EP0374678A2 - Hochdruckentladungslampe kleiner elektrischer Leistung und Verfahren zum Betrieb - Google Patents

Hochdruckentladungslampe kleiner elektrischer Leistung und Verfahren zum Betrieb Download PDF

Info

Publication number
EP0374678A2
EP0374678A2 EP89122832A EP89122832A EP0374678A2 EP 0374678 A2 EP0374678 A2 EP 0374678A2 EP 89122832 A EP89122832 A EP 89122832A EP 89122832 A EP89122832 A EP 89122832A EP 0374678 A2 EP0374678 A2 EP 0374678A2
Authority
EP
European Patent Office
Prior art keywords
lamp
discharge vessel
pressure discharge
discharge lamp
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89122832A
Other languages
English (en)
French (fr)
Other versions
EP0374678A3 (de
Inventor
Alexander Dobrusskin
Jürgen Dr. Heider
Jürgen vom Scheidt
Joachim Arlt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0374678A2 publication Critical patent/EP0374678A2/de
Publication of EP0374678A3 publication Critical patent/EP0374678A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/40Devices for influencing the colour or wavelength of the light by light filters; by coloured coatings in or on the envelope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the invention relates to a high-pressure discharge lamp of small electrical power with the features designated in the preamble of the main claim.
  • High-pressure discharge lamps in particular those with a metal halide filling, have recently become increasingly popular for the purpose of general lighting. Such lamps have also already been proposed for the headlights of motor vehicles. For both applications, power levels below 70 W, e.g. 35 W, completely sufficient. However, the start-up time between the ignition and reaching the final luminous flux is still unsatisfactory. In a conventionally operated lamp, it is approximately 40 seconds. DE-GM 86 23 908 therefore proposed that the lamp be externally heated in the switched-off state in order to keep the filling substances evaporated and in this way of a higher temperature and to achieve a shortened start-up time of only approx. 8 sec. Apart from the additional electrical energy required for external heating and the associated installation effort, such a shortened start-up time is still unsatisfactory for many applications.
  • the present invention is based on the object to shorten the start-up time of the metal halide lamp even further. External heating of the lamp should be avoided in view of the additional energy consumption and the measures for energy supply.
  • the main feature here is the electronic ballast, which can be used to regulate the starting current between the lamp ignition and reaching the final luminous flux in a range up to ten times the nominal current.
  • the corresponding circuit arrangements are described in the patent applications with the file numbers P 37 19 356 and P 37 19 357.
  • the further embodiment of the present invention is set out in the subclaims. This mode of operation reduces the 90% luminous flux of a conventional metal halide lamp from originally approx. 30 seconds to approx. 5 seconds. A further reduction to only approx.
  • the metal halide high-pressure discharge lamp 1 of FIG. 1 consists of quartz glass and has a discharge tion vessel 2 with two melts arranged on opposite sides of the discharge vessel 2 in the form of a pinch 3.
  • An electrode system is melted into each pinch 3 in a gas-tight manner, which consists of an electrode 4 made of tungsten arranged within the discharge vessel 2, a sealing film 5 made of molybdenum embedded by the pinch 3, and a power supply 6 emerging from the pinch 3 in the longitudinal axis of the lamp made of molybdenum.
  • the power supply lines have an area of approximately 10 mm 2 at the point of their smallest cross-section, in the present case they are the sealing foils 5 made of molybdenum.
  • the electrodes 4 are designed as spherical electrodes with a spherical diameter of approximately 0.35 mm, which are located at the end of the tungsten wire with a diameter of approximately 0.18 mm.
  • the discharge vessel 2 has an essentially elliptical shape with an outer diameter of approximately 5.5 mm and a length between the constrictions 7 of approximately 7 mm.
  • the mass of this discharge vessel 2 is approximately 6 mg per watt of electrical power, in the present exemplary embodiment of a 35 W lamp it is approximately 0.2 g.
  • the discharge vessel 2 contains not only argon as the starting gas, but also mercury and the halides of sodium and preferably scandium or of sodium and a rare earth metal.
  • a coating 8 made of silicon iron oxide and above another layer of zirconia is applied.
  • the angle ⁇ which is formed by the lamp transverse axis and the connecting line between the center of the discharge space and the inner edge of the coating 8 on the discharge vessel 2, is preferably in the range between 50 ° and 55 °.
  • the coating 8 thus covers the spaces behind the electrodes 4 almost exactly and preferably heats them up.
  • the transparent part of the discharge vessel 2 is also provided with a dichroic coating 9 of titanium dioxide and silicon dioxide, which transmits visible radiation but reflects IR radiation, with a layer thickness of approximately 0.2 ⁇ m.
  • the electrodes 4 are spherical on their mutually facing surface.
  • a further measure namely the doping of the quartz glass with a UV-absorbing agent, preferably titanium dioxide, in an amount of 0.02% by weight to 0.2% by weight was dispensed with in the present exemplary embodiment, as was the case with Filling the discharge vessel with xenon.
  • a UV-absorbing agent preferably titanium dioxide
  • FIGS. 2a and 2b show the start-up curves of a "bare" metal halide high-pressure discharge lamp 1 without any coating or doping of the quartz glass and without xenon filling.
  • the starting current of approx. 2.6 A corresponds to approximately 6.5 times the nominal current of lamp 1.
  • the 30% luminous flux ⁇ at approx. 3.0 sec, the 50% luminous flux ⁇ at approx 3.8 sec and the 90% luminous flux ⁇ is already reached at approx. 4.5 sec.
  • the rise in Luminous flux ⁇ is steep and exceeds the nominal luminous flux ⁇ after approx. 5 sec to approx. 120%, in order to then adjust to its nominal value after approx. 15 sec.
  • the other measured parameters such as color temperature T, operating voltage of the lamp U and its power consumption P, can likewise be found in the diagrams and do not require any further explanation.
  • the start-up curve of the luminous flux ⁇ of FIG. 3 comes from a metal halide high-pressure discharge lamp similar to that of FIG. 1, but without the coating 9, but with a discharge vessel filled with xenon at a cold filling pressure of approx. 6 bar.
  • the lamp was operated on the electronic ballast, the starting current being 3.3 A, which corresponds to approximately 8.5 times the nominal current.
  • the increase in the luminous flux is steeper than in the example in FIG. 2a).
  • the 90% luminous flux ⁇ is already reached after approx. 1 sec. This extremely short start-up time can be reduced even further by applying the coatings 8 and 9 according to FIG. 1 and / or doping the quartz glass with TiO2 or CeO2.

Landscapes

  • Discharge Lamp (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

Für den schnellen Anlauf einer Kfz-Metallhalogenidhochdruckentladungslampe (1) weist diese eine möglichst kleine Quarzglasmenge und Elektroden auf, die für einen durch ein EVG zeitlich geregelten 5- bis 10fachen Anlaufstrom geeignet sind. Die Steuereinrichtung für das EVG bewirkt, daß die Grenzleistung der Lampe nicht überschritten wird. Darüber hinaus weist die Lampe an ihrer Oberfläche eine IR- und/oder UV-reflektierende (9) oder absorbierende (8) Beschichtung auf. Als zusätzliche Maßnahme kann das Quarzglas des Entladungsgefäßes mit einer IR- und/oder UV-reflektierenden oder absorbierenden Dotierung versehen sein. Mit einer Xenon-Füllung des Entladungsgefäßes 2 von mindestens 3 bar erzielt man den 90 %-Lichtstrom der Lampe schon bei ca. 1 sec.

Description

  • Die Erfindung betrifft eine Hochdruckentladungslampe kleiner elektrischer Leistung mit den im Oberbegriff des Hauptanspruchs bezeichneten Merkmalen.
  • Hochdruckentladungslampen, insbesondere solche mit Metallhalogenidfüllung, setzen sich in letzter Zeit vermehrt zum Zweck der Allgemeinbeleuchtung durch. Aber auch für die Scheinwerfer von Kraftfahrzeugen wurden solche Lampen bereits vorgeschlagen. Für beide Anwendungszwecke sind Leistungsstufen unterhalb 70 W, z.B. 35 W, völlig ausreichend. Unbefriedigend ist aber noch immer die Anlaufzeit zwischen der Zündung und dem Erreichen des Endlichtstroms. Sie beträgt bei einer konventionell betriebenen Lampe ca. 40 sec. In dem DE-GM 86 23 908 wurde deshalb vorgeschlagen, die Lampe im ausgeschalteten Zustand fremd zu beheizen, um so die Füllsubstanzen verdampft zu halten und auf diese Weise von einem höheren Temperatur- und damit Druckniveau ausgehend eine verkürzte Anlaufzeit von nur ca. 8 sec zu erreichen. Abgesehen von der für die Fremdheizung erforderlichen zusätzlichen elek­trischen Energie und dem damit verbundenen Instal­lationsaufwand ist aber auch eine derart verkürzte Anlaufzeit für viele Anwendungszwecke noch immer nicht befriedigend.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die Anlaufzeit der Metallhalogenidlampe noch weiter zu verkürzen. Auf eine Fremdbeheizung der Lampe soll mit Rücksicht auf den zusätzlichen Energieverbrauch und die Maßnahmen für die Energieversorgung verzichtet werden.
  • Diese Aufgaben werden durch eine Kombination der kenn­zeichnenden Merkmale wie im Hauptanspruch angegeben gelöst. Hauptmerkmal ist hierbei das elektronische Vorschaltgerät, mit dessen Hilfe eine Regelung des Anlaufstroms zwischen der Lampenzündung und dem Erreichen des Endlichtstromes in einem Bereich bis zum zehnfachen Wert des Nennstroms möglich ist. Die entsprechenden Schaltungsanordnungen sind in den Patentanmeldungen mit den Aktenzeichen P 37 19 356 und P 37 19 357 beschrieben. Die weitere Ausgestal­tung der vorliegenden Erfindung ist in den Unteran­sprüchen dargelegt. Durch diese Betriebsweise wird der 90 %-Lichtstrom einer konventionellen Metallhalo­genidlampe von ursprünglich ca. 30 sec auf ca. 5 sec reduziert. Eine weitere Reduzierung auf nur noch ca. 1 sec für den 90 %-Lichtstrom ist mit einer Kombination der verbleibenden am Entladungsgefäß vorzunehmenden Maßnahmen hinsichtlich Beschichtung, Dotierung und der Füllung des Entladungsgefäßes möglich, wobei die Regelung des Anlaufstroms bis an die zulässige Obergrenze des elektronischen Vorschalt­gerätes, nämlich bis an den ca. 10fachen Nennstrom heranreichend erfolgt. Gegenüber dem konventionellen Betrieb einer derartigen Lampe bedeutet dies eine Verkürzung der Anlaufzeit um den Faktor 30. Der hohe Überstrom während der Anlaufphase heizt die optimierte Masse des Entladungsgefäßes schnell auf. Die entstan­ dene Wärme wird dann aufgrund der Dotierung des Entladungsgefäßmaterials sowie der beschriebenen unterschiedlichen Beschichtungen in das Entladungsge­fäß reflektiert bzw. von diesem absorbiert, so daß die abgestrahlte Wärme reduziert und Wärmeverluste mini­miert werden. Die gegenüber herkömmlichen Metallhalo­genidlampen auf diese Weise zusätzlich gewonnene Wärme wird voll zur Verdampfung der Füllsubstanzen genutzt und verkürzt dadurch die Anlaufzeit in erheblichem Maße. Das Xenon im Entladungsgefäß bewirkt einen hohen Sofortlichtanteil im unmittelbaren Anschluß an die Zündung.
  • Die Erfindung wird nachfolgend anhand von drei Figuren näher erläutert:
    • Figur 1 zeigt eine Metallhalogenidlampe mit einer Strahlung reflektierenden Beschichtung in schematischer Darstellung
    • Figur 2 zeigt die Anlaufkurven einer an einem steuer­baren elektronischen Vorschaltgerät betrie­benen Metallhalogenidlampe ohne reflektierende Beschichtung, ohne Dotierung des Quarzglases und ohne Xenon-Füllung
    • Figur 3 zeigt die Anlaufkurve des Lichtstroms einer an einem steuerbaren elektronischen Vorschalt­gerät betriebenen Metallhalogenidlampe mit reflektierender Beschichtung und mit Xenon-­Füllung
  • Die Metallhalogenidhochdruckentladungslampe 1 der Figur 1 besteht aus Quarzglas und weist ein Entla­ dungsgefäß 2 mit zwei an gegenüberliegenden Seiten des Entladungsgefäßes 2 angeordneten Einschmelzungen in Form einer Quetschung 3 auf. In jede Quetschung 3 ist ein Elektrodensystem gasdicht eingeschmolzen, das aus einer innerhalb des Entladungsgefäßes 2 angeordneten Elektrode 4 aus Wolfram, einer von der Quetschung 3 eingebetteten Dichtungsfolie 5 aus Molybdän sowie einer aus der Quetschung 3 in Lampenlängsachse aus­tretenden Stromzuführung 6 aus Molybdän besteht. Die Stromzuführungen weisen an der Stelle ihres geringsten Querschnitts, das sind im vorliegenden Fall die Dichtungsfolien 5 aus Molybdän, eine Fläche von ca. 10 mm² auf. Die Elektroden 4 sind in diesem Aus­führungsbeispiel als Kugelelektroden mit einem Kugel­durchmesser von ca. 0,35 mm ausgeführt, die sich am Ende des Wolframdrahtes mit ca. 0,18 mm Durchmesser befinden.
  • In einem bevorzugten Ausführungsbeispiel einer Metall­halogenidhochdruckentladungslampe 1 mit ca. 35 W Leistungsaufnahme weist das Entladungsgefäß 2 eine im wesentlichen elliptische Gestalt mit einem Außen­durchmesser von ca. 5,5 mm und einer Länge zwischen den Einschnürungen 7 von ca. 7 mm auf. Die Masse dieses Entladungsgefäßes 2 beträgt ca. 6 mg je Watt elektrischer Leistung, im vorliegenden Ausführungsbei­spiel einer 35 W-Lampe also ca. 0,2 g. In einem Volumen von nur 0,025 cm³ enthält das Entladungsgefäß 2 neben dem Argon als Startgas auch Quecksilber sowie die Halogenide von Natrium und vorzugsweise Scandium oder von Natrium und einem Metall der Seltenen Erden. An jeder Einschnürung 7, das ist der Übergangsbereich vom Entladungsgefäß 2 zur Quetschung 3, ist zuerst eine Beschichtung 8 aus Siliziumeisenoxid und darüber eine weitere Schicht aus Zirkondioxid aufgetragen. Der Winkel α , der durch die Lampenquerachse und der Verbindungslinie zwischen dem Mittelpunkt des Entla­dungsraumes sowie dem inneren Rand der Beschichtung 8 auf dem Entladungsgefäß 2 gebildet wird, liegt bevor­zugt im Bereich zwischen 50° und 55°. Die Beschichtung 8 bedeckt somit ziemlich genau die hinter den Elek­troden 4 liegenden Räume und heizt diese bevorzugt auf. Der transparente Teil des Entladungsgefäßes 2 ist darüber hinaus mit einer sichtbare Strahlung trans­mittierenden, aber IR-Strahlung reflektierenden dichroitischen Beschichtung 9 aus Titandioxid und Siliziumdioxid mit einer Schichtdicke von ca. 0,2 µm versehen. Die Elektroden 4 sind an ihrer sich einander zugewandten Oberfläche kugelförmig ausgebildet. Auf eine weitere Maßnahme, nämlich die Dotierung des Quarzglases mit einem UV-Strahlung absorbierenden Mittel, vorzugsweise Titandioxid, mit einer Menge von 0,02 Gew.-% bis 0,2 Gew.-% wurde im vorliegenden Ausführungsbeispiel verzichtet, ebenso wie auf die Füllung des Entladungsgefäßes mit Xenon.
  • In den Figuren 2a und 2b sind die Anlaufkurven einer "nackten" Metallhalogenidhochdruckentladungslampe 1 ohne jegliche Beschichtung oder Dotierung des Quarz­glases und ohne Xenon-Füllung wiedergegeben. Die Lampe selbst wurde aber an einem erfindungsgemäßen elektro­nischen, den Anlaufstrom regelnden Vorschaltgerät entsprechend Anspruch 1 a) betrieben. Der Anlaufstrom von ca. 2,6 A entspricht etwa dem 6,5fachen Nennstrom der Lampe 1. Wie dem Diagramm zu entnehmen ist, wird der 30 %-Lichtstrom φ bei ca. 3,0 sec, der 50 %-Licht­strom φ bei ca. 3,8 sec und der 90 %-Lichtstrom φ bereits bei ca. 4,5 sec erreicht. Der Anstieg des Lichtstroms φ erfolgt steil und übersteigt nach ca. 5 sec den Nennlichtstrom φ auf ca. 120 %, um sich dann nach ca. 15 sec auf seinen Nennwert einzustellen. Die anderen gemessenen Parameter, wie Farbtemperatur T, Brennspannung der Lampe U sowie deren Leistungsauf­nahme P, sind ebenfalls den Diagrammen zu entnehmen und bedürfen keiner weiteren Erläuterung.
  • Die Anlaufkurve des Lichtstroms φ der Figur 3 stammt von einer Metallhalogenidhochdruckentladungslampe ähnlich der Figur 1, jedoch ohne die Beschichtung 9, aber mit einem mit Xenon gefüllten Entladungsgefäß bei einem Kaltfülldruck von ca. 6 bar. Die Lampe wurde wie im vorangegangenen Beispiel an dem elektronischen Vorschaltgerät betrieben, wobei der Anlaufstrom bei 3,3 A lag, was etwa dem ca. 8,5fachen Nennstrom ent­spricht. Mie hier deutlich zu erkennen ist, erfolgt der Anstieg des Lichtstromes noch steiler als im Beispiel der Figur 2 a). Der 90 %-Lichtstrom φ wird hier schon nach ca. 1 sec erreicht. Diese extrem kurze Anlaufzeit ist durch das Aufbringen der Beschichtungen 8 und 9 entsprechend der Figur 1 und/oder eine Dotierung des Quarzglases mit TiO₂ oder CeO₂ noch weiter zu verkürzen.

Claims (7)

1. Hochdruckentladungslampe (1) kleiner elektrischer Leistung mit zugeordnetem elektronischen Vorschalt­gerät, bei der die Lampe ein Entladungsgefäß (2) und eine darin enthaltene Füllung von mindestens einem Edelgas, Quecksilber und Metallhalogeniden aufweist, und in das Entladungsgefäß (2) mindestens zwei Elektroden (4) über Stromzuführungen (6) gasdicht hineingeführt sind, dadurch gekennzeichnet, daß außer den Merkmalen a) bis c) mindestens noch ein weiteres der Merkmale d) bis g) in Kombination vorliegt.
a) Das elektronische Vorschaltgerät beinhaltet eine Steuervorrichtung, die den Anlaufstrom der Lampe (1) auf einen Wert einstellt, der zwischen dem fünffachen und dem zehnfachen Wert des Nennstromes liegt.
b) Das Entladungsgefäß (2) enthält als Füllung min­destens die Halogenide von Natrium und Scandium oder von Natrium und einem Metall der Seltenen Erden.
c) Die Masse des Entladungsgefäßes (2) liegt im Bereich zwischen 0,002 Gramm je Watt und 0,1 Gramm je Watt elektrischer Leistung der Lampe.
d) Das Entladungsgefäß enthält als Füllgas Xenon mit einem Kaltfülldruck von mindestens 3 bar.
e) Das Entladungsgefäß (2) ist zumindest teilweise mit mindestens einem Mittel versehen, das nicht sicht­bare Strahlung reflektiert oder absorbiert und sichtbare Strahlung transmittiert.
f) Die Schäfte der Elektroden (4) weisen einen Durch­messer von maximal 0,3 mm auf.
g) Der sich einander zugewandte Teil der Elektroden (4) ist verrundet.
2. Hochdruckentladungslampe (1) nach Anspruch 1, dadurch gekennzeichnet, daß das nicht sichtbare Strahlung reflektierende und sichtbare Strahlung transmittierende Mittel aus einer auf die Oberfläche des Entladungsgefäßes (2) aufgetragenen dichroitischen Beschichtung (9) aus TiO₂ und SiO₂ oder Si₃N₄ und SiO₂ besteht.
3. Hochdruckentladungslampe (1) nach Anspruch 2, dadurch gekennzeichnet, daß die dichroitische Beschichtung (9) eine Dicke aufweist, die im Bereich von 0,1 µm bis 1,5 µm liegt.
4. Hochdruckentladungslampe (1) nach Anspruch 1, dadurch gekennzeichnet, daß das nicht sichtbare Strahlung absorbierende und sichtbare Strahlung transmittierende Mittel aus einer dem Material des Entladungsgefäßes (2) zugesetzten Dotierung aus TiO₂, CeO₂, SnO₂ oder BaMgAl₂O₃ besteht.
5. Hochdruckentladungslampe (1) nach Anspruch 4, dadurch gekennzeichnet, daß die dem Material des Entladungsgefäßes (2) zugesetzte Dotierung eine Menge aufweist, die im Bereich von 0,02 Gew.-% bis 0,2 Gew.-% je Gewichtseinheit liegt.
6. Hochdruckentladungslampe (1) nach Anspruch 1, dadurch gekennzeichnet, daß die Enden des Entladungs­gefäßes (2) mit einer nicht sichtbare und sichtbare Strahlung reflektierenden Beschichtung (8) aus Zirkon­dioxid versehen sind.
7. Hochdruckentladungslampe (1) nach Anspruch 6, dadurch gekennzeichnet, daß die Enden des Entladungs­gefäßes (2) außer der Beschichtung (8) aus Zirkon­dioxid zusätzlich eine Beschichtung aus Silizium­eisenoxid aufweisen.
EP19890122832 1988-12-19 1989-12-11 Hochdruckentladungslampe kleiner elektrischer Leistung und Verfahren zum Betrieb Withdrawn EP0374678A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3842771A DE3842771A1 (de) 1988-12-19 1988-12-19 Hochdruckentladungslampe kleiner elektrischer leistung und verfahren zum betrieb
DE3842771 1988-12-19

Publications (2)

Publication Number Publication Date
EP0374678A2 true EP0374678A2 (de) 1990-06-27
EP0374678A3 EP0374678A3 (de) 1991-05-02

Family

ID=6369559

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890122832 Withdrawn EP0374678A3 (de) 1988-12-19 1989-12-11 Hochdruckentladungslampe kleiner elektrischer Leistung und Verfahren zum Betrieb

Country Status (6)

Country Link
US (1) US5017839A (de)
EP (1) EP0374678A3 (de)
JP (1) JP2825569B2 (de)
DD (1) DD290505A5 (de)
DE (1) DE3842771A1 (de)
HU (1) HU202672B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628987A2 (de) * 1993-06-07 1994-12-14 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Metallhalogenidentladungslampe und Verfahren zu ihrer Herstellung
WO1995031001A1 (en) * 1994-05-10 1995-11-16 Philips Electronics N.V. Capped high-pressure discharge lamp with light-absorbing coating
EP0834905A2 (de) * 1996-10-02 1998-04-08 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Natriumhochdrucklampe kleiner Leistung
EP1369902A1 (de) * 2001-02-19 2003-12-10 West Electric Co., Ltd. "elektrische entladungsröhre, verfahren zu ihrer herstellung, stroboskopeinrichtung mit der röhre und kamera"

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4015399A1 (de) * 1990-05-14 1991-11-21 Hella Kg Hueck & Co Schaltungsanordnung fuer einen kraftfahrzeugscheinwerfer
US6243057B1 (en) 1990-11-16 2001-06-05 Digital Projection Limited Deformable mirror device driving circuit and method
US6561675B1 (en) 1995-01-27 2003-05-13 Digital Projection Limited Rectangular beam generating light source
DE4432315A1 (de) * 1994-09-12 1996-03-14 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Quecksilberdampf-Kurzbogenlampe
US5952768A (en) * 1994-10-31 1999-09-14 General Electric Company Transparent heat conserving coating for metal halide arc tubes
DE19515511A1 (de) * 1995-04-27 1996-10-31 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren und Schaltungsanordnung zum Starten und Betreiben einer Entladungslampe
JP3859259B2 (ja) * 1995-07-13 2006-12-20 三星電子株式会社 紫外線照射装置
TW484165B (en) * 1996-10-02 2002-04-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Low-power high-pressure sodium lamp
US20060255741A1 (en) * 1997-06-06 2006-11-16 Harison Toshiba Lighting Corporation Lightening device for metal halide discharge lamp
DE69911091T3 (de) * 1998-03-16 2008-07-17 Matsushita Electric Industrial Co., Ltd., Kadoma Entladungslampe und Verfahren zu deren Herstellung
JP2000057994A (ja) * 1998-08-04 2000-02-25 Stanley Electric Co Ltd ダブルエンド型低電力メタルハライドランプ
US6495844B1 (en) * 2000-01-25 2002-12-17 Welch Allyn, Inc. Metal halide lamp for curing adhesives
EP1168417A1 (de) * 2000-06-26 2002-01-02 General Electric Company Glühlampe mit einer IR-reflektierenden Beschichtung und einer vollständig reflektierenden Endbeschichtung
DE10204691C1 (de) * 2002-02-06 2003-04-24 Philips Corp Intellectual Pty Quecksilberfreie Hochdruckgasentladungslampe und Beleuchtungseinheit mit einer solchen Hochdruckgasentladungslampe
KR20030079388A (ko) * 2002-04-04 2003-10-10 유니램 주식회사 교류회로 방전등에서의 방전전극 구조
DE10222954A1 (de) * 2002-05-24 2003-12-04 Philips Intellectual Property Hochdruckgasentladungslampe
US6888312B2 (en) * 2002-12-13 2005-05-03 Welch Allyn, Inc. Metal halide lamp for curing adhesives
US7152609B2 (en) * 2003-06-13 2006-12-26 Philip Morris Usa Inc. Catalyst to reduce carbon monoxide and nitric oxide from the mainstream smoke of a cigarette
US7352118B2 (en) * 2003-12-10 2008-04-01 General Electric Company Optimized ultraviolet reflecting multi-layer coating for energy efficient lamps
CN100583382C (zh) * 2004-03-11 2010-01-20 皇家飞利浦电子股份有限公司 高压放电灯
DE202005004487U1 (de) * 2004-07-12 2005-11-24 Schott Ag System zur Hintergrundbeleuchtung von Displays oder Bildschirmen
DE102005057527A1 (de) * 2005-12-01 2007-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdruckentladungslampe mit verbesserter Zündfähigkeit
US7633237B2 (en) * 2007-09-25 2009-12-15 Osram Sylvania Inc. Fast run-up of metal halide lamp by power modulation at acoustic resonance frequency

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1477874A (fr) * 1966-04-21 1967-04-21 Lampes Sa Perfectionnements aux lampes à vapeur métallique
DE1589095A1 (de) * 1967-07-12 1970-03-05 Braun Ag Gasentladungslampe fuer Blitzgeraete
US3629647A (en) * 1970-07-15 1971-12-21 Gen Electric Voltage doubler starting circuit for discharge lamp
JPS55157849A (en) * 1979-05-25 1980-12-08 Toshiba Corp High efficiency rapid start type fluorescent lamp
EP0128551A1 (de) * 1983-06-09 1984-12-19 GTE Products Corporation Einseitig mit Elektroden versehene Metallhalogenid-Entladungslampen und Verfahren zur Herstellung
EP0128550A1 (de) * 1983-06-09 1984-12-19 GTE Products Corporation Einseitig mit Elektroden versehene Metallhalogenid-Entladungslampe mit minimaler Farbenzerlegung und Verfahren zur Herstellung
JPS6145553A (ja) * 1985-07-12 1986-03-05 Hitachi Ltd メタルハライドランプ
JPS61181056A (ja) * 1985-02-06 1986-08-13 Hitachi Ltd 高圧放電灯
JPS61181055A (ja) * 1985-02-06 1986-08-13 Hitachi Ltd メタルハライドランプ
NL8502966A (nl) * 1985-10-30 1986-10-01 Philips Nv Hogedrukontladingslamp.
EP0210626A2 (de) * 1985-08-01 1987-02-04 General Electric Company Elektrische Metallhalogenidentladungslampe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3232207A1 (de) * 1982-08-30 1984-03-08 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Hochdruckentladungslampe kleiner leistung
US4757236A (en) * 1984-11-29 1988-07-12 General Electric Company High pressure metal halide arc lamp with xenon buffer gas
US4891555A (en) * 1985-11-15 1990-01-02 General Electric Company Metal vapor discharge lamps
DE8623908U1 (de) * 1986-09-05 1988-03-31 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Hochdruckentladungslampe
DE3719357A1 (de) * 1987-06-10 1988-12-29 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum betrieb einer entladungslampe an einer niedervolt-spannungsquelle
DE3719356A1 (de) * 1987-06-10 1988-12-29 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum betrieb einer entladungslampe an einer niedervolt-gleichspannungsquelle
US4935668A (en) * 1988-02-18 1990-06-19 General Electric Company Metal halide lamp having vacuum shroud for improved performance
JPH01227347A (ja) * 1988-03-04 1989-09-11 Koito Mfg Co Ltd 車輌前照灯用メタルハライドランプ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1477874A (fr) * 1966-04-21 1967-04-21 Lampes Sa Perfectionnements aux lampes à vapeur métallique
DE1589095A1 (de) * 1967-07-12 1970-03-05 Braun Ag Gasentladungslampe fuer Blitzgeraete
US3629647A (en) * 1970-07-15 1971-12-21 Gen Electric Voltage doubler starting circuit for discharge lamp
JPS55157849A (en) * 1979-05-25 1980-12-08 Toshiba Corp High efficiency rapid start type fluorescent lamp
EP0128551A1 (de) * 1983-06-09 1984-12-19 GTE Products Corporation Einseitig mit Elektroden versehene Metallhalogenid-Entladungslampen und Verfahren zur Herstellung
EP0128550A1 (de) * 1983-06-09 1984-12-19 GTE Products Corporation Einseitig mit Elektroden versehene Metallhalogenid-Entladungslampe mit minimaler Farbenzerlegung und Verfahren zur Herstellung
JPS61181056A (ja) * 1985-02-06 1986-08-13 Hitachi Ltd 高圧放電灯
JPS61181055A (ja) * 1985-02-06 1986-08-13 Hitachi Ltd メタルハライドランプ
JPS6145553A (ja) * 1985-07-12 1986-03-05 Hitachi Ltd メタルハライドランプ
EP0210626A2 (de) * 1985-08-01 1987-02-04 General Electric Company Elektrische Metallhalogenidentladungslampe
NL8502966A (nl) * 1985-10-30 1986-10-01 Philips Nv Hogedrukontladingslamp.

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 10, no. 201 (E-419)(2257) 15 Juli 1986, & JP-A-61 45553 (HITACHI) 5 März 1986, *
PATENT ABSTRACTS OF JAPAN vol. 11, no. 4 (E-468)(2451) 7 Januar 1987, & JP-A-61 181055 (HITACHI) 13 August 1986, *
PATENT ABSTRACTS OF JAPAN vol. 11, no. 4 (E-468)(2451) 7 Januar 1987, & JP-A-61 181056 (HITACHI) 13 August 1986, *
PATENT ABSTRACTS OF JAPAN vol. 5, no. 30 (E-47)(702) 24 Februar 1981, & JP-A-55 157849 (TOKYO SHIBAURA DENKI K.K.) 8 Dezember 1980, *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628987A2 (de) * 1993-06-07 1994-12-14 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Metallhalogenidentladungslampe und Verfahren zu ihrer Herstellung
EP0628987A3 (de) * 1993-06-07 1995-12-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metallhalogenidentladungslampe und Verfahren zu ihrer Herstellung.
WO1995031001A1 (en) * 1994-05-10 1995-11-16 Philips Electronics N.V. Capped high-pressure discharge lamp with light-absorbing coating
EP0834905A2 (de) * 1996-10-02 1998-04-08 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Natriumhochdrucklampe kleiner Leistung
EP0834905A3 (de) * 1996-10-02 1998-06-03 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Natriumhochdrucklampe kleiner Leistung
US6051927A (en) * 1996-10-02 2000-04-18 Patent-Truehand-Gesellschaft Fuer Elektrische Gluelampen Mbh High pressure sodium lamp of low power
EP1369902A1 (de) * 2001-02-19 2003-12-10 West Electric Co., Ltd. "elektrische entladungsröhre, verfahren zu ihrer herstellung, stroboskopeinrichtung mit der röhre und kamera"
EP1369902A4 (de) * 2001-02-19 2007-04-04 Panasonic Photo & Lighting Co "elektrische entladungsröhre, verfahren zu ihrer herstellung, stroboskopeinrichtung mit der röhre und kamera"

Also Published As

Publication number Publication date
EP0374678A3 (de) 1991-05-02
US5017839A (en) 1991-05-21
HUT52891A (en) 1990-08-28
DD290505A5 (de) 1991-05-29
HU896663D0 (en) 1990-02-28
DE3842771A1 (de) 1990-06-21
JP2825569B2 (ja) 1998-11-18
JPH02220348A (ja) 1990-09-03
HU202672B (en) 1991-03-28

Similar Documents

Publication Publication Date Title
EP0374678A2 (de) Hochdruckentladungslampe kleiner elektrischer Leistung und Verfahren zum Betrieb
DE69303079T2 (de) Hochdrucknatriumlampe
EP0700579B1 (de) Hochdruckentladungslampe und herstellungsverfahren für eine hochdruckentladungslampe
DE68911954T2 (de) Elektrische Lampe.
DE2625954A1 (de) Niederdruckquecksilberdampfentladungslampe und verfahren zu ihrer herstellung
EP0451647B1 (de) Hochdruckentladungslampe und Verfahren zu ihrer Herstellung
DE69402641T2 (de) Cadmiumentladungslampe
EP0453893A1 (de) Hochdruckentladungslampe
EP0839381A1 (de) Reflektorlampe
EP2020018A1 (de) Hochdruckentladungslampe
DE69507696T2 (de) Niederdruckquecksilberdampfentladungslampe
DE3038993C2 (de) Metalldampfentladungslampe
EP2499657B1 (de) Quecksilberfreie hochdruckentladungslampe mit reduziertem zinkhalogenidanteil
EP1004137B1 (de) Entladungslampe mit dielektrisch behinderten elektroden
DE10204691C1 (de) Quecksilberfreie Hochdruckgasentladungslampe und Beleuchtungseinheit mit einer solchen Hochdruckgasentladungslampe
EP0269957B1 (de) Einseitig gequetschte Hochdruckentladungslampe
DE69937710T2 (de) Zweiseitig gesockelte Metallhalogenidlampe niedriger Leistung
EP2338161B1 (de) Entladungslampe mit einer elektrode
DE69824824T2 (de) Dichtung eines lampenkolben
EP1730766A2 (de) Elektrodensystem für eine hochdruckentladungslampe
DE69622838T2 (de) Elektrische lampe
DE10126958A1 (de) Flüssigkristallbildschirm mit verbesserter Hintergrundbeleuchtung
EP0759633A1 (de) Hochdruckentladungslampe
EP1315197A1 (de) Hochdruckgasentladungslampe
EP1709668B1 (de) Niederdruckentladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19901220

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL SE

17Q First examination report despatched

Effective date: 19930630

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19931220