differenz zwischen Groß- und Klein-Vergleichswert ist, empfiehlt sich nur dann, wenn die Vergleichswerte durch Mittelwertbildung aus relativ vielen Einzelwerten gebildet werden, so daß eine große Änderung des Summanden zwar schnell eine Änderung der Regelparameter bringt, dies jedoch nur zu schwacher Rückkopplung auf die Vergleichswerte führt.It also helps to stabilize against tendencies to vibrate by changing the addend only by a small predetermined fixed correction value, regardless of the difference between the large and small comparison value. Deviating from this and using a correction value, the size of which is proportional to the difference between the large and small comparison value, is only advisable if the comparison values are formed by averaging a relatively large number of individual values, so that a large change in the summand quickly results in a Changes in the control parameters brings, but this leads only to weak feedback on the comparison values.

Zeichnungdrawing

Die Erfindung wird im folgenden anhand von durch Figuren veranschaulichten Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1
ein als Blockschaltbild dargestelltes Funktionsdiagramm eines lernenden Vorsteuerungs/Regelungs-verfahrens zum Einstellen der Einspritzzeit unter anderem mit Hilfe eines globalen Summanden;
Fig. 2
ein als Blockschaltbild dargestelltes Funktionsdiagramm derjenigen Funktionsgruppe innerhalb von Fig. 1, die den globalen Summanden bestimmt; und
Fig. 3
ein als Blockschaltbild dargestelltes Funktionsdiagramm einer Variante einer Funktionsuntergruppe innerhalb von Fig. 2.

The invention is explained in more detail below on the basis of exemplary embodiments illustrated by figures. Show it:
Fig. 1
a functional diagram shown as a block diagram of a learning pre-control / regulating method for setting the injection time, inter alia with the aid of a global summand;
Fig. 2
a functional diagram shown as a block diagram of that functional group within FIG. 1 that determines the global summand; and
Fig. 3
3 shows a functional diagram of a variant of a functional subgroup within FIG. 2, shown as a block diagram.

Beschreibung von AusführungsbeispielenDescription of exemplary embodiments

Die Fig. 1 und 2 betreffen ein einzelnes Ausführungsbeispiel, wobei Fig. 1 einen Gesamtüberblick über ein Vorsteuerungs/Regelungsverfahren zum Einstellen der Einspritzzeit für ein Einspritzventil einer Brennkraftmaschine 10 gibt, während in Fig. 2 die für die Erfindung wichtigste Funktionsgruppe innerhalb von Fig. 1 im Detail dargestellt ist.1 and 2 relate to a single exemplary embodiment, FIG. 1 giving an overall overview of a precontrol / regulation method for setting the injection time for an injection valve of an internal combustion engine 10, while in FIG. 2 the function group most important for the invention within FIG. 1 is shown in detail.

Im Saugrohr 11 einer Brennkraftmaschine 10 ist ein Einspritzventil 12 angeordnet, das mit einem Signal für die Einspritzzeit TI angesteuert wird. Abhängig von der eingespritzten Kraftstoffmenge und der angesaugten Luftmenge stellt sich ein Lambdawert ein, der von einer im Abgaskanal 13 der Brennkraftmaschine 10 angeordneten Lambdasonde 14 gemessen wird. Der gemessene Lambda-Istwert wird mit einem von einem Sollwertgebermittel 15 gelieferten Lambda-Sollwert in einem Vergleichsschritt 16 verglichen, und der gebildete Regelabweichungswert wird einem Regelungsmittel 17 mit integrierendem Verhalten zugeführt, das als Stellgröße einen Regelfaktor FR ausgibt. Mit diesem Regelfaktor wird eine Vorsteuerzeit TIV für die Einspritzzeit durch Multiplikation in einem Multiplizierschritt 18 modifiziert. Die Vorsteuerzeit TIV wird beim dargestellten Ausführungsbeispiel durch einen Vorsteuerungsspeicher 19 geliefert, der adressierbar über Werte der Drehzahl n und der Stellung eines Fahrpedales FP Vorsteuerungszeiten TIV speichert.An injection valve 12 is arranged in the intake manifold 11 of an internal combustion engine 10 and is controlled with a signal for the injection time TI. Depending on the amount of fuel injected and the amount of air drawn in, a lambda value is set, which is measured by a lambda probe 14 arranged in the exhaust duct 13 of the internal combustion engine 10. The measured actual lambda value is compared with a desired lambda value supplied by a setpoint generator 15 in a comparison step 16, and the control deviation value formed is fed to a control means 17 with integrating behavior, which outputs a control factor FR as a manipulated variable. With this control factor, a pilot control time TIV for the injection time is modified by multiplication in a multiplication step 18. The pilot control time TIV is provided in the exemplary embodiment shown by a pilot control memory 19 which addressable via values of the speed n and the position of an accelerator pedal FP stores pilot control times TIV.

Die Vorsteuerungszeiten TIV sind für bestimmte Betriebsbedingungen und bestimmte Systemeigenschaften festgelegt. Nun ändern sich jedoch beim Betrieb der Brennkraftmaschine die Betriebsbedingungen, z.B. der Luftdruck oder die Systemeigenschaften, z.B. Lecklufteigenschaften oder die Schließzeit des Einspritzventiles 12. Um trotz dieser Änderungen dauernd einen möglichst guten Vorsteuerwert zu erzielen, wird die aus dem Vorsteuerungsspeicher 19 ausgelesene Vorsteuerungszeit noch mit einem A aptionsfaktor FA (FP, n) modifiziert. Dieser Adaptionsfaktor wird aus einem Adaptionsfaktorenspeicher 21 ausgelesen, der entsprechend viele Stützstellen aufweist wie der Vorsteuerungsspeicher 19 und, wie dieser, über Sätze von Werten der Drehzahl n und der Fahrpedalstellung FP adressierbar ist. Es handelt sich z.B. um jeweils 64 Stützstellen mit k = 8 Adressen für Klassen von Fahrpedalstellungen FP und l = 8 Adressen für Klassen von Drehzahlwerten n. Auch der jeweilige Adaptionsfaktor FA wird multiplikativ durch den Multiplizierschritt 18 eingearbeitet, ebenso wie ein globaler Faktor FG. Streng genommen sollte folgende multiplikative Korrektur stattfinden:
TIV  ×  (FG  ×  FA (FP, n)  ×  FR).

Figure imgb0001

The pilot control times TIV are defined for certain operating conditions and certain system properties. Now, however, the operating conditions, for example the air pressure or the system properties, for example leakage air properties or the closing time of the injection valve 12, change during operation of the internal combustion engine Adaptation factor FA (FP, n) modified. This adaptation factor is read from an adaptation factor memory 21, which has a corresponding number of support points as the pilot control memory 19 and, like this, can be addressed via sets of values of the speed n and the accelerator pedal position FP. For example, there are 64 support points each with k = 8 addresses for classes of accelerator pedal positions FP and l = 8 addresses for classes of speed values n. The respective adaptation factor FA is also multiplied by the multiplying step 18, as is a global factor FG. Strictly speaking, the following multiplicative correction should take place:
TIV × (FG × FA (FP, n) × FR).
Figure imgb0001

Da jedoch alle Korrekturfaktoren in der Praxis nur wenige Prozent von 1,0 abweichen, entspricht dem soeben genannten Wert näherungweise der folgende Wert:
TIV  ×  (FG  +  FA (FP, n)  +  FR) = TIV  ×  F.

Figure imgb0002

However, since all correction factors in practice only deviate a few percent from 1.0, the value just mentioned corresponds approximately to the following value:
TIV × (FG + FA (FP, n) + FR) = TIV × F.
Figure imgb0002

Beim System gemäß dem dargestellten Ausführungsbeispiel wird der durch Summation der Korrekturfaktoren gebildete Faktor F im Multiplizierschritt 18 mit der jeweiligen Vorsteuerungszeit TIV multiplikativ verknüpft. Statt-dessen könnten auch drei Multiplizierstufen vorhanden sein.In the system according to the exemplary embodiment shown, the factor F formed by summing the correction factors is multiplicatively linked in multiplication step 18 with the respective pilot control time TIV. Instead, there could also be three multiplier levels.

Außer der multiplikativen Korrektur erfährt die Vorsteuerungszeit noch eine additive Korrektur durch einen globalen Summanden in einem Addierschritt 27. Dem Einspritzventil 12 wird somit die wie folgt berechnete Einspritzzeit TI zugeführt:
TI = TIV  ×  F  +  SG.

Figure imgb0003

In addition to the multiplicative correction, the pilot control time is also subjected to an additive correction by a global addend in an adding step 27. The injection time TI calculated as follows is thus supplied to the injection valve 12:
TI = TIV × F + SG.
Figure imgb0003

Die Adaptionsfaktoren FA, der globale Faktor FG und der globale Summand SG werden in einem Adaptionsmittel 22 gebildet, das drei Funktionsuntergruppen aufweist, nämlich ein Adaptionsfaktoren-Berechnungsmittel 23, ein Globalsummanden-Berechnungsmittel 24 und ein Globalfaktor-Berechnungsmittel 25. Von besonderem Interesse ist die Funktion des Globalsummanden-Berechnungsmittels 24, das anhand von Fig. 2 weiter unten näher erläutert wird. Zunächst sei jedoch kurz auf die Funktion des Adaptionsfaktoren-Berechnungsmittels 23 und des Globalfaktor-Berechnungsmittels 25 eingegangen. Die soeben genannten beiden Berechnungsmittel können arbeiten, wie z.B. in der bereits eingangs genannten DE 3505965A1 beschrieben. Es wird nämlich dem Adaptionsmittel 22 über einen Mittelungsschritt 26 der Regelfaktor FR zugeführt und aus diesem wird dann auf Grundlage des alten Adaptionsfaktors für eine Stützstelle immer dann ein neuer Wert berechnet, wenn sich die Werte der Adressierbetriebsgrößen in einem Bereich bewegen, der zur jeweils betrachteten Stützstelle gehört, und dieser Bereich dann verlassen wird. Der neu bestimmte Adaptionsfaktor wird nach seinem Bestimmen in den Adaptionsfaktorenspeicher 21 übernommen, so daß er als verbesserter Wert zur Verfügung steht, wenn wieder ein Betriebszustand mit denselben Werten der Adressierbetriebsgrößen eintritt.The adaptation factors FA, the global factor FG and the global summand SG are formed in an adaptation means 22 which has three functional subgroups, namely an adaptation factor calculation means 23, a global summation calculation means 24 and a global factor calculation means 25. The function is of particular interest of global summand calculation means 24, which is explained in more detail below with reference to FIG. 2. First, however, the function of the adaptation factor calculation means 23 and the global factor calculation means 25 will be briefly discussed. The two calculation means just mentioned can work as described, for example, in DE 3505965A1 already mentioned at the beginning. This is because the control means FR is fed to the adaptation means 22 via an averaging step 26, and a new value is calculated from this on the basis of the old adaptation factor for a support point whenever the values of the addressing operating variables move in a range that corresponds to the support point under consideration heard, and then this area is left. The newly determined adaptation factor is transferred to the adaptation factor memory 21 after it has been determined, so that it is available as an improved value when an operating state occurs again with the same values of the addressing operating variables.

In vorgegebenen größeren Zeitabschnitten wird aus allen Adaptionsfaktoren im Adaptionsfaktorenspeicher 21 der Mittelwert gebildet und mit diesem wird der zuvor geltende globale Faktor FG modifiziert. Die Adaptionsfaktoren zuvor angefahrener Stützstellen werden rückkorrigiert.In predetermined larger periods of time, the average value is formed from all the adaptation factors in the adaptation factor memory 21 and the global factor FG, which previously applied, is modified with this. The adaptation factors of previously visited support points are corrected.

Die Adaptionsfaktoren FA und der globale Faktor FG können jedoch auf beliebige Art und Weise gewonnen werden. Die Verfahren gemäß der genannten Schrift dienen nur als Beispiel. Auf das im folgenden beschriebene Gewinnen des globalen Summanden SG haben sie keinen Einfluß.However, the adaptation factors FA and the global factor FG can be obtained in any way. The procedures according to the above-mentioned document serve only as an example. They have no influence on the acquisition of the global addend SG described below.

Zum Gewinnen des globalen Summanden weist das Globalsummand-Berechnungsmittel 24, dessen Funktion in Fig. 2 im Detail dargestellt ist, ein Mittelwertberechnungsmittel 28, ein Groß-Vergleichswertmittel 29.G, ein Klein-Vergleichswertmittel 29.K, ein Komparatormittel 30, einen Korrekturwertspeicher 31, einen Umschaltschritt 32 mit Schalterbetätigungsmittel 33, einen Verknüfpungsmittelschritt 34 und ein Abtast/Halte-Mittel (S/H) 35 auf.To obtain the global summand, the global summand calculation means 24, whose function is shown in detail in FIG. 2, has an average value calculation means 28, a large comparison value means 29.G, a small comparison value means 29.K, a comparator means 30, a correction value memory 31 , a switching step 32 with switch actuating means 33, a linking means step 34 and a sample / hold means (S / H) 35.

Das Mittelwertberechnungsmittel 28 berechnet den Mittelwert aus allen Vorsteuerzeiten TIV, wie sie für die k  ×  l, also 8  ×  8 Stützstellen des Vorsteuerungsspeichers 20 abgespeichert sind, und teilt die Summe durch den Wert k  ×  l. Der so gewonnene Mittelwert TIVk,l dient alleine dazu, unterscheiden zu können, für welche Werte der Indizes k und l Vorsteuerungszeiten TIVk,l größer sind als der Mittelwert und für welche Werte der Indizes die Vorsteuerzeiten kleiner sind. Diese Information ist für die beiden Vergleichswertmittel von Bedeutung. Das Groß-Vergleichswertmittel 29.G bildet nämlich die Summe aller Adaptionsfaktoren, die unter denjenigen Werten der Stützstellenindizes k und l abgelegt sind, für die im gleichindizierten Vorsteuerungsspeicher 20 die jeweilige Vorsteuerungszeit größer ist als der Mittelwert aller Vorsteuerungszeiten. Entsprechend bildet das Klein-Vergleichswertmittel 29.K die Summe für alle Adaptionsfaktoren FAk,l, die zu Vorsteuerungszeiten gehören, die kleiner sind als der Mittelwert aller Vorsteuerungszeiten. Die Differenz zwischen den beiden Summen wird durch das Komparatormittel 30 gebildet, das ein Differenzsignal D ausgibt. Ist der aus dem Groß-Vergleichswertmittel 29.G gelieferte Groß-Vergleichswert größer als der vom Klein-Vergleichswertmittel 29.K gelieferte Klein-Vergleichswert, ist also die Differenz D negativ, gibt der Korrekturwertspeicher 31 einen negativen festen Korrekturwert  -ΔSG aus, andernfalls einen festen positiven Korrekturwert  +ΔSG gleicher Größe. Das Differenzsignal D wird außerdem dem Schalter-Betätigungsmittel 33 zugeführt, das den Umschaltschritt 32 dann ausführt, wenn der Betrag der Differenz einen Schwellwert D₀ überschreitet. Zu dem im Abtast/Halte-Mittel 35 gespeicherten alten globalen Summanden SG wird dann der positive oder negative Korrekturwert ΔSG im Verknüpfungsschritt 34 addiert, wodurch ein neuer erhöhter bzw. erniedrigter Globalsummand SG gebildet ist. Wie weiter vorne erläutert, tritt ein Differenzsignal D so lange auf, wie der additiv auf die Vorsteuerzeit einwirkende Globalsummand SG nicht richtig bestimmt ist und dadurch die Adaptionsfaktoren für große Einspritzzeiten von denen für kleine Einspritzzeiten abweichen.The mean value calculation means 28 calculates the mean value from all pilot times TIV, as they are stored for the k × l, that is to say 8 × 8 support points of the pilot control memory 20, and divides the sum by the value k × l. The mean so obtained TIV k, l serves only to be able to distinguish for which values of the indices k and l feedforward times TIV k, l are greater than the mean and for which values of the indices the pilot control times are smaller. This information is important for the two comparison means. The large comparison value mean 29.G namely forms the sum of all adaptation factors which are stored under those values of the reference point indices k and l for which the respective pilot control time is greater than the mean value of all pilot control times in the pilot control memory 20 of the same index. Correspondingly, the small comparison value mean 29.K forms the sum for all adaptation factors FA k, l that belong to pilot control times that are smaller than the mean value of all pilot control times. The difference between the two sums is formed by the comparator means 30, which outputs a difference signal D. If the large comparison value supplied from the large comparison value mean 29.G is greater than the small comparison value supplied by the small comparison value mean 29.K, ie if the difference D is negative, the correction value memory 31 outputs a negative fixed correction value -ΔSG, otherwise one fixed positive correction value + ΔSG of the same size. The difference signal D is also fed to the switch actuating means 33, which executes the switching step 32 when the amount of the difference exceeds a threshold value D₀. The positive or negative correction value ΔSG is then added to the old global summand SG stored in the sample / hold means 35 in the linking step 34, as a result of which a new increased or decreased global summand SG is formed. As explained further above, a difference signal D occurs as long as the global summand SG acting additively on the pilot control time is not correctly determined and the adaptation factors for large injection times deviate from those for small injection times.

Eine Variante der Funktionsgruppen zum Gewinnen des Groß-Vergleichswertes und des Klein-Vergleichswertes ist in Fig. 3 dargestellt. Statt des Mittelwertberechnungsmittels 28 und den beiden Vergleichswertmitteln 29.G und 29.K sind nur noch die zwei Vergleichswertmittel in anderer Funktionsweise, nämlich ein Groß-Vergleichswertmittel 29.G3 bzw. ein Klein-Vergleichswertmittel 29.K3 vorhanden, denen die Adaptionsfaktoren FAk,l zugeführt werden. In den Vergleichswertmitteln selbst ist gespeichert, für welche Werte k₉ und l₉ der Indizes k bzw. l relativ große Vorsteuerungswerte gelten und für welche Werte kk und lk der Indizes kleine Vorsteuerungswerte gelten. Für Adaptionsfaktoren mit den entsprechenden Indizes erfolgt jeweils die Summierung.A variant of the function groups for obtaining the large comparison value and the small comparison value is shown in FIG. 3. Instead of the mean value calculation means 28 and the two comparison value means 29.G and 29.K, there are only the two comparison value means in a different mode of operation, namely a large comparison value means 29.G3 and a small comparison value means 29.K3, to which the adaptation factors FA k, l are supplied. In the comparison value means itself is stored, the values for which k₉ L₉ and the indices k and l are valid and for which values k and l k the indices k small pilot control values are relatively large pilot control values. The summation takes place for adaptation factors with the corresponding indices.

Das Verfahren gemäß Fig. 2 mit dem Mittelwertberechnungsmittel 28 hat den Vorteil großer Flexibilität, jedoch den Nachteil eines gewissen Rechenaufwandes. Die Flexibilität ist darin begründet, daß Vorrichtungen der hier beschriebenen Art in der Regel in Mikrocomputertechnik ausgebildet sind und daß beim Anpassen einer Vorrichtung an einen besonderen Motortyp im wesentlichen nur die im Vorsteuerungsspeicher 20 abgelegten Werte zu ändern sind. Wird die Variante gemäß Fig. 3 verwendet, müssen für die Anpassung an einen neuen Motortyp in der Regel auch die Werte derjenigen Indizes angegeben werden, für die nun große bzw. kleine Vorsteuerungszeiten gelten. Sind diese Werte jedoch eingespeichert, hat das System gemäß Fig. 3 den Vorteil, daß der Berechnungsaufwand für das Bilden des Mittelwertes der Vorsteuerungszeiten wegfällt.The method according to FIG. 2 with the mean value calculation means 28 has the advantage of great flexibility, but the disadvantage of a certain computing effort. The flexibility is due to the fact that devices of the type described here are generally designed in microcomputer technology and that when a device is adapted to a particular engine type, essentially only the values stored in the pilot control memory 20 need to be changed. If the variant according to FIG. 3 is used, the values of those indices for which large or small pilot control times apply now generally have to be specified for the adaptation to a new motor type. However, if these values are stored, the system according to FIG. 3 has the advantage that the calculation effort for forming the mean value of the pilot control times is eliminated.

Der Rechenaufwand läßt sich umso weiter verringern, für je weniger Adaptionsfaktoren die Summe durch die Vergleichswertmittel 29.x gebildet wird. Im Grenzfall würde es ausreichen, den Adaptionsfaktor, der zu einer Stützstelle mit besonders großer Vorsteuerungszeit gehört, mit einem Adaptionsfaktor zu vergleichen, der zu einer Stützstelle mit besonders kleiner Vorsteuerungszeit gehört. Dies funktioniert jedoch nur bei einem Verfahren, das sicherstellt, daß diese Stützstellen regelmäßig adaptiert werden, z.B. durch ein Verfahren zum Anpassen auch entfernter Stützstellen oder durch ein Verfahren, das mit einem globalen Multiplikationsfaktor arbeitet. Solche Verfahren sind in der bereits mehrfach erwähnten DE 3505965A1 beschrieben. Sicherer ist es jedoch, die Summe der Adaptionsfaktoren über möglichst viele Stützstellen zu bilden.The computational effort can be reduced even further, for the fewer adaptation factors, the sum is formed by the comparison value means 29.x. In the borderline case, it would be sufficient compare the adaptation factor that belongs to a support point with a particularly long pilot control time with an adaptation factor that belongs to a support point with a particularly short pilot control time. However, this only works with a method that ensures that these nodes are regularly adapted, for example by a method for adapting distant nodes or by a method that works with a global multiplication factor. Such methods are described in DE 3505965A1, which has already been mentioned several times. However, it is safer to calculate the sum of the adaptation factors over as many support points as possible.

Das Bilden der Summe über viele Stützstellen hat auch den Vorteil, daß sich ein starkes Verändern des Adaptionsfaktors einer Stützstelle prozentual nur relativ schwach auf die Summe auswirkt. Dies verringert die Schwingungsneigung des Systems. Dann kann der Korrekturwert auch nach einer Variante bestimmt werden, wie sie in Fig. 2 im Symbol für den Korrekturwertspeicher 31 in Klammern angegeben ist, nämlich dadurch, daß der Wert durch Multiplikation des Wertes des Differenzsignales D mit einer Pröportionalitätskonstanten M erfolgt. Der Globalsummand SG wird dann umso stärker korrigiert, je größer der Wert des Differenzsignales D ist. Dies hat den Vorteil, daß das Verfahren schnell auf größere additiv wirkende Störungen reagieren kann. Der Nachteil liegt jedoch darin, daß es aufgrund der vorhandenen Rückkopplung zu Schwingungen kommen kann. Diese Schwingungsneigung ist, wie bereits erläutert, verringert, wenn die Rückkopplung dadurch schwach ausgebildet ist, daß sich ein veränderter Adaptionswert nur schwach auf den Wert des Differenzsignales auswirkt.Forming the sum over many support points also has the advantage that a strong change in the adaptation factor of a support point has a relatively weak effect on the sum as a percentage. This reduces the tendency of the system to vibrate. Then the correction value can also be determined according to a variant as indicated in brackets in FIG. 2 in the symbol for the correction value memory 31, namely in that the value is obtained by multiplying the value of the difference signal D by a proportionality constant M. The global summand SG is then corrected the more the larger the value of the difference signal D is. This has the advantage that the method can react quickly to larger, additive-acting faults. The disadvantage, however, is that vibrations can occur due to the existing feedback. As already explained, this tendency to oscillate is reduced if the feedback is weak due to the fact that a changed adaptation value has only a weak effect on the value of the difference signal.

Es wurde bereits an verschiedenen Stellen der Beschreibung darauf hingewiesen, daß Details des Ausführungsbeispieles für die Erfindung unerheblich sind. In Ergänzung dieser Aussagen sei hier noch erwähnt, daß Vorsteuerungszeiten TIV auch durch Division des von einem Luftmassensensor gelieferten Signales durch die Drehzahl gewonnen werden können, wie dies bei handelsüblichen Vorrichtungen gebräuchlich ist. In diesem Fall scheidet allerdings die Variante gemäß Fig. 2 zum Gewinnen der Vergleichswerte aus, und es sind nur noch Varianten durchführbar, bei denen im voraus festgelegt ist, für welche Indizes von Stützstellen Adaptionsfaktoren summiert werden sollen. Es sei auch darauf hingewiesen, daß das Sollwertgebermittel 16 nicht als Kennfeld ausgebildet sein muß, wie in Fig. 1 dargestellt, sondern daß der Sollwert auch anders bestimmt werden kann, insbesondere daß der einzige feste Lambda-Sollwert "1" vorgegeben sein kann.It has already been indicated at various points in the description that details of the exemplary embodiment are irrelevant to the invention. In addition to these statements, it should also be mentioned here that pilot control times TIV can also be obtained by dividing the signal supplied by an air mass sensor by the rotational speed, as is customary in commercially available devices. In this case, however, the variant according to FIG. 2 for obtaining the comparison values is ruled out, and only variants can be carried out in which it is determined in advance for which indices of support points adaptation factors are to be added. It should also be pointed out that the setpoint generator 16 does not have to be designed as a map, as shown in FIG. 1, but that the setpoint can also be determined differently, in particular that the only fixed lambda setpoint "1" can be specified.

Im Ausführungsbeispiel wurde als Bedingung für das Ändern des Globalsummanden SG genannt, daß der Betrag des Differenzsignales D größer sein sollte als ein Schwellwert D₀. Dies hat, wie ebenfalls bereits erwähnt, den Vorteil, daß nicht bei jeder kleinen Änderung in einem Adaptionsfaktor sogleich auch der Globalsummand verändert wird, was die Schwingungsneigung vergrößern würde. Je nach Schwingungsneigung des Gesamtsystems können jedoch auch andere Bedingungen verwendet werden, z.B. diejenige, daß nach einer fest vorgegebenen Zeit der Globalsummand korrigiert wird oder daß das Korrigieren nach einer vorgegebenen Anzahl von Korrekturen von Adaptionsfaktoren erfolgt.In the exemplary embodiment, the condition for changing the global summand SG was that the magnitude of the difference signal D should be greater than a threshold value D₀. As already mentioned, this has the advantage that the global summand is not immediately changed with every small change in an adaptation factor, which would increase the tendency to oscillate. Depending on the tendency of the entire system to vibrate, other conditions can also be used, e.g. that the global summand is corrected after a predetermined time or that the correction takes place after a predetermined number of corrections of adaptation factors.

Wesentlich für die Erfindung ist, daß ein Globalsummand abhängig von der Differenz zwischen Adaptionsfaktoren für große Vorsteuerwerte und Adaptionsfaktoren für kleine Vorsteuerwerte gebildet wird, wobei der Summand erhöht wird, wenn die Differenz negativ ist und er erniedrigt wird, wenn die Differenz positiv ist.It is essential for the invention that a global summand is formed depending on the difference between adaptation factors for large pilot control values and adaptation factors for small pilot control values, the summand being increased, if the difference is negative and it is lowered if the difference is positive.

Die Korrekturwerte, um die der Globalsummand erhöht oder erniedrigt wird, können unterschiedliche Größe aufweisen. Die konkreten Werte sind so zu bestimmen, daß sich eine möglichst schnelle und gute Adaption bei geringer Schwingungsneigung ergibt.The correction values by which the global summand is increased or decreased can have different sizes. The concrete values are to be determined in such a way that the adaptation is as quick and good as possible with a low tendency to vibrate.

Claims (5)

1. Process for learning control with pilot control for setting the lambda value for the air/fuel mixture to be fed to an internal-combustion engine, in which a pilot control value is corrected by a control system correcting value, by adaptation factors and a global summand, characterised in that global summands are established as follows:
― a large comparison value is compared with a small comparison value, the large comparison value being formed by averaging adaptation factors for large pilot control values and the small comparison value being formed by averaging adaptation factors for small pilot control values, and
― the global summand is increased by a correction value if the large comparison value is less than the small comparison value, and in the converse case, the correction value is decreased (sic).
2. Process according to Claim 1, characterised in that an identical fixed value is used as correction value respectively for the decreasing and the increasing.
3. Process according to Claim 1, characterised in that the correction value is determined proportionally to the difference between the large comparison value and the small comparison value.
4. Process according to one of Claims 1-3, characterised in that the global summand is changed only when the amount of the difference between the large comparison value and the small comparison value exceeds a predetermined thereshold value.
5. Device for learning control with pilot control for setting the lambda value for the air/fuel mixture to be fed to an internal-combustion engine, having
― a pilot control means (19), which outputs, depending on values of operating variables, a pilot control value for a fuel-metering operating variable,
― a reference value generator means (15) for outputting the lambda reference value,
― an automatic control means (17), which forms a control factor as correcting value depending on the difference between the lambda reference value and the respectively measured lambda feedback value, with which correcting value the respective pilot control value is corrected under closed-loop control by multiplication,
― an adaptation factor memory (21), which stores adaptation factors addressably by means of values of addressing operating variables and in each case outputs that adaptation factor which belongs to the respectively applying set of values of the addressing operating variables, with which adaptation factor the pilot control value is additionally multiplied for correcting under open-loop control, and
― a global summand calculation means (24), which establishes a summand, which is added to the pilot control value corrected by the multiplicative factors,
characterised in that the global summand establishing means has the following functional means:
― a comparator means (28, 29.G, 29.K, 30), which compares a large comparison value with a small comparison value, the large comparison value being formed by averaging adaptation factors for large pilot control values and the small comparison value being formed by averaging adaptation factors for small pilot control values, and outputs an increase signal if the large comparison value is less than the small comparison value and, in the converse case, outputs a decrease signal, and
― a changing means (31-35), which increases the global summand by a correction value in response to the increase signal or decreases it by a correction value in response to the decrease signal.
EP19890902931 1988-04-02 1989-03-04 Learning control process and device for internal combustion engines Expired - Lifetime EP0407406B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3811262 1988-04-02
DE3811262A DE3811262A1 (en) 1988-04-02 1988-04-02 LEARNING CONTROL METHOD FOR AN INTERNAL COMBUSTION ENGINE AND DEVICE THEREFOR

Publications (2)

Publication Number Publication Date
EP0407406A1 EP0407406A1 (en) 1991-01-16
EP0407406B1 true EP0407406B1 (en) 1991-09-18

Family

ID=6351320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890902931 Expired - Lifetime EP0407406B1 (en) 1988-04-02 1989-03-04 Learning control process and device for internal combustion engines

Country Status (6)

Country Link
US (1) US5065726A (en)
EP (1) EP0407406B1 (en)
JP (1) JPH03503559A (en)
KR (1) KR0137220B1 (en)
DE (2) DE3811262A1 (en)
WO (1) WO1989009334A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339147A (en) * 1991-05-13 1992-11-26 Honda Motor Co Ltd Control device for air-fuel ratio of internal combustion engine
DE4203502A1 (en) * 1992-02-07 1993-08-12 Bosch Gmbh Robert METHOD AND DEVICE FOR ASSESSING THE FUNCTIONALITY OF A LAMB CONTROL
US5464000A (en) * 1993-10-06 1995-11-07 Ford Motor Company Fuel controller with an adaptive adder
DE4418731A1 (en) * 1994-05-28 1995-11-30 Bosch Gmbh Robert Control and regulation of processes in motor vehicles
JP3750157B2 (en) * 1995-08-29 2006-03-01 トヨタ自動車株式会社 Fuel injection amount control device for internal combustion engine
US5558064A (en) * 1995-10-19 1996-09-24 General Motors Corporation Adaptive engine control
DE10338058A1 (en) * 2003-06-03 2004-12-23 Volkswagen Ag Operating process for a combustion engine especially a motor vehicle otto engine has mixture control that is adjusted to given post start temperature in all operating phases
DE102004044463B4 (en) 2004-03-05 2020-08-06 Robert Bosch Gmbh Method and device for controlling an internal combustion engine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954750A (en) * 1982-09-20 1984-03-29 Mazda Motor Corp Fuel controller of engine
JPS60156953A (en) * 1984-01-27 1985-08-17 Hitachi Ltd Electronic controller for internal-combustion engine
DE3408223A1 (en) * 1984-02-01 1985-08-01 Robert Bosch Gmbh, 7000 Stuttgart CONTROL AND REGULATING METHOD FOR THE OPERATING CHARACTERISTICS OF AN INTERNAL COMBUSTION ENGINE
JPS6143235A (en) * 1984-08-03 1986-03-01 Toyota Motor Corp Control method of air-fuel ratio
DE3505965A1 (en) * 1985-02-21 1986-08-21 Robert Bosch Gmbh, 7000 Stuttgart METHOD AND DEVICE FOR CONTROL AND REGULATING METHOD FOR THE OPERATING CHARACTERISTICS OF AN INTERNAL COMBUSTION ENGINE
DE3636810A1 (en) * 1985-10-29 1987-04-30 Nissan Motor FUEL INJECTION CONTROL SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
DE3539395A1 (en) * 1985-11-07 1987-05-14 Bosch Gmbh Robert METHOD AND DEVICE FOR ADAPTING THE MIXTURE CONTROL IN INTERNAL COMBUSTION ENGINES
DE3603137C2 (en) * 1986-02-01 1994-06-01 Bosch Gmbh Robert Method and device for controlling / regulating operating parameters of an internal combustion engine
DE3628628C2 (en) * 1986-08-22 1994-12-08 Bosch Gmbh Robert Method and device for adapting the mixture control in internal combustion engines
JPH0678738B2 (en) * 1987-01-21 1994-10-05 株式会社ユニシアジェックス Air-fuel ratio learning controller for internal combustion engine
JPS6425440U (en) * 1987-08-04 1989-02-13
DE3802274A1 (en) * 1988-01-27 1989-08-03 Bosch Gmbh Robert CONTROL / REGULATION SYSTEM FOR INSTATIONAL OPERATION OF AN INTERNAL COMBUSTION ENGINE
GB2227338B (en) * 1989-01-19 1993-09-08 Fuji Heavy Ind Ltd Air-fuel ratio control system for automotive engine

Also Published As

Publication number Publication date
DE3811262A1 (en) 1989-10-12
DE58900307D1 (en) 1991-10-24
KR0137220B1 (en) 1998-04-25
WO1989009334A1 (en) 1989-10-05
US5065726A (en) 1991-11-19
JPH03503559A (en) 1991-08-08
EP0407406A1 (en) 1991-01-16
KR900700744A (en) 1990-08-16

Similar Documents

Publication Publication Date Title
EP0364522B1 (en) Process and device for adjusting a fuel tank ventilator valve
DE2633617C2 (en) Method and device for determining setting variables in an internal combustion engine, in particular the duration of fuel injection pulses, the ignition angle, the exhaust gas recirculation rate
DE2803750C2 (en)
DE69410043T2 (en) Air-fuel ratio control device for an internal combustion engine
DE69019338T2 (en) METHOD AND DEVICE FOR LEARNING AND CONTROLLING THE AIR / FUEL RATIO IN AN INTERNAL COMBUSTION ENGINE.
EP0394306B1 (en) Control equipment for an internal combustion engine and process for adjusting the parameters for the equipment
EP0416270A1 (en) Method and apparatus to control and regulate an engine with self-ignition
EP0152604A1 (en) Control and regulation method for the operating parameters of an internal-combustion engine
DE102017009583B3 (en) Method for model-based control and regulation of an internal combustion engine
EP0154710A1 (en) Control apparatus for controlling the operating parameters of an internal-combustion engine
EP0151768B1 (en) Measuring system for the fuel-air mixture of a combustion engine
DE3901109A1 (en) Adaptive control device for the air/fuel ratio for an internal combustion engine
DE4414727B4 (en) Control method and control unit for multi-cylinder internal combustion engines
EP1802859A1 (en) Method for the operation of a fuel injection system especially of a motor vehicle
DE3925877C2 (en) Method and device for controlling the fuel metering in a diesel internal combustion engine
DE3835766C2 (en) Method for calculating the fuel injection quantity for an internal combustion engine
DE3725521C2 (en)
EP0407406B1 (en) Learning control process and device for internal combustion engines
DE3822300A1 (en) METHOD AND DEVICE FOR TANK VENTILATION ADAPTATION WITH LAMBAR CONTROL
DE19612453C2 (en) Method for determining the fuel mass to be introduced into the intake manifold or into the cylinder of an internal combustion engine
DE19624121A1 (en) Idling control system for diesel engine
EP1705356A2 (en) Engine control method and apparatus
DE3226026A1 (en) METHOD AND DEVICE FOR THE ELECTRONIC CONTROL OF AN INTERNAL COMBUSTION ENGINE
DE3151131A1 (en) "METHOD AND DEVICE FOR FUEL INJECTION QUANTITY CONTROL IN AN INTERNAL COMBUSTION ENGINE"
EP0757168A2 (en) Method and apparatus for controlling an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19910304

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 58900307

Country of ref document: DE

Date of ref document: 19911024

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990223

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990323

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990607

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000304

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010103