EP0700579B1 - Hochdruckentladungslampe und herstellungsverfahren für eine hochdruckentladungslampe - Google Patents

Hochdruckentladungslampe und herstellungsverfahren für eine hochdruckentladungslampe Download PDF

Info

Publication number
EP0700579B1
EP0700579B1 EP94916137A EP94916137A EP0700579B1 EP 0700579 B1 EP0700579 B1 EP 0700579B1 EP 94916137 A EP94916137 A EP 94916137A EP 94916137 A EP94916137 A EP 94916137A EP 0700579 B1 EP0700579 B1 EP 0700579B1
Authority
EP
European Patent Office
Prior art keywords
outer bulb
quartz glass
discharge vessel
discharge lamp
pressure discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94916137A
Other languages
English (en)
French (fr)
Other versions
EP0700579A1 (de
Inventor
Christian Wittig
Dieter Lang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0700579A1 publication Critical patent/EP0700579A1/de
Application granted granted Critical
Publication of EP0700579B1 publication Critical patent/EP0700579B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/34Double-wall vessels or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/265Sealing together parts of vessels specially adapted for gas-discharge tubes or lamps
    • H01J9/266Sealing together parts of vessels specially adapted for gas-discharge tubes or lamps specially adapted for gas-discharge lamps

Definitions

  • the invention relates to a high-pressure discharge lamp according to the preamble of claim 1 and a method for producing a high-pressure discharge lamp.
  • it is a high-pressure discharge lamp that is used for an optical imaging system, such as is suitable for a motor vehicle headlight.
  • EP-A 0 570 068 discloses such a lamp, which corresponds to the preamble of patent claim 1. It serves as a light source for a motor vehicle headlight.
  • This high-pressure discharge lamp has a discharge vessel made of quartz glass which is sealed on two sides and sealed by means of melted-in molybdenum, with two axially aligned electrodes which are each melted into one end of the discharge vessel.
  • An outer bulb made of quartz glass surrounds the discharge vessel.
  • FIG. 3 of this laid-open document shows a high-pressure discharge lamp with an essentially rotationally symmetrical outer bulb which is arranged coaxially with the discharge vessel and is fused to the sealed ends of the discharge vessel outside the molybdenum melting films.
  • EP-A 0 465 083 also describes a high-pressure discharge lamp falling under the preamble of patent claim 1.
  • This high-pressure discharge lamp has a discharge vessel made of quartz glass which is sealed on two sides and sealed by means of melted-in molybdenum, with two axially aligned electrodes which are each melted into one end of the discharge vessel.
  • Outside of the melted down Molybdenum foils each have a plate-like thickening with which an outer bulb made of quartz glass and surrounding the discharge vessel is fused in a gas-tight manner.
  • This type of outer bulb fixation on the discharge vessel by means of the plate-like thickenings is comparatively complex.
  • these plate-like thickenings must also be at a sufficient distance from the melted-in molybdenum foils in order not to endanger the sealing of the discharge vessel.
  • the patent US Pat. No. 5,196,759 discloses a high-pressure discharge lamp which is equipped with a tubular discharge vessel and a tubular outer bulb.
  • the outer bulb consists of quartz glass doped with additives that absorb ultraviolet rays. It surrounds the discharge vessel without contact. The ends of the outer bulb are sealed by means of melted-down molybdenum foil via the current leads protruding from the discharge vessel.
  • the Canadian laid-open specification CA 2,026,850 describes a high-pressure discharge lamp provided with an outer bulb, the discharge vessel of which is arranged obliquely to the longitudinal axis or outside the longitudinal axis of the outer bulb, in order to ensure an optimum light output as a function of the position of the discharge vessel and of the reflector type.
  • the high-pressure discharge lamps according to the invention are equipped with an outer bulb, the glass of which has a lower viscosity and thus a has a lower softening temperature than the quartz glass of the discharge vessel.
  • an outer bulb the glass of which has a lower viscosity and thus a has a lower softening temperature than the quartz glass of the discharge vessel.
  • the outer bulb is made of a so-called soft quartz glass provided with viscosity-reducing additives, while the thermally more highly stressed discharge vessel consists of undoped quartz glass.
  • Soft quartz glasses Compared to pure, undoped quartz glass (silica content of approx. 99.99 mole percent), they have a softening range at significantly lower temperatures and are therefore easier and more energy-efficient to process than pure quartz glass. Examples of such soft quartz glasses, which can advantageously be used as outer bulb glass, are disclosed in EP-A-0 601 391 (Art. 54 (3)). Alkaline earth metal borates in quartz glass are primarily used as viscosity-reducing dopants.
  • the outer bulb glass also contains additives of rare earth metal compounds which reduce the transparency of the outer bulb glass in the ultraviolet spectral range in order to reduce the UV emission of the high-pressure discharge lamp. Since these rare earth metal compounds absorbing UV rays themselves reduce the viscosity of the outer bulb glass, a sufficient amount of rare earth metal compounds in the outer bulb glass, ie with a weight fraction of these rare earth metal compounds of more than approx. 5 percent by weight, possibly the initially mentioned viscosity-reducing alkaline earth metal borates can be dispensed with.
  • the simple outer bulb attachment to the discharge vessel has a particularly advantageous effect in the case of high-pressure discharge lamps used in motor vehicle headlights, because no additional holder or frame parts are necessary here, which can lead to impairment of the light emission.
  • High-pressure discharge lamps used in motor vehicle headlights are usually in a horizontal position, i. that is, operated with a horizontally extending discharge path, so that the discharge arc experiences a convection-related sickle-like upward curvature in the earth's gravitational field.
  • the axis of symmetry of the essentially rotationally symmetrical outer bulb of the high-pressure discharge lamp according to the invention is arranged parallel to the connecting path of the discharge-side electrode ends.
  • the amount of the parallel shift corresponds approximately to the mean deflection of the discharge arc from the fictitious connecting section of the electrode ends. In this way it is ensured that the outer bulb wall does not produce mirror images of the curved discharge arc, which would cause disturbing reflections in the reflector and would lead to loss of light.
  • the outer bulb axis advantageously runs through the brightness center or maximum of the discharge arc, which is used for the imaging system.
  • the deflection of the discharge arc from the discharge path, that is the connecting path between the discharge-side ends of the electrodes about 0.3 mm to 1.0 mm.
  • the eccentric position of the outer bulb with respect to the connecting section of the discharge-side electrode ends or with respect to the discharge vessel axis - usually the electrodes run in the discharge vessel axis - can be ensured relatively simply by fixing the outer bulb and discharge vessel in eccentrically arranged chucks of a glass lathe when the outer bulb melts.
  • FIG. 1a the two electrodes 3 are arranged horizontally and lie in the axis AA of the outer bulb 1.
  • the ends of the electrodes 3 which face one another on the discharge side define a discharge path lying in the outer bulb axis AA.
  • a discharge arc 4 which is curved upward due to convection is formed between the ends of the electrodes 3 on the discharge side.
  • the outer bulb wall generates a real mirror image 4a of the discharge arc 4 below the axis AA, which leads to light losses and disturbing reflections when such a lamp is used in an imaging system.
  • FIG. 1b shows the arrangement of outer bulb 1 and electrodes 3 in a high-pressure discharge lamp according to the invention.
  • the electrodes 3 are arranged eccentrically in the outer bulb 1, so that the discharge path runs parallel to the outer bulb axis A-A, but does not coincide with it.
  • the distance of the electrodes or the discharge path to the outer bulb axis is chosen so that the outer bulb axis A-A runs through the center of brightness or maximum brightness of the discharge arc and the real mirror image 4a is largely coincident with the discharge arc 4.
  • the brightness center or maximum of the discharge arc 4 coincides with its mirror image.
  • the brightness center or maximum is the location on the center perpendicular between the two discharge-side electrode ends that has the highest luminance in the discharge arc 4.
  • FIG. 1 A high-pressure discharge lamp according to the invention is shown in FIG.
  • This exemplary embodiment is a metal halide lamp with a base on one side and an electrical power consumption of approximately 35 watts, which is preferably used in motor vehicle headlights.
  • This lamp has an essentially axially symmetrical, two-sided sealed discharge vessel 2, which is surrounded by an essentially rotationally symmetrical outer bulb 1.
  • the discharge vessel 2 has a discharge space with an ionizable filling enclosed in a gas-tight manner therein, as well as two opposing squeezing ends 5a, 5b, in each of which an axially arranged electrode 3 projecting into the discharge space is melted.
  • Both electrodes 3 are each electrically conductively connected to a power supply 7a, 7b via a molybdenum foil melt 6.
  • the outer bulb 1 is fastened directly on the pinch seals 5a, 5b of the discharge vessel 2, in the immediate vicinity of the end of the molybdenum foils 6 facing away from the discharge space. It consists of 1.0 percent by weight barium metaborate (BaB 2 O 4 ), 0.5 Weight percent ceraluminate (CeAlO 3 ), 0.5 weight percent praseodymium oxide (Pr 6 O 11 ) and 0.05 weight percent titanium oxide (TiO 2 ) doped quartz glass.
  • the discharge vessel 2 is made of undoped quartz glass and is fixed in the lamp base 9 by means of a tubular extension 8a of the pinch end 5a.
  • the power supply 7a close to the base runs inside the tubular extension 8a and makes electrical contact with one of the two connection cables 10, while the power supply 7b remote from the base is electrically conductively connected to the other connection cable 10 via a return 11, which has ceramic insulation.
  • This lamp is operated in a horizontal position, i.e. with a horizontal discharge path.
  • the lamp is oriented so that the return 11 runs below the outer bulb 1 (Fig. 2).
  • the outer bulb 1 is arranged eccentrically with respect to the discharge vessel 2 and with respect to the discharge path, which is defined by electrode ends on the discharge side.
  • the outer bulb axis A-A runs approx. 0.65 mm above and parallel to the discharge vessel axis and to the discharge path.
  • the distance between the outer bulb axis A-A and the discharge path or the discharge vessel axis B-B is exaggerated for clarity.
  • FIGS. 3a and 3b illustrate the production method of a high-pressure discharge lamp according to the invention, in particular the assembly of the outer bulb 1.
  • a completely prefabricated, essentially axially symmetrical discharge vessel 2 made of undoped quartz glass and a circular cylindrical, with 1.0 percent by weight barium metaborate ( BaB 2 O 4 ), 0.5 percent by weight of ceraluminate (CeAlO 3 ), 0.5 percent by weight of praseodymium oxide (Pr 6 O 11 ) and quartz glass tube 1 doped with 0.05 percent by weight of titanium oxide (TiO 2 ).
  • the discharge vessel 2 has two gas-tightly closed squeezing ends 5a, 5b and two axially running electrodes 3, each of which is electrically conductively connected to a power supply 7a, 7b via a molybdenum foil melt 6. Both power supply lines each run within a tubular extension 8a, 8b of the crimp ends 5a, 5b.
  • the quartz glass tube 1 is threaded onto the discharge vessel 2.
  • the discharge vessel 2 is held on the tubular extension 8a of the crimping end 5a in a first chuck 12a of a glass lathe, while a counter bearing 13 supports the discharge vessel 2 on the other tubular extension 8b.
  • the glass tube 1 is fixed together with a base 14, a washer, in a second chuck 12b of the glass lathe. Both chucks 12a, 12b of the glass lathe are arranged coaxially.
  • the quartz glass tube 1 is adjusted in such a way that the discharge space and both squeezing ends 5a, 5b are enveloped by the glass tube 1.
  • the base 14 brings about an eccentric arrangement of the glass tube 1 with respect to the discharge vessel 2, such that the discharge vessel axis B-B and the axis of rotation of the glass tube 1 are displaced parallel to one another by the thickness of the base 14.
  • the electrodes 3 lie in the discharge vessel axis B-B and the quartz glass tube 1 forms the outer bulb, this means that the outer bulb axis A-A and the discharge path defined by the electrode heads are likewise displaced parallel to one another by the thickness of the base 14.
  • the free end of the quartz glass tube 1, which is not clamped in the chuck 12b, is heated by means of an H 2 / O 2 burner 15 to the softening temperature of the quartz glass tube of approximately 1540 ° C., or to a temperature slightly above it, and with With the help of a cutting roller 16, it is rolled onto the squeezing end 5a of the discharge vessel 2 and fused with it.
  • the discharge vessel consisting of undoped quartz glass is still solid, since the softening temperature of the undoped quartz glass is approximately 1750 ° C., ie approximately 200 ° C. above the softening temperature of the quartz glass tube. In this way, the free end of the glass tube 1 is closed and fixed to the discharge vessel 2.
  • both chucks 12a, 12b rotate synchronously.
  • the other, still open end of the quartz glass tube 1 is closed in the same way by heating using an H 2 / O 2 burner 15.
  • the two tubular extensions 8a, 8b of the discharge vessel 2 are clamped in the chuck 12a, 12b of the glass lathe.
  • the glass tube 1 is fixed to the discharge vessel 2 by its already closed end, so that it does not have to be held in a holding device of the glass lathe.
  • the quartz glass tube 1 used in this exemplary embodiment has an inner diameter of approximately 8.8 mm, a wall thickness of 1.0 mm and a length of 25-32 mm.
  • the length of the prefabricated discharge vessel 2, including its tubular extensions, is approximately 150 mm, its inner diameter is approximately 2.3 mm, its wall thickness is approximately 1.3 mm and the electrode spacing is approximately 4-5 mm.
  • the most favorable value for the distance between the outer bulb axis A-A and the discharge path or the discharge vessel axis B-B was found to be 0.65 mm.
  • the tubular extension 8b is separated from the discharge vessel, while the other tubular extension 8a is shortened and used to base the high-pressure discharge lamp.
  • the base of the lamp is described, for example, in EP-A 455 884 and will therefore not be explained in more detail here.
  • a quartz glass can therefore also be used as the outer bulb glass, which has only a viscosity-reducing doping and no doping that absorbs UV rays.
  • quartz glasses suitable as outer bulb glass can be found in EP-A-0 601 391 (Art. 54 (3) EPC).
  • Rare earth metal additives other than those specified in the exemplary embodiment can also be used as the UV radiation-absorbing doping.
  • the UV radiation-absorbing doping sensibly ranges from about 0.1 to 1.5 percent by weight for rare earth metal additives and from about 0 to 0.15 percent by weight for titanium oxide. The percentages by weight always refer to the undoped quartz glass.
  • the viscosity-reducing alkaline earth metal borate content in particular the barium metaborate content in the quartz glass, is expediently about 0.05 to 2.0 percent by weight.
  • other viscosity-reducing quartz glass dopants can of course also be used. If the rare earth metal doping in quartz glass is sufficiently high, the alkaline earth metal borate additions can be reduced or even eliminated entirely, since the rare earth metal doping in quartz glass also has a viscosity-reducing effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

Die Erfindung betrifft eine Hochdruckentladungslampe mit einem das Entladungsgefäß umgebenden Außenkolben sowie ein Herstellungsverfahren für eine Hochdruckentladungslampe. Der Außenkolben (1) besteht aus einem Glas, das eine geringere Viskosität und insbesondere eine niedrigere Erweichungstemperatur als das Quarzglas des Entladungsgefäßes (2) besitzt, und ist direkt auf die Enden (5a, 5b) des zweiseitig abgedichteten Entladungsgefäßes (2) aufgeschmolzen. Vorzugsweise wird als Außenkolbenglas ein mit vikositätserniedrigenden Zusätzen, insbesondere mit Erdalkalimetallboraten, dotiertes Quarzglas verwendet, während das Entladungsgefäß aus undotiertem Quarzglas besteht. Zusätzlich ist das Außenkolbenquarzglas vorzugsweise mit UV-Strahlen absorbierenden Seltenen-Erdmetallzusätzen dotiert. Zur Vermeidung von Abbildungsfehlern ist vorzugsweise die Symmetrieachse des im wesentlichen rotationssymmetrischen Außenkolbens (1) um einen Betrag gegen die die Elektrodenköpfe verbindende Strecke parallelverschoben, der bei horizontaler Lampenbetriebslage durch die konvektionsbedingte Entladungsbogenkrümmung definiert wird.

Description

  • Die Erfindung betrifft eine Hochdruckentladungslampe gemäß dem Oberbegriff des Patentanspruchs 1 sowie ein Verfahren zur Herstellung einer Hochdruckentladungslampe.
  • Insbesondere handelt es sich um eine Hochdruckentladungslampe, die für ein optisches Abbildungssystem, wie z.B. für einen Kfz-Scheinwerfer geeignet ist.
  • Die EP-A 0 570 068 offenbart eine derartige, dem Oberbegriff des Patentanspruchs 1 entsprechende Lampe. Sie dient als Lichtquelle für einen Kfz-Scheinwerfer. Diese Hochdruckentladungslampe besitzt ein zweiseitig, mittels Molybdäneinschmelzungsfolien abgedichtetes Entladungsgefäß aus Quarzglas mit zwei axial darin ausgerichteten Elektroden, die jeweils in einem Entladungsgefäßende eingeschmolzen sind. Ein aus Quarzglas bestehender Außenkolben umgibt das Entladungsgefäß. Figur 3 dieser Offenlegungsschrift zeigt eine Hochdruckentladungslampe mit einem im wesentlichen rotationssymmetrischen Außenkolben, der koaxial zum Entladungsgefäß angeordnet und außerhalb der Molybdäneinschmelzungsfolien mit den abgedichteten Enden des Entladungsgefäßes verschmolzen ist. Bei dieser Art der Außenkolbenbefestigung besteht die Gefahr, daß beim Verschmelzen des Außenkolbens mit den Entladungsgefäßenden die Molybdänfolieneinschmelzung des Entladungsgefäßes beschädigt wird und das Entladungsgefäß nicht mehr gasdicht verschlossen ist. Diese Gefahr läßt sich bei Lampen gemäß der EP-A 0 570 068 dadurch verringern, daß die Verschmelzung von Außenkolben und Entladungsgefäß in ausreichendem Abstand von der Molybdänfolienabdichtung erfolgt.
  • Die EP-A 0 465 083 beschreibt ebenfalls eine unter den Oberbegriff des Patentanspruchs 1 fallende Hochdruckentladungslampe. Diese Hochdruckentladungslampe besitzt ein zweiseitig, mittels Molybdäneinschmelzungsfolien abgedichtetes Entladungsgefäß aus Quarzglas mit zwei axial darin ausgerichteten Elektroden, die jeweils in einem Entladungsgefäßende eingeschmolzen sind. Außerhalb der eingeschmolzenen Molybdänfolien weisen die Entladungsgefäßenden jeweils eine tellerartige Verdickung auf, mit denen ein aus Quarzglas bestehender, das Entladungsgefäß umschließender Außenkolben gasdicht verschmolzen ist. Diese Art der Außenkolbenfixierung am Entladungsgefäß mittels der tellerartigen Verdickungen ist vergleichsweise aufwendig. Außerdem müssen diese tellerartigen Verdickungen ebenfalls einen ausreichenden Abstand zu den eingeschmolzenen Molybdänfolien aufweisen, um die Abdichtung des Entladungsgefäßes nicht zu gefährden.
  • Die Patentschrift US 5,196,759 offenbart eine mit einem soffittenartigen Entladungsgefäß und einem ebenfalls soffittenartigen Außenkolben ausgestattete Hochdruckentladungslampe. Der Außenkolben besteht aus einem mit Ultraviolettstrahlen absorbierenden Zusätzen dotiertes Quarzglas. Er umschließt das Entladungsgefäß berührungsfrei. Die Enden des Außenkolbens sind über den aus dem Entladungsgefäß herausragenden Stromzuführungen mittels Molybdänfolieneinschmelzungen abgedichtet.
  • Die kanadische Offenlegungsschrift CA 2,026,850 beschreibt eine mit einem Außenkolben versehene Hochdruckentladungslampe, deren Entladungsgefäß schräg zur Längsachse oder außerhalb der Längsachse des Außenkolbens angeordnet ist, um in Abhängigkeit von der Lage des Entladungsgefäßes und vom Reflektortyp eine optimale Lichtausbeute zu gewährleisten.
  • Es ist die Aufgabe der Erfindung, eine Hochdruckentladungslampe gemäß dem Oberbegriff des Patentanspruchs 1 bereitzustellen, die insbesondere für Lampen mit kleinen Abmessungen, das sind niederwattige Hochdruckentladungslampen bis zu einer elektrischen Leistung von ca. 150 W, eine möglichst einfache und sichere Befestigung des Außenkolbens gewährleistet, sowie ein Verfahren zur Herstellung einer solchen Hochdruckentladungslampe anzugeben.
  • Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Besonders vorteilhafte Ausführungen der Erfindung sind in den Unteransprüchen beschrieben.
  • Die erfindungsgemäßen Hochdruckentladungslampen sind mit einem Außenkolben ausgestattet, dessen Glas eine geringere Viskosität und damit eine tiefere Erweichungstemperatur als das Quarzglas des Entladungsgefäßes besitzt. Dadurch wird beim Anschmelzen des Außenkolbens an das Entladungsgefäß nur das Außenkolbenglas, nicht aber das Quarzglas des Entladungsgefäßes erweicht. Aufgrund der unterschiedlichen Erweichungstemperaturen besteht deshalb nicht die Gefahr, daß die abgedichteten Entladungsgefäßenden beim Anschmelzen des Außenkolbens wieder aufgeschmolzen und beschädigt werden. Es ist sogar möglich, den Außenkolben unmittelbar an die Quetschdichtungen der Entladungsgefäßenden anzuschmelzen, ohne dabei die Abdichtung der Entladungsgefäßenden, die durch die darin eingebetteten Molybdänfolien gewährleistet wird, zu beeinträchtigen. Dadurch kann die Baulänge der erfindungsgemäßen Hochdrukkentladungslampe im Vergleich zu den oben als Stand der Technik zitierten Lampen verkürzt werden.
  • Vorteilhafterweise ist der Außenkolben aus einem mit viskositätserniedrigenden Zusätzen versehenen, sogenannten weichen Quarzglas gefertigt, während das thermisch höher belastete Entladungsgefäß aus undotiertem Quarzglas besteht. Weiche Quarzgläser haben, verglichen mit reinem, undotiertem Quarzglas (Kieselsäuregehalt von ca. 99,99 Molprozent), einen bei deutlich tieferen Temperaturen angesiedelten Erweichungsbereich und lassen sich daher einfacher und energiesparender verarbeiten als reines Quarzglas. Beispiele für derartige, vorteilhaft als Außenkolbenglas verwendbare weiche Quarzgläser sind in der EP-A-0 601 391 (Art. 54(3)) offenbart. Als viskositätserniedrigende Dotiermittel werden vor allem Erdalkalimetallborate im Quarzglas eingesetzt. Vorteilhafterweise enthält das Außenkolbenglas aber auch Zusätze von Seltenen-Erdmetall-Verbindungen, die die Transparenz des Außenkolbenglases im ultravioletten Spektralbereich vermindern, um die UV-Emission der Hochdruckentladungslampe zu reduzieren. Da diese UV-Strahlen absorbierenden Seltenen-Erdmetall-Verbindungen selbst die Viskosität des Außenkolbenglases vermindern, kann bei einem ausreichenden Gehalt an Seltenen-Erdmetall-Verbindungen im Außenkolbenglas, d. h., bei einem Gewichtsanteil dieser Seltenen-Erdmetall-Verbindungen von mehr als ca. 0,5 Gewichtsprozent, möglicherweise auf die anfangs genannten viskositätsemiedrigenden Erdalkalimetallborate verzichtet werden.
  • Besonders vorteilhaft wirkt sich die einfache Außenkolbenbefestigung am Entladungsgefäß bei in Kfz-Scheinwerfern eingesetzten Hochdruckentladungslampen aus, weil hier keine zusätzlichen Halter- oder Gestellteile nötig sind, die zu einer Beeinträchtigung der Lichtemission führen können. In Kfz-Scheinwerfern eingesetzte Hochdruckentladungslampen werden üblicherweise in horizontaler Lage, d. h., mit horizontal verlaufender Entladungsstrecke, betrieben, so daß der Entladungsbogen im Gravitationsfeld der Erde eine konvektionsbedingte sichelartige Aufwärtskrümmung erfährt. Um Abbildungsfehler im Scheinwerfer zu vermeiden, ist die Symmetrieachse des im wesentlichen rotationssymmetrischen Außenkolbens der erfindungsgemäßen Hochdruckentladungslampe gegen die Verbindungsstrecke der entladungsseitigen Elektrodenenden parallelverschoben angeordnet. Der Betrag der Parallelverschiebung entspricht ungefähr der mittleren Auslenkung des Entladungsbogens aus der fiktiven Verbindungsstrecke der Elektrodenenden. Auf diese Weise wird gewährleistet, daß die Außenkolbenwandung keine Spiegelbilder des gekrümmten Entladungsbogens erzeugt, die störende Reflexe im Reflektor verursachen und zu Lichtverlusten führen würden.
  • Vorteilhafterweise verläuft die Außenkolbenachse durch das Helligkeitszentrum bzw. -maximum des Entladungsbogens, das für das Abbildungssytem genutzt wird. Bei Hochdruckentladungslampen kleiner Leistung (unter 100 Watt), die in Kfz-Scheinwerfern Verwendung finden, beträgt die Auslenkung des Entladungsbogens aus der Entladunsstrecke, das ist die Verbindungsstrecke zwischen den entladungsseitigen Enden der Elektroden, etwa 0,3 mm bis 1,0 mm.
  • Die exzentrische Lage des Außenkolbens bezüglich der Verbindungsstrecke der entladungsseitigen Elektrodenenden beziehungsweise bezüglich der Entladungsgefäßachse - üblicherweise verlaufen die Elektroden in der Entladungsgefäßachse - kann relativ einfach dadurch gewährleistet werden, daß Außenkolben und Entladungsgefäß beim Anschmelzen des Außenkolbens in exzentrisch zueinander angeordneten Spannfuttern einer Glasdrehbank fixiert sind.
  • Die Erfindung wird nachstehend anhand eines bevorzugten Ausführungsbeispiels näher erläutert. Es zeigen:
  • Figur 1a
    eine schematische Darstellung der axialen Anordnung der Elektroden innerhalb des Außenkolbens mit Entladungsbogen und dessen von der Außenkolbenwandung erzeugtes Spiegelbild (ohne Entladungsgefäß)
    Figur 1b
    eine schematische Darstellung der exzentrischen Anordnung der Elektroden bezüglich des Außenkolbens bei den erfindungsgemäßen Lampen (ohne Entladungsgefäß)
    Figur 2
    eine schematisierte Abbildung einer erfindungsgemäßen Hochdruckentladungslampe mit übertrieben dargestellter exzentrischer Außenkolbenanordnung
    Figur 3a
    illustriert die Montage des Außenkolbens bei einer erfindungsgemäßen Hochdruckentladungslampe
    Figur 3b
    illustriert die Montage des Außenkolbens bei einer erfindungsgemäßen Hochdruckentladungslampe
  • Die Figuren 1a und 1b dienen zur Erläuterung der Entstehung und Vermeidung von Spiegelbildem durch die Außenkolbenwandung. Sie sind stark schematisiert. Außerdem wurde in beiden Figuren der Einfachheit halber das Entladungsgefäß nicht abgebildet. In Figur 1a sind die beiden Elektroden 3 horizontal angeordnet und liegen in der Achse A-A des Außenkolbens 1. Die einander zugewandten entladungsseitigen Enden der Elektroden 3 definieren eine in der Außenkolbenachse A-A liegende Entladungsstrecke. Im Betriebszustand bildet sich zwischen den entladungsseitigen Enden der Elektroden 3 ein konvektionsbedingt aufwärts gekrümmter Entladungsbogen 4 aus. Die Außenkolbenwandung erzeugt unterhalb der Achse A-A ein reelles Spiegelbild 4a des Entladungsbogens 4, das zu Lichtverlusten und zu störenden Reflexen bei Verwendung einer derartigen Lampe in einem Abbildungssystem führt.
  • Figur 1b zeigt die Anordnung von Außenkolben 1 und Elektroden 3 bei einer erfindungsgemäßen Hochdruckentladungslampe. Die Elektroden 3 sind exzentrisch im Außenkolben 1 angeordnet, so daß die Entladungsstrecke parallel zur Außenkolben-achse A-A verläuft, aber nicht mit dieser zusammenfällt. Der Abstand der Elektroden beziehungsweise der Entladungsstrecke zur Außenkolben-achse ist dabei so gewählt, daß die Außenkolbenachse A-A durch das Helligkeitszentrum beziehungsweise Helligkeitsmaximum des Entladungsbogens verläuft und das reelle Spiegelbild 4a mit dem Entladungsbogen 4 weitgehend zur Deckung gebracht wird. Dadurch fällt das Helligkeitszentrum bzw. -maximum des Entladungsbogens 4 mit seinem Spiegelbild zusammen. Als Helligkeitszentrum bzw. -maximum wird derjenige, auf der Mittelsenkrechten zwischen den beiden entladungsseitigen Elektrodenenden liegende Ort bezeichnet, der die höchste Leuchtdichte im Entladungsbogen 4 aufweist.
  • In Figur 2 ist eine erfindungsgemäße Hochdruckentladungslampe abgebildet. Bei diesem Ausführungsbeispiel handelt es sich um eine einseitig gesockelte Halogenmetalldampflampe mit einer elektrischen Leistungsaufnahme von ca. 35 Watt, die vorzugsweise in Kfz-Scheinwerfern verwendet wird. Diese Lampe weist ein im wesentlichen axialsymmetrisches, zweiseitig abgedichtetes Entladungsgefäß 2 auf, das von einem im wesentlichen rotationssymmetrischen Außenkolben 1 umgeben ist. Das Entladungsgefäß 2 besitzt einen Entladungsraum mit einer gasdicht darin eingeschlossenen ionisierbaren Füllung sowie zwei einander gegenüberliegende Quetschenden 5a, 5b, in denen jeweils eine in den Entladungsraum hineinragende, axial angeordnete Elektrode 3 eingeschmolzen ist. Beide Elektroden 3 sind jeweils über eine Molybdänfolieneinschmelzung 6 mit einer Stromzuführung 7a, 7b elektrisch leitend verbunden. Der Aussenkolben 1 ist direkt auf den Quetschdichtungen 5a, 5b des Entladungsgefäßes 2, in unmittelbarer Nähe des vom Entladungsraum abgewandten Endes der Molybdänfolien 6 befestigt. Er besteht aus mit 1,0 Gewichtsprozent Bariummetaborat (BaB2O4), 0,5 Gewichtsprozent Ceraluminat (CeAlO3), 0,5 Gewichtsprozent Praseodymoxid (Pr6O11) und 0,05 Gewichtsprozent Titanoxid (TiO2) dotiertem Quarzglas. Das Entladungsgefäß 2 ist aus undotiertem Quarzglas gefertigt und mittels einer rohrartigen Verlängerung 8a des Quetschendes 5a im Lampensockel 9 fixiert. Die sockelnahe Stromzuführung 7a verläuft innerhalb der rohrartigen Verlängerung 8a und stellt den elektrischen Kontakt zu einem der beiden Anschlußkabel 10 her, während die sockelferne Stromzuführung 7b über eine Rückführung 11, die eine Keramikisolierung aufweist, mit dem anderen Anschlußkabel 10 elektrisch leitend verbunden ist.
  • Diese Lampe wird in horizontaler Lage, d.h., mit horizontal verlaufender Entladungsstrecke, betrieben. Dabei ist die Lampe so orientiert, daß die Rückführung 11 unterhalb des Außenkolbens 1 verläuft (Fig. 2). Der Außenkolben 1 ist exzentrisch bzgl. des Entladungsgefäßes 2 und bzgl. der Entladungsstrecke, die durch entladungsseitigen Elektrodenenden definiert wird, angeordnet. Die Außenkolbenachse A-A verläuft ca. 0,65 mm oberhalb und parallel zur Entladungsgefäßachse sowie zur Entladungsstrecke. In Figur 2 ist der Abstand zwischen der Außenkolbenachse A-A und der Entladunsstrecke bzw. der Entladungsgefäßachse B-B der Deutlichkeit halber übertrieben groß dargestellt.
  • Die Figuren 3a und 3b illustrieren das Herstellungsverfahren einer erfindungsgemäßen Hochdruckentladungslampe, insbesondere die Montage des Außenkolbens 1. Zur Herstellung einer erfindungsgemäßen Lampe werden als Vorerzeugnisse ein komplett vorgefertigtes, im wesentlichen axialsymmetrisches Entladungsgefäß 2 aus undotiertem Quarzglas sowie ein kreiszylindrisches, mit 1,0 Gewichtsprozent Bariummetaborat (BaB2O4), 0,5 Gewichtsprozent Ceraluminat (CeAlO3), 0,5 Gewichtsprozent Praseodymoxid (Pr6O11) und mit 0,05 Gewichtsprozent Titanoxid (TiO2) dotiertes Quarzglasrohr 1 verwendet. Das Entladungsgefäß 2 besitzt zwei gasdicht verschlossene Quetschenden 5a, 5b und zwei axial verlaufende Elektroden 3, die jeweils über eine Molybdänfolieneinschmelzung 6 mit je einer Stromzuführung 7a, 7b elektrisch leitend verbunden sind. Beide Stromzuführungen verlaufen jeweils innerhalb einer rohrartigen Verlängerung 8a, 8b der Quetschenden 5a, 5b.
  • Zur Montage des Außenkolbens wird das Quarzglasrohr 1 auf das Entladungsgefäß 2 aufgefädelt. Das Entladungsgefäß 2 wird dabei an der rohrartigen Verlängerung 8a des Quetschendes 5a in einem ersten Spannfutter 12a einer Glasdrehbank gehaltert, während ein Gegenlager 13 das Entladungsgefäß 2 an der anderen rohrartigen Verlängerung 8b abstützt.
  • Das Glasrohr 1 ist zusammen mit einer Unterlage 14, einem Unterlegblech, in einem zweiten Spannfutter 12b der Glasdrehbank fixiert. Beide Spannfutter 12a, 12b der Glasdrehbank sind koaxial angeordnet. Das Quarzglasrohr 1 wird derart justiert, daß der Entladungsraum und beide Quetschenden 5a, 5b vom Glasrohr 1 umhüllt werden. Die Unterlage 14 bewirkt eine exzentrische Anordnung des Glasrohres 1 bzgl. des Entladungsgefäßes 2, derart daß die Entladungsgefäßachse B-B und Rotationsachse des Glasrohres 1 um die Dicke der Unterlage 14 gegeneinander parallelverschoben sind. Da die Elektroden 3 in der Entladungsgefäßachse B-B liegen und das Quarzglasrohr 1 den Außenkolben bildet, bedeutet das, daß die Außenkolbenachse A-A und die durch die Elektrodenköpfe definierte Entladungstrecke ebenfalls um die Dicke der Unterlage 14 gegeneinander parallelverschoben sind.
  • Das freie Ende des Quarzglasrohres 1, das nicht im Spannfutter 12b eingespannt ist, wird mittels eines H2/O2-Brenners 15 auf die Erweichungstemperatur des Quarzglasrohres von ca. 1540 °C, bzw. auf eine geringfügig darüber liegende Temperatur, erhitzt und mit Hilfe einer Schneidrolle 16 auf das Quetschende 5a des Entladungsgefäßes 2 aufgerollt und mit diesem verschmolzen. Bei dieser Temperatur ist das aus undotiertem Quarzglas bestehende Entladungsgefäß noch fest, da die Erweichungstemperatur des undotierten Quarzglases bei ca. 1750 °C, also um ungefähr 200 °C oberhalb der Erweichungstemperatur des Quarzglasrohres liegt. Auf diese Weise wird das freie Ende des Glasrohres 1 verschlossen und am Entladungsgefäß 2 fixiert.
  • Während des Verschmelzens von Quarzglasrohr 1 und Quetschdichtung 5a rotieren beide Spannfutter 12a, 12b synchron.
  • Das andere, noch offene Ende des Quarzglasrohres 1 wird auf die gleiche Weise durch Erhitzen mittels eines H2/O2-Brenners 15 verschlossen. Hierzu werden die beiden rohrartigen Verlängerungen 8a, 8b des Entladungsgefäßes 2 in die Spannfutter 12a, 12b der Glasdrehbank eingespannt. Das Glasrohr 1 ist während dieses Schmelzprozesses durch sein bereits verschlossenes Ende am Entladungsgefäß 2 fixiert, so daß es nicht in einer Haltevorrichtung der Glasdrehbank gehaltert werden muß.
  • Das bei diesem Ausführungsbeispiel verwendete Quarzglasrohr 1 besitzt einen Innendurchmesser von ca. 8,8 mm, eine Wandstärke von 1,0.mm und eine Länge von 25-32 mm. Die Länge des vorgefertigten Entladungsgefäßes 2, einschließlich seiner rohrartigen Verlängerungen beträgt ungefähr 150 mm, sein Innendurchmesser etwa 2,3 mm, seine Wandstärke ca. 1,3 mm und der Elektrodenabstand ca. 4-5 mm. Als günstigster Wert für den Abstand zwischen der Außenkolbenachse A-A und der Entladungsstrecke bzw. der Entladungsgefäßachse B-B wurde bei diesem Ausführungsbeispiel 0,65 mm ermittelt.
  • Nach der Montage des Außenkolbens wird die rohrartige Verlängerung 8b vom Entladungsgefäß abgetrennt, während die andere rohrartige Verlängerung 8a gekürzt und zur Sockelung der Hochdruckentladungslampe benutzt wird. Die Sockelung der Lampe ist beispielsweise in der EP-A 455 884 beschrieben und soll daher hier nicht näher erläutert werden.
  • Die Erfindung beschränkt sich nicht auf das näher beschriebene Ausführungsbeispiel. So kann als Außenkolbenglas auch ein Quarzglas verwendet werden, das nur eine viskositätserniedrigende Dotierung aufweist und keine UV-Strahlen absorbierende Dotierung besitzt. Beispiele für derartige, als Außenkolbenglas geeignete Quarzgläser finden sich in der EP-A-0 601 391 (Art. 54(3) EPC). Als UV-Strahlen absorbierende Dotierung können auch andere Seltene-Erdmetall-Zusätze als die im Ausführungsbeispiel angegebenen verwendet werden. Die UV-Strahlen absorbierende Dotierung bewegt sich sinnvollerweise für Seltene-Erdmetall-Zusätze im Bereich von ca. 0,1 bis 1,5 Gewichtsprozent und für Titanoxid im Bereich von ca. 0 bis 0,15 Gewichtsprozent. Die Gewichtsprozentangaben beziehen sich immer auf das undotierte Quarzglas. Der viskositätserniedrigende Erdalkalimetallboratgehalt, insbesondere der Bariummetaboratgehalt im Quarzglas beträgt sinnvollerweise ca. 0,05 bis 2,0 Gewichtsprozent. Abgesehen von Bariummetaborat können natürlich auch andere viskositätserniedrigende Quarzglasdotierungen verwendet werden. Bei ausreichend hoher Seltenen-Erdmetall-Dotierung im Quarzglas können die Erdalkalimetallboratzusätze reduziert werden oder gar ganz entfallen, da die Seltenen-Erdmetall-Dotierung im Quarzglas ebenfalls eine vikositätserniedrigende Wirkung ausübt.

Claims (11)

  1. Hochdruckentladungslampe bestehend aus
    - einem zweiendig abgedichteten, aus Quarzglas bestehenden Entladungsgefäß (2), das von einem Außenkolben (1) umgeben wird,
    - zwei innerhalb des Entladungsgefäßes (2) angeordneten Elektroden (3), die jeweils in einem Ende (5a, 5b) des Entladungsgefäßes (2) fixiert sind, wobei die Enden (5a, 5b) als Quetschdichtungen mit darin eingeschmolzenen Molybdänfolien (6) ausgebildet sind,
    dadurch gekennzeichnet, daß
    - der Außenkolben (1) aus einem Glas besteht, das eine niedrigere Erweichungstemperatur als das Quarzglas des Entladungsgefäßes (2) besitzt,
    - der Außenkolben (1) in unmittelbarer Nähe der Quetschdichtungen (5a, 5b) an das Entladungsgefäß (2) angeschmolzen ist.
  2. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß der Außenkolben (1) aus Quarzglas besteht, das mit die Viskosität und insbesondere die Erweichungstemperatur des Quarzglases erniedrigenden Dotiermitteln versehen ist.
  3. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß der Außenkolben (1) in unmittelbarer Nähe des vom Entladungsraum abgewandten Endes der Molybdänfolien (6) an die Quetschdichtungen (5a, 5b) angeschmolzen ist.
  4. Hochdruckentladungslampe nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß die Dotiermittel Erdalkalimetallborate enthalten.
  5. Hochdruckentladungslampe nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß die Dotiermittel Seltene-Erdmetalle oder Seltene-Erdmetall-Verbindungen enthalten.
  6. Hochdruckentladungslampe nach Anspruch 4, dadurch gekennzeichnet, daß das Quarzglas des Außenkolbens (1) mit 0,05 bis 2,0 Gewichtsprozent Bariummetaborat (BaB2O4) dotiert ist.
  7. Hochdruckentladungslampe nach Anspruch 5, dadurch gekennzeichnet, daß das Quarzglas des Außenkolbens (1) mit 0,1 bis 1,5 Gewichtsprozent Ceraluminat (CeAlO3) dotiert ist.
  8. Hochdruckentladungslampe nach Anspruch 5, dadurch gekennzeichnet, daß das Quarzglas des Außenkolbens (1) mit 0,1 bis 1,5 Gewichtsprozent Praseodymoxid dotiert ist.
  9. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß der Außenkolben (1) im wesentlichen rotationssymmetrisch ist und seine Symmetrieachse gegen eine durch die Elektrodenköpfe verlaufende Gerade um einen Betrag parallel verschoben ist, der durch die gravitationsbedingte Aufwärtskrümmung des Entladungsbogens bei horizontaler Betriebslage der Lampe bestimmt ist.
  10. Verfahren zur Herstellung einer Hochdruckentladungslampe gemäß Anspruch 1, dadurch gekenzeichnet, daß das Herstellungsverfahren folgende Fertigungsschritte enthält:
    - Herstellen eines Entladungsgefäßes (2) mit einer darin eingeschlossenen ionisierbaren Füllung und mit zwei gasdicht verschlossenen Enden (5a, 5b), in denen jeweils eine axial angeordnete Elektrode (3) eingeschmolzen ist,
    - Auffädeln und Justage des Außenkolbens (1) auf das Entladungsgefäß (2), so daß der Außenkolben (1) beide Entladungsgefäßenden (5a, 5b) zumindest teilweise überdeckt,
    - Erhitzen und Aufrollen der erweichten Enden des Außenkolbens (1) auf die Entladungsgefäßenden (5a, 5b).
  11. Verfahren zur Herstellung einer Hochdruckentladungslampe nach Anspruch 10, dadurch gekennzeichnet, daß die Enden (5a, 5b) des Entladungsgefäßes (2) als Quetschdichtungen mit darin eingeschlossenen Molybdänfolien (6) ausgebildet sind und der Außenkolben (1) an die Quetschdichtungen (5a, 5b) angeschmolzen ist.
EP94916137A 1993-05-25 1994-05-25 Hochdruckentladungslampe und herstellungsverfahren für eine hochdruckentladungslampe Expired - Lifetime EP0700579B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4317369A DE4317369A1 (de) 1993-05-25 1993-05-25 Hochdruckentladungslampe und Herstellungsverfahren für eine Hochdruckentladungslampe
DE4317369 1993-05-25
PCT/DE1994/000600 WO1994028576A1 (de) 1993-05-25 1994-05-25 Hochdruckentladungslampe und herstellungsverfahren für eine hochdruckentladungslampe

Publications (2)

Publication Number Publication Date
EP0700579A1 EP0700579A1 (de) 1996-03-13
EP0700579B1 true EP0700579B1 (de) 1997-07-30

Family

ID=6488867

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94916137A Expired - Lifetime EP0700579B1 (de) 1993-05-25 1994-05-25 Hochdruckentladungslampe und herstellungsverfahren für eine hochdruckentladungslampe

Country Status (7)

Country Link
US (1) US5726532A (de)
EP (1) EP0700579B1 (de)
KR (1) KR100281341B1 (de)
CA (1) CA2163132C (de)
DE (2) DE4317369A1 (de)
HU (1) HU215885B (de)
WO (1) WO1994028576A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018614A1 (de) 2007-04-19 2008-10-23 Osram Gesellschaft mit beschränkter Haftung Hochdruckentladungslampe und Fahrzeugscheinwerfer mit Hochdruckentladungslampe
DE102007043165A1 (de) 2007-09-11 2009-03-12 Osram Gesellschaft mit beschränkter Haftung Hochdruckentladungslampe und Fahrzeugscheinwerfer mit Hochdruckentladungslampe
DE102008014096A1 (de) 2008-03-05 2009-09-10 Osram Gesellschaft mit beschränkter Haftung Wolframelektrode für Hochdruckentladungslampen und Hochdruckentladungslampe mit einer Wolframelektrode
DE102008026521A1 (de) 2008-06-03 2009-12-10 Osram Gesellschaft mit beschränkter Haftung Thoriumfreie Hochdruckentladungslampe für Hochfrequenzbetrieb
DE102008057703A1 (de) 2008-11-17 2010-05-20 Osram Gesellschaft mit beschränkter Haftung Quecksilberfreie Entladungslampe
DE102009052999A1 (de) 2009-11-12 2011-05-19 Osram Gesellschaft mit beschränkter Haftung Hochdruckentladungslampe
DE102013223708A1 (de) 2013-11-20 2015-05-21 Osram Gmbh Hochdruckentladungslampe für Kraftfahrzeugscheinwerfer
DE102015211915A1 (de) 2015-06-26 2016-12-29 Osram Gmbh Hochdruckentladungslampe für Kraftfahrzeugscheinwerfer

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506471A (en) * 1994-06-06 1996-04-09 General Electric Company Low glare infrared light source
DE4427593A1 (de) * 1994-08-04 1996-02-08 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Einseitig gesockelte Hochdruckentladungslampe
DE19707669A1 (de) * 1997-02-26 1998-08-27 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zur Herstellung einer Hochdruckentladungslampe
JP3463557B2 (ja) * 1998-03-20 2003-11-05 ウシオ電機株式会社 放電ランプ
US6429577B1 (en) 1998-06-12 2002-08-06 Matsushita Electric Industrial Co., Ltd. Discharge lamp with outer tube comprising silicon dioxide and boron
JP3415533B2 (ja) * 2000-01-12 2003-06-09 エヌイーシーマイクロ波管株式会社 高圧放電灯
JP2001357818A (ja) * 2000-06-13 2001-12-26 Koito Mfg Co Ltd 放電灯バルブ及び放電灯バルブの製造方法
DE10260129A1 (de) * 2002-12-19 2004-07-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Beleuchtungseinheit
DE10260125A1 (de) * 2002-12-19 2004-07-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Beleuchtungseinheit
US7893623B2 (en) * 2005-05-23 2011-02-22 Koninklijke Philips Electronics N.V. High-intensity discharge lamp
EP2487705B1 (de) * 2008-02-14 2014-09-03 Harison Toshiba Lighting Corp. Fahrzeugentladungslampe
EP2529390B1 (de) * 2010-01-28 2019-06-26 Lumileds Holding B.V. Brenner mit reduzierter höhe und verfahren zur herstellung eines brenners
DE102011082323A1 (de) * 2011-09-08 2013-03-14 Osram Ag Hochdruckentladungslampe für Kraftfahrzeugscheinwerfer
DE102014204932A1 (de) 2014-03-17 2015-09-17 Osram Gmbh Hochdruckentladungslampe
DE102015200162A1 (de) 2015-01-08 2016-07-14 Osram Gmbh Hochdruckentladungslampe

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229681A (en) * 1989-10-10 1993-07-20 Musco Corporation Discharge lamp with offset or tilted arc tube
CA2026850C (en) * 1989-10-10 2001-08-21 Myron K. Gordin Discharge lamp with offset or tilted arc tube
CA2042143A1 (en) * 1990-06-27 1991-12-28 John J. Biel Discharge lamp with surrounding shroud and method of making such lamp
US5196759B1 (en) * 1992-02-28 1996-09-24 Gen Electric High temperature lamps having UV absorbing quartz envelope
ES2108206T3 (es) * 1992-05-11 1997-12-16 Philips Electronics Nv Lampara de descarga de alta presion provista de casquillo.
JP2511393B2 (ja) * 1992-09-15 1996-06-26 パテント−トロイハント−ゲゼルシヤフト フユア エレクトリツシエ グリユーランペン ミツト ベシユレンクテル ハフツング メタルハライドランプ
DE4418198A1 (de) * 1994-05-25 1995-11-30 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Quarzglas und elektrische Lampe mit Bestandteilen aus Quarzglas

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018614A1 (de) 2007-04-19 2008-10-23 Osram Gesellschaft mit beschränkter Haftung Hochdruckentladungslampe und Fahrzeugscheinwerfer mit Hochdruckentladungslampe
US8310156B2 (en) 2007-04-19 2012-11-13 Osram Ag High-pressure discharge lamp and vehicle headlight with high-pressure discharge lamp
DE102007043165A1 (de) 2007-09-11 2009-03-12 Osram Gesellschaft mit beschränkter Haftung Hochdruckentladungslampe und Fahrzeugscheinwerfer mit Hochdruckentladungslampe
DE102008014096A1 (de) 2008-03-05 2009-09-10 Osram Gesellschaft mit beschränkter Haftung Wolframelektrode für Hochdruckentladungslampen und Hochdruckentladungslampe mit einer Wolframelektrode
DE102008026521A1 (de) 2008-06-03 2009-12-10 Osram Gesellschaft mit beschränkter Haftung Thoriumfreie Hochdruckentladungslampe für Hochfrequenzbetrieb
DE102008057703A1 (de) 2008-11-17 2010-05-20 Osram Gesellschaft mit beschränkter Haftung Quecksilberfreie Entladungslampe
US8736165B2 (en) 2008-11-17 2014-05-27 Osram Gesellschaft Mit Beschraenkter Haftung Mercury-free discharge lamp having a translucent discharge vessel
DE102009052999A1 (de) 2009-11-12 2011-05-19 Osram Gesellschaft mit beschränkter Haftung Hochdruckentladungslampe
WO2011057903A1 (de) 2009-11-12 2011-05-19 Osram Gesellschaft mit beschränkter Haftung Quecksilberfreie hochdruckentladungslampe mit reduziertem zinkhalogenidanteil
DE102013223708A1 (de) 2013-11-20 2015-05-21 Osram Gmbh Hochdruckentladungslampe für Kraftfahrzeugscheinwerfer
DE102015211915A1 (de) 2015-06-26 2016-12-29 Osram Gmbh Hochdruckentladungslampe für Kraftfahrzeugscheinwerfer

Also Published As

Publication number Publication date
CA2163132A1 (en) 1994-12-08
HUT72240A (en) 1996-04-29
DE4317369A1 (de) 1994-12-01
HU9503378D0 (en) 1996-01-29
US5726532A (en) 1998-03-10
EP0700579A1 (de) 1996-03-13
HU215885B (hu) 1999-03-29
CA2163132C (en) 2002-04-09
DE59403570D1 (de) 1997-09-04
KR100281341B1 (ko) 2001-03-02
WO1994028576A1 (de) 1994-12-08

Similar Documents

Publication Publication Date Title
EP0700579B1 (de) Hochdruckentladungslampe und herstellungsverfahren für eine hochdruckentladungslampe
EP0479087B1 (de) Hochdruckentladungslampe
EP0588284B1 (de) Metallhalogenid-Entladungslampe
DE69931877T2 (de) Durchführung für eine Hochdruckentladungslampe, Beleuchtungssystem mit Spannungsversorgung für eine solche Lampe
EP1984936B1 (de) Hochdruckentladungslampe
EP0802561A1 (de) Halogenlampe
EP0451647A2 (de) Hochdruckentladungslampe und Verfahren zu ihrer Herstellung
EP2499657B1 (de) Quecksilberfreie hochdruckentladungslampe mit reduziertem zinkhalogenidanteil
DE3038993C2 (de) Metalldampfentladungslampe
DE2627380C3 (de) Metalldampf-Hochdruckentladungslampe für horizontalen Betrieb
DE102006052715B4 (de) Verfahren zur Herstellung einer quecksilberfreien Bogenentladungsröhre mit jeweils einem Einkristall an den Elektrodenspitzen
DE102005049239B4 (de) Lichtbogenröhre für eine Entladungslampe
EP0891628B1 (de) Glühlampe mit reflexionsschicht
DE69911735T2 (de) Hochdruckentladungslampe
EP1730766A2 (de) Elektrodensystem für eine hochdruckentladungslampe
EP0718869A1 (de) Niederdruckentladungslampe
DE69915253T2 (de) Hochdruckentladungslampe
DE2102112A1 (de) Hochdruck Gasentladungslampe
EP1138057A1 (de) Hochdruckentladungslampe
DE2821162A1 (de) Elektrische lampe
EP0321867A2 (de) Hochdruckentladungslampe
EP0588201A2 (de) Hochdruckentladungslampe und Herstellungsverfahren für eine Hochdruckentladungslampe
DE3132699C2 (de) Natriumdampf-Hochdrucklampe
EP1255279B1 (de) Halogenglühlampe
DE102018201068B4 (de) Glühlampe für fahrzeugscheinwerfer und herstellungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL SE

17Q First examination report despatched

Effective date: 19960521

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 59403570

Country of ref document: DE

Date of ref document: 19970904

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971002

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070503

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070508

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070511

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070508

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070515

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070516

Year of fee payment: 14

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20080531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59403570

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59403570

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130522

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59403570

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59403570

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140527