EP0402740B1 - Réflecteur pour lampe et procédé pour déterminer sa forme - Google Patents

Réflecteur pour lampe et procédé pour déterminer sa forme Download PDF

Info

Publication number
EP0402740B1
EP0402740B1 EP90110622A EP90110622A EP0402740B1 EP 0402740 B1 EP0402740 B1 EP 0402740B1 EP 90110622 A EP90110622 A EP 90110622A EP 90110622 A EP90110622 A EP 90110622A EP 0402740 B1 EP0402740 B1 EP 0402740B1
Authority
EP
European Patent Office
Prior art keywords
reflector
enveloping
cutting line
optical axis
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90110622A
Other languages
German (de)
English (en)
Other versions
EP0402740A3 (fr
EP0402740B2 (fr
EP0402740A2 (fr
Inventor
Tetsuhiro Kano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6382686&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0402740(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of EP0402740A2 publication Critical patent/EP0402740A2/fr
Publication of EP0402740A3 publication Critical patent/EP0402740A3/fr
Application granted granted Critical
Publication of EP0402740B1 publication Critical patent/EP0402740B1/fr
Publication of EP0402740B2 publication Critical patent/EP0402740B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/09Optical design with a combination of different curvatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S359/00Optical: systems and elements
    • Y10S359/90Methods

Definitions

  • the invention relates to a reflector for a lamp and a method for determining the shape of such a reflector.
  • the luminaires in question are intended in particular to illuminate a room, to illuminate an object or to couple light into a light guide.
  • conic intersection curves are known as reflector shapes, namely ellipse, parabola, hyperbola, circle and straight lines (the latter as so-called singular conic sections).
  • reflector shapes namely ellipse, parabola, hyperbola, circle and straight lines (the latter as so-called singular conic sections).
  • these reflector intersection curves are created in flat sectional figures, which contain the optical axis of the lamp.
  • the designer of a certain reflector is given boundary conditions according to which the luminaire is to be constructed, for example the light exit diameter and the length of the luminaire can be predetermined on account of the structural conditions and also the desired light distribution at a certain distance from the luminaire.
  • the shape of the reflector curve is also determined.
  • Elliptical reflectors are often used to illuminate a relatively large area.
  • the light distribution within the beam angle is very inhomogeneous and drops sharply with increasing distance from the optical axis to the outside.
  • a reflector is known in which only a reflector close to the edge cut corresponds to a conic section, while an inner reflector section is constructed differently.
  • the transition between the two mentioned reflector sections is discontinuous.
  • the latter has disadvantages in the manufacture of reflectors with regard to the tool. At the point of discontinuity, the reflector cannot be shaped exactly according to the tool and stray light is usually generated. You have to expect an energy loss. Even with this known solution, the homogenization of the light distribution cannot be achieved to the desired extent.
  • the reflector consists of segments which are arranged so that each segment reflects radiation emanating from another area of the light source, so that points on a surface to be irradiated each receive radiation that is reflected by several different segments.
  • the invention has for its object to provide a way to construct reflector shapes with which desired light distributions can be generated with great efficiency as required. It should not be necessary to prepare the microstructure of the reflection surface (as explained above) and the reflector should also not have any seams connecting different curves.
  • the two curves between which the reflector according to the invention runs can in particular be two different ellipses (ie ellipses with at least one different parameter), two different parabolas (ie parabolas with different parameters) or an ellipse and a parabola.
  • the reflector shape according to the invention is thus characterized in the latter example in that it is neither a pure ellipse nor a pure parabola, but rather continuously, i.e. over their entire extent, an "in-between" between such conventional known reflector shapes.
  • the reflector shape according to the invention does not correspond to a conic section.
  • the reflection properties of reflectors constructed in accordance with the invention are fundamentally different from the reflection properties of conical reflectors and generally do not correspond to simple “mean values” from the reflection properties of reflectors corresponding to the enveloping curves.
  • the light distributions achieved according to the invention are not always an “intermediate thing” between the properties of the two enveloping curves used. This is especially true if the two enveloping curves are different types of conic sections, such as a parabola and an ellipse.
  • the invention not only proposes certain reflector shapes, but also gives the luminaire designer a method in which he can generally construct an optimal reflector shape depending on the given boundary conditions for the luminaire and the desired light distribution, the desired light distribution largely without the use of additional optical aids such as lenses, etc. can be achieved.
  • reflector shapes can be constructed with which radiation from a light source can be optimally coupled into a radiation conductor.
  • Conventional, purely ellipsoidal reflectors generate relatively large angles of incidence between the radiation to be coupled in and the light guide.
  • a reflector according to the invention enables a relatively small angle of incidence between the radiation to be coupled in and the light guide, as a result of which the radiation is guided through the radiation guide, e.g. Fiber, is improved.
  • a reflector that can be used for a given distance, e.g. one meter, which can concentrate radiation with high efficiency at a certain point.
  • the bundling is better than with a paraboloid-shaped reflector.
  • a reflector constructed according to the invention enables a relatively uniform light distribution.
  • the optical axis is provided with the reference symbol 1.
  • the reflector cut curve R according to the invention is shown with a solid line. The entire reflector is created either by rotation of the curve R about the optical axis 1 or by translational displacement of the curve R if a channel-shaped reflector is to be created.
  • the shape of the reflector cut curve R is formed such that it lies between two narrowing (envelope) curves in the manner described in more detail below, which are an outer ellipse Ei and an inner ellipse E2 in the exemplary embodiment shown in FIG. 1.
  • the ellipses Ei and E2 differ with respect to at least one parameter (a and / or b).
  • the use of two ellipses according to FIG. 1 as an envelope for the reflector cut curve R enables a reflector shape with which, in particular, radiation can be optimally coupled into a light guide, that is to say the coupled radiation has a relatively small angle of incidence.
  • the two ellipses Ei, E2 and the reflector intersection curve R have a common optical axis 1.
  • Two focal points F 1 , F 2 coincide.
  • a fixed point O also lies at the location of the focal points F,, F 2 .
  • the fixed point O defines a polar angle and a distance ratio described in more detail below.
  • the reflector formed in this way is not an ellipsoid.
  • the reflector intersection curve R runs much closer to the inner ellipse E2 in the vicinity of the apex than with increasing approach to the edge R a of the reflector. This is explained in more detail below using the "distance ratio".
  • the exemplary embodiment shown in FIG. 1 can be modified in such a way that instead of the two ellipses, two parabolas are placed next to one another as enveloping curves for the reflector cut curve R.
  • the reflector shape is close to the apex (ie on the optical axis). is closer to the outer parabola (not shown) than to the inner parabola (not shown).
  • the reflector cut curve R approaches the inner parabola.
  • the reflector is not a paraboloid.
  • a luminaire is generated whose radiation is not aligned exactly parallel to the optical axis, but rather is reflected somewhat inwards.
  • a light spot whose diameter is smaller than the opening diameter of the lamp can thus be generated at a given distance from the lamp without using a lens.
  • the course of the reflector cut curve R between its two enveloping ellipses Ei, E2 is generated by means of a beam 2 originating from a fixed point O, which coincides with the focal points F1, F 2 of the ellipses, and the beam 2 generated by this beam Polar angle a described.
  • the beam 2 intersects the ellipses E i , E2 and the reflector intersection curve R.
  • the intersection points are provided with the reference symbols A, B and C, respectively. 1 shows two positions of the traveling beam 2, 2 ', the corresponding reference numerals being provided with a line in the second position.
  • a distance ratio k can now be defined as follows: where a is the distance between points A and O, b is the distance between points B and O and c is the distance between points C and O.
  • the distance ratio k is relatively small in the region of the vertices S 1 , S 2 and S R of the curves Ei, E2 and R, ie the vertex S R of the reflector R is closer to the vertex S 2 of the inner envelope Ellipse E2 as at the vertex S 1 of the outer envelope ellipse Ei.
  • the distance ratio changes in such a way that near the edge R a of the reflector the reflector lies closer to its outer envelope ellipse Ei than to its inner envelope ellipse E2.
  • the variation of the distance ratio as a function of the polar angle a can be represented analytically, for example, by the following equations: where a max is the largest polar angle of the traveling beam 2 (corresponding approximately to the beam 2 'in FIG. 1), ie the angle of the beam grazing the edge R a of the reflector section curve R.
  • a max is the largest polar angle of the traveling beam 2 (corresponding approximately to the beam 2 'in FIG. 1), ie the angle of the beam grazing the edge R a of the reflector section curve R.
  • y means a real number, in particular 1 and also U and V each mean real numbers.
  • the reflector should not have any discontinuities, i.e. the change in the distance ratio as a function of the polar angle a should follow a continuous function.
  • the reflector preferably has a continuously differentiable shape. This also applies to the other exemplary embodiment of a reflector according to the invention shown in FIG. 2.
  • Polar coordinates have certain advantages here, but it is also possible to use Cartesian or other coordinates.
  • the reflector R shown in Fig. 2 is used to generate a uniform light distribution.
  • An ellipse E and a parabola P are placed side by side so that the focal point F 1 of the parabola coincides with a focal point F 2 of the ellipse E.
  • the fixed point O which defines the beam 2 and the polar angle a, also lies in the two focal points on the optical axis 1.
  • the distance ratio k of the reflector R as defined above is constant between the enveloping curves E and P.
  • the optical properties of the reflector R can be changed as required.
  • the optical properties of the reflector R in the exemplary embodiment according to FIG. 2 are determined by the parameters a, b of the ellipse E, the parameter p of the parabola P, the distance between the apex S E and Sp of the ellipse E and the parabola P on the optical one Axis 1 and the distance ratio k described above.
  • the distance ratio k can also vary as a function of the polar angle a, in particular in accordance with the above functions (1), (2) and (3).
  • the exemplary embodiment according to FIG. 2 can also be modified such that the focal points of the parabola or ellipse do not coincide.
  • the distance between the vertices S E and Sp on the optical axis 1 can also be reduced; in extreme cases, the two vertices can coincide.
  • FIGS. 1 and 2 can be modified such that the optical axes of the enveloping curves E i , E2, E, P do not coincide in each case.
  • the optical axis of one envelope curve can be slightly inclined with respect to the optical axis of the other envelope curve.
  • the light distribution of a reflector according to the invention can be determined both mathematically and empirically.
  • a computational determination is particularly simple if an analytical expression for the distance ratio or the course of the curve R is given, so that the tangent can be calculated by differentiation. From the tangents at a large number of points, which are selected with constant angular distances from each other on the reflector cut curve R, the directions of the rays leaving the lamp result from the law of reflection ("angle of incidence equals angle of reflection") and this results in a given distance of the intensity distribution of the luminaire, ie the number of incoming light beams per unit area.
  • the light beam S reaching the opening edge Ra of the reflector R with the optical axis 1 includes an angle ⁇ which is equal to the angle ⁇ 'which the beam S' reflected at the edge forms with the optical axis.
  • the direct radiation from the light source at location O and the reflected radiation form the same light cone.
  • the light source does not necessarily have to be arranged in the focal points F1, F 2 or at location O.
  • FIGS. 3 and 4 show a comparison of the light intensity distributions in a conventional lamp with an ellipsoidal reflector and a lamp according to the invention according to Fig. 2.
  • the light intensity distribution 1 1 is a lamp with a conventional ellipsoidal reflector as a function of emission angle in applied in the usual way.
  • the curve 1 1 it can be seen that the brightness decreases starting from a maximum at 0 to the side strong.
  • the light intensity distribution 1 2 according to FIG. 4 is much more uniform and remains almost constant within a certain angle.
  • the shape need not necessarily be symmetrical with respect to the central longitudinal plane of the reflector. Rather, the lower part of the reflector can differ from the upper part in order to achieve an optimal adaptation to the required lighting.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Claims (10)

1. Réflecteur pour une lampe, dont la courbe de coupe (R), dans un plan contenant l'axe optique (1) de la lampe, n'est pas en forme de conique, caractérisé en ce que les points de la courbe de coupe de réflecteur (R) se trouvent entre deux courbes de conique (E1 , E2 ; E, P) enveloppant entre elles la courbe de coupe de réflecteur, les espacements des points (B, B') de la courbe de courbe de réflecteur de points de coupe (A, C), de rayons (2, 2') avec les courbes de conique (E1 , E2 ; E, P) enveloppantes, correspondant, chaque fois, à un rapport d'espacement (k) préalloué.
2. Réflecteur selon la revendication 1, caractérisé en ce que les rayons (2, 2'), lesquels forment les points de coupe (A, C) avec les courbes de conique (E1 , E2 ; E, P) enveloppantes, sont issus, comme des coordonnées polaires, d'une origine (O).
3. Réflecteur selon une des revendications 1 ou 2, caractérisé en ce que les courbes (Ei , E2) enveloppantes sont de type de conique identique et en ce que le rapport d'espacement (k) de la courbe de coupe de réflecteur (R) varie en fonction de l'espacement de la courbe de coupe de réflecteur de son sommet (SR).
4. Réflecteur selon une des précédentes revendications, caractérisé en ce que les courbes enveloppantes (P, E) sont de type de conique différent et en ce que le rapport d'espacement (k) de la courbe de coupe de réflecteur (R), en fonction de l'espacement par rapport à son point de sommet (SR), est constant ou varie.
5. Réflecteur selon une des précédentes revendications, caractérisé en ce que les foyers des deux courbes de conique enveloppantes coïncident.
6. Réflecteur selon une des précédentes revendications, caractérisé en ce que les points de sommet des deux courbes enveloppantes se trouvent l'un sur l'autre sur l'axe optique (1).
7. Réflecteur selon une des revendications 1 à 5, caractérisé en ce que les points de sommet (Sl, S2, SR ; Sp, SE, SR) des deux courbes enveloppantes sont espacés les uns des autres sur l'axe optique (1) de la lampe.
8. Réflecteur selon une des précédentes revendications, caractérisé en ce que les angles de base du triangle formé à partir d'un rayon de lumière réfléchissant au bord de réflecteur et de l'axe optique (1) sont égaux.
9. Réflecteur selon une des précédentes revendications, caractérisé en ce que la courbe de coupe de réflecteur (R) est continue, en particulier est susceptible d'être différenciée de façon continue.
10. Procédé pour l'engendrement d'une forme de réflecteur, dont la courbe de coupe (R), dans un plan contenant l'axe optique (1) de la lampe, n'est pas en forme de conique, caractérisé en ce que les points de la courbe de coupe de réflecteur (R) sont ainsi déterminés, qu'ils se trouvent chaque fois sur des rayons (2, 2'), qui sortent d'une origine (O) fixe en emplacement par rapport au réflecteur, et, pour chaque point (B, B') de la courbe de coupe de réflecteur (R), forment un autre angle (a, a') avec l'axe optique (1), et en ce que la position du point (B, B') sur le rayon (2, 2'), entre deux courbes de conique ((E1 , E2 ; P ; E) enveloppant entre elles la courbe de coupe de réflecteur (R), est établie de telle sorte, que les espacements du point (B, B') des points de coupe (A, C) du rayon (2, 2') avec les courbes de conique (El, E2 ; P, E) sont établis par un rapport d'espacement (k) préalloué.
EP90110622A 1989-06-13 1990-06-05 Procédé pour déterminer la forme d'un réflecteur pour lampe Expired - Lifetime EP0402740B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3919334 1989-06-13
DE3919334A DE3919334A1 (de) 1989-06-13 1989-06-13 Reflektor fuer eine leuchte

Publications (4)

Publication Number Publication Date
EP0402740A2 EP0402740A2 (fr) 1990-12-19
EP0402740A3 EP0402740A3 (fr) 1991-12-11
EP0402740B1 true EP0402740B1 (fr) 1995-01-11
EP0402740B2 EP0402740B2 (fr) 1998-07-15

Family

ID=6382686

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90110622A Expired - Lifetime EP0402740B2 (fr) 1989-06-13 1990-06-05 Procédé pour déterminer la forme d'un réflecteur pour lampe

Country Status (4)

Country Link
US (1) US5136491A (fr)
EP (1) EP0402740B2 (fr)
JP (1) JPH0738285B2 (fr)
DE (2) DE3919334A1 (fr)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3919334A1 (de) * 1989-06-13 1990-12-20 Tetsuhiro Kano Reflektor fuer eine leuchte
JP2831510B2 (ja) 1991-03-14 1998-12-02 株式会社日立製作所 液晶表示素子及びこれを用いた液晶表示装置
EP0519112B1 (fr) * 1991-06-21 1996-03-13 Tetsuhiro Kano Réflecteur et procédé de génération de la forme du réflecteur
US5586013A (en) * 1991-07-19 1996-12-17 Minnesota Mining And Manufacturing Company Nonimaging optical illumination system
US5289356A (en) * 1991-07-19 1994-02-22 Nioptics Corporation Nonimaging optical illumination system
DE4307581A1 (de) * 1993-03-10 1994-09-15 Swarovski & Co Lichteinkopplungsreflektor für Lichtleitsysteme
TW371319B (en) * 1994-08-12 1999-10-01 Matsushita Electric Ind Co Ltd Luminaire for interior lighting
JP3185125B2 (ja) * 1994-10-28 2001-07-09 株式会社小糸製作所 車輌用灯具の反射鏡及びその形成方法
JP3185126B2 (ja) * 1994-10-28 2001-07-09 株式会社小糸製作所 車輌用灯具の反射鏡及びその形成方法
US5515255A (en) * 1994-11-14 1996-05-07 Sterner Lighting Systems Incorporated Lamp reflector
WO1996039313A1 (fr) * 1995-06-06 1996-12-12 Transmatic, Inc. Systeme d'eclairage pour vehicules de transports en commun
US5961196A (en) * 1996-07-26 1999-10-05 Eastman Kodak Company Flash device for dye transferring
US5934779A (en) * 1996-07-26 1999-08-10 Eastman Kodak Company Reflector and a reflector/light source system
AU733214B2 (en) * 1996-10-18 2001-05-10 Walter Wadey & Co. Pty Ltd Flood light or luminaire construction
US6007220A (en) * 1996-11-13 1999-12-28 Innovative Engineering Solutions, Inc Reflectors for fluorescent light fixtures
US6170962B1 (en) * 1996-11-13 2001-01-09 John Joseph Wordin Dual compound reflector for fluorescent light fixtures
US5857758A (en) * 1996-12-17 1999-01-12 Transmatic, Inc. Lighting system for mass-transit vehicles
US6238075B1 (en) 1996-12-17 2001-05-29 Transmatic, Inc. Lighting system for mass-transit vehicles
BR9907253A (pt) 1998-01-26 2001-09-04 Bison Sportslights Inc Laterna aperfeiçoada
US6354715B1 (en) 1998-01-26 2002-03-12 Bison Sportslights, Inc. Flashlight
US6588917B1 (en) 1998-06-18 2003-07-08 Christopher Lee Halasz Flashlight
DE19940207B4 (de) * 1999-08-25 2005-07-14 Tetsuhiro Kano Reflektorsystem zum Führen von Licht unter kleinen Einfallswinkeln
US6953261B1 (en) * 2000-02-25 2005-10-11 North American Lighting, Inc. Reflector apparatus for a tubular light source
US6323601B1 (en) 2000-09-11 2001-11-27 Nordson Corporation Reflector for an ultraviolet lamp system
US6559460B1 (en) 2000-10-31 2003-05-06 Nordson Corporation Ultraviolet lamp system and methods
JP4070952B2 (ja) * 2000-12-18 2008-04-02 株式会社小糸製作所 車両用灯具の反射鏡の反射面設計方法
US6752515B2 (en) * 2001-04-16 2004-06-22 Cyberlux Corporation Apparatus and methods for providing emergency lighting
US6739739B2 (en) * 2002-06-13 2004-05-25 Benq Corporation Flash tube reflector
US6614028B1 (en) * 2002-07-30 2003-09-02 Fusion Uv Systems, Inc. Apparatus for and method of treating a fluid
US6893140B2 (en) * 2002-12-13 2005-05-17 W. T. Storey, Inc. Flashlight
DE10302930A1 (de) * 2003-01-24 2004-07-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Reflektor und Reflektorlampe
US6854865B2 (en) * 2003-02-12 2005-02-15 W. T. Storey, Inc. Reflector for light emitting objects
KR20050118692A (ko) * 2003-03-28 2005-12-19 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 할로겐 듀얼 빔 램프
US7172319B2 (en) * 2004-03-30 2007-02-06 Illumination Management Solutions, Inc. Apparatus and method for improved illumination area fill
US7777198B2 (en) 2005-05-09 2010-08-17 Applied Materials, Inc. Apparatus and method for exposing a substrate to a rotating irradiance pattern of UV radiation
JP4308815B2 (ja) * 2005-11-07 2009-08-05 株式会社フューチャービジョン 面光源装置
US7692171B2 (en) * 2006-03-17 2010-04-06 Andrzei Kaszuba Apparatus and method for exposing a substrate to UV radiation using asymmetric reflectors
US7589336B2 (en) * 2006-03-17 2009-09-15 Applied Materials, Inc. Apparatus and method for exposing a substrate to UV radiation while monitoring deterioration of the UV source and reflectors
WO2012138866A1 (fr) 2011-04-08 2012-10-11 Applied Materials, Inc. Appareil et procédé pour traitement aux ultraviolets, traitement chimique et dépôt

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE217720C (fr) *
FR454131A (fr) * 1912-04-09 1913-06-26 Alfred Brunn Procédé pour la fabrication de mécanismes commutateurs électriques pour machines, appareils et instruments fonctionnant avec des cartons de dessin, avec des cartes jacquard, avec des plaques perforées ou avec d'autres équivalents
CH121919A (de) * 1926-07-19 1927-08-01 Berliner Spar Elektrizitaets G Scheinwerfer für Beleuchtungszwecke.
DE1146825B (de) * 1960-07-16 1963-04-11 Braun Ag Gleichmaessig ausleuchtender Reflektor, insbesondere fuer Blitzlichtgeraete
US3390262A (en) * 1965-05-24 1968-06-25 Sylvania Electric Prod Multizone high power light reflector
US3398272A (en) * 1965-12-03 1968-08-20 William B. Elmer Isoradiant energy reflecting
JPS456114Y1 (fr) * 1966-01-29 1970-03-26
FR1470102A (fr) * 1966-02-25 1967-02-17 Dispositif d'éclairage
US4420801A (en) * 1980-07-03 1983-12-13 General Electric Company Reflector lamp
US4356538A (en) * 1980-08-04 1982-10-26 Polaroid Corporation Photographic lighting apparatus
NL8105535A (nl) * 1981-12-09 1983-07-01 Philips Nv Reflektor.
US4481563A (en) * 1982-05-10 1984-11-06 Corning Glass Works Automotive headlight having optics in the reflector
DE3340462C1 (de) * 1983-11-09 1985-04-18 Westfälische Metall Industrie KG Hueck & Co, 4780 Lippstadt Abgeblendeter Fahrzeugscheinwerfer
JPS6186723U (fr) * 1984-11-06 1986-06-06
DE3527391A1 (de) * 1985-07-31 1987-02-05 Bosch Gmbh Robert Nebelscheinwerfer fuer kraftfahrzeuge
DE3731232A1 (de) * 1987-09-17 1989-03-30 Bosch Gmbh Robert Scheinwerfer fuer fahrzeuge, insbesondere scheinwerfer fuer kraftfahrzeuge
DE3919334A1 (de) * 1989-06-13 1990-12-20 Tetsuhiro Kano Reflektor fuer eine leuchte

Also Published As

Publication number Publication date
DE59008220D1 (de) 1995-02-23
EP0402740A3 (fr) 1991-12-11
US5136491A (en) 1992-08-04
JPH0330204A (ja) 1991-02-08
EP0402740B2 (fr) 1998-07-15
EP0402740A2 (fr) 1990-12-19
DE3919334A1 (de) 1990-12-20
JPH0738285B2 (ja) 1995-04-26

Similar Documents

Publication Publication Date Title
EP0402740B1 (fr) Réflecteur pour lampe et procédé pour déterminer sa forme
DE3202080C2 (de) Beleuchtungssystem für Endoskope
DE3212698C2 (fr)
EP0519112B1 (fr) Réflecteur et procédé de génération de la forme du réflecteur
EP3575674B1 (fr) Guide de lumière pour un dispositif d'éclairage de véhicule automobile
DE102007023076A1 (de) Beleuchtungseinrichtung für Kraftfahrzeuge
EP3048363A1 (fr) Dispositif d'eclairage comprenant une source lumineuse et un reflecteur ayant une surface de reflexion ellipsoïdale
DE2826867A1 (de) Leuchte
EP2409075A1 (fr) Réflecteur, agencement de source de lumière et appareil de projection
DE19961491B4 (de) Innenraumleuchte mit Hohllichtleiter
EP3130843A1 (fr) Dispositif de mélange et de conduction d'un rayonnement électromagnétique
EP1059484A1 (fr) Luminaire avec répartition de l'intensité lumineuse à faisceau large
DE1201275B (de) Scheinwerfer zum Ausleuchten einer recht-winkligen Flaeche
DE3125168C2 (de) "Reflektor und daraus hergestellte Reflektorlampe"
DE2614770A1 (de) Reflektor mit rillen
DE1925277A1 (de) Leuchte,insbesondere Rueck- oder Sicherungsleuchte
DE4204469C2 (de) Blitzgerät
DE10011304A1 (de) Leuchte mit inhomogener Lichtabstrahlung
EP3098504A1 (fr) Réflecteur-projecteur câblé
EP0268117A2 (fr) Réflecteur pour appareils d'éclairage dentaires et chirurgicaux
AT15121U1 (de) Optisches System für eine LED-Lichtquelle sowie Leuchte mit einem solchen optischen System
EP0369338A2 (fr) Dispositif d'éclairage indirect
DE2229011A1 (de) Lichtstreuplatte für Leuchtstoffröhren
EP2812629B1 (fr) Projecteur à réflecteur
EP1106916A2 (fr) Luminaire comprenant des moyens réfractifs de protection et un réflecteur délimitant le faisceau lumineux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19920124

17Q First examination report despatched

Effective date: 19930521

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950111

ITF It: translation for a ep patent filed

Owner name: STUDIO CIONI & PIPPARELLI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950119

REF Corresponds to:

Ref document number: 59008220

Country of ref document: DE

Date of ref document: 19950223

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

26 Opposition filed

Opponent name: KIRCHHOFF, MANFRED TECHNISCHE BERATUNG

Effective date: 19951010

R26 Opposition filed (corrected)

Opponent name: MANFRED KIRCHHOFF TECHNISCHE BERATUNG

Effective date: 19951010

NLR1 Nl: opposition has been filed with the epo

Opponent name: MANFRED KIRCHHOFF TECHNISCHE BERATUNG

Opponent name: KIRCHHOFF, MANFRED TECHNISCHE BERATUNG

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970630

Year of fee payment: 8

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

ITF It: translation for a ep patent filed

Owner name: STUDIO CIONI & PIPPARELLI

27A Patent maintained in amended form

Effective date: 19980715

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB IT NL

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
NLR2 Nl: decision of opposition
ET3 Fr: translation filed ** decision concerning opposition
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000526

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000530

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010605

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050605

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080626

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101