EP0373142B1 - Aimant bistable - Google Patents

Aimant bistable Download PDF

Info

Publication number
EP0373142B1
EP0373142B1 EP89890201A EP89890201A EP0373142B1 EP 0373142 B1 EP0373142 B1 EP 0373142B1 EP 89890201 A EP89890201 A EP 89890201A EP 89890201 A EP89890201 A EP 89890201A EP 0373142 B1 EP0373142 B1 EP 0373142B1
Authority
EP
European Patent Office
Prior art keywords
plunger
bistable
magnet according
short
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89890201A
Other languages
German (de)
English (en)
Other versions
EP0373142A1 (fr
Inventor
Erich Kleinhappl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVL Medical Instruments AG
Original Assignee
AVL Medical Instruments AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVL Medical Instruments AG filed Critical AVL Medical Instruments AG
Publication of EP0373142A1 publication Critical patent/EP0373142A1/fr
Application granted granted Critical
Publication of EP0373142B1 publication Critical patent/EP0373142B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/163Details concerning air-gaps, e.g. anti-remanence, damping, anti-corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/088Electromagnets; Actuators including electromagnets with armatures provided with means for absorbing shocks

Definitions

  • the invention relates to a bistable magnet, in particular for actuating valves and.
  • a bistable magnet in particular for actuating valves and.
  • this piston has a stop surface that determines an end position of the piston with a mating surface fixed to the housing, with a pole face in addition to the stop surface on the piston is provided which cooperates with a fixed pole face.
  • Such a magnet is known from EP-A-0 127 354.
  • bistable magnets are often used to actuate pinch valves, diaphragm valves, two-way or multi-way valves, interlocks, relays, etc.
  • Such a magnet can assume two positions, remaining in each of these two positions without external influence.
  • a current pulse which excites an electromagnetic coil is only necessary for switching from one position to the other. To hold the magnet, no current flow is necessary for either of the two positions.
  • bistable magnets have a displaceable piston which can assume two end positions. In one of these two positions, the piston is maximally approximated to a permanent magnet, so that it is held in this position by the latter. In the other end position, the piston is separated from the permanent magnet by an air gap which is so large that the magnetic forces have only a slight effect on the piston. The piston is held in this position by a spring. An electromagnetic coil is used to switch the bistable magnet.
  • the piston Since the magnetic forces depend very much on the distance, the piston becomes extreme during the switching process strongly accelerates and therefore hits the permanent magnet or a guide plate located between the permanent magnet and the piston at a relatively high speed. This causes vibrations and a relatively large noise, which is undesirable in many applications.
  • Other known bistable magnets try to avoid this problem by arranging a plate made of elastic material between the piston and the magnet or guide plate, which dampens the impact upon impact. In principle, this allows the problem of noise to be dealt with, but this solution has other disadvantages.
  • the plate made of elastic material creates a gap for the magnetic field lines, so that the holding forces are significantly reduced with this solution.
  • the object of the invention is to avoid these disadvantages and to create a bistable magnet which has strong holding forces with the smallest possible construction volume and the noise development during the switching operations is minimal.
  • the stop faces By separating the stop faces from the pole faces of the pistons, these can be optimally designed. In particular, it is possible in this way to make the stop surfaces very large, which enables the use of a particularly soft material for the damping plate. In contrast to the known solutions, there is no wear problem due to the low surface pressure.
  • the dimensions of the individual components are chosen so that, taking into account all tolerances and with the damping plate pressed to a maximum, without the movement of the device that conducts the magnetic flux, there is always a small air gap between the pole faces. However, this air gap is bridged by the movement caused by the magnetic forces of this device, so that the magnetic field lines are only inside of the ferromagnetic components can run.
  • the device guiding the magnetic flux has a further function, namely the compensation of tolerances.
  • the damping plate is the cause of certain tolerances due to wear, which cause the end position of the piston at which the stop surface rests on the counter surface to be subjected to certain changes over time. This is compensated for by the more or less strong movement of the device guiding the magnetic flux.
  • the arrangement of the permanent magnet is arbitrary. In general, the permanent magnet will be fixed to the housing and the piston will only consist of ferromagnetic material. However, it is also entirely possible and useful in certain applications to design the piston as a permanent magnet, it being possible, but not necessary, to dispense with the permanent magnet fixed to the housing.
  • An electromagnetic coil is preferably provided for switching the bistable magnet. Basically, the switching process can be triggered mechanically, pneumatically, hydraulically or in any other way. In most applications, however, electrical control will be the method of choice.
  • the piston is held in its engaged position by the permanent magnet and that a spring is provided which holds the piston in its disengaged position.
  • a particularly simple structure of the bistable magnet can be achieved.
  • the stop surfaces and the devices that conduct the magnetic flux are then to be designed twice.
  • the permanent magnet is fixedly connected to the housing and if a guide plate is provided on the side of the permanent magnet facing the piston, on which the device which conducts the magnetic flux bears. Because today's extremely strong permanent magnets are not too big mechanical ones To withstand loads, a baffle is provided to dampen any shocks that may occur. Another purpose of the guide plate is to make the magnetic field lines more even.
  • the device which conducts the magnetic flux is designed as a preferably annular short-circuit plate which tilts into an inclined position in the engaged position of the piston.
  • the short-circuit plate touches the permanent magnet or the guide plate connected to it at one point and the piston at another point. This creates a bridging of the air gap.
  • the short-circuit plate is not deformed in this variant.
  • the device that conducts the magnetic flux is designed as a preferably annular short-circuit plate, which deforms into a substantially conical position when the piston is in the engaged position. It is essential that the short-circuit plate is easily deformable. This can be achieved on the one hand by using a material with a low modulus of elasticity and on the other hand by appropriate shaping of this short-circuit plate. Through slots and. The like. The stiffness can always be reduced to the required level. It is also possible to construct the short-circuit plate from individual elements which are held together in the circumferential direction by a holding part, such as an O-ring.
  • a groove for receiving a damping ring is provided in the short-circuit plate.
  • this damping ring is designed as an O-ring.
  • the device that conducts the magnetic flux is designed as a package of ring-shaped short-circuit lamellae, which tilt into an essentially conical position in the engaged position of the piston. Due to the easy deformability of the fins, a particularly good magnetic contact between the guide plate and the piston. It is also possible that the device that conducts the magnetic flux is designed as a soft, ferromagnetic spiral spring. This solution is preferred in cases where extreme minimization of noise is required.
  • the device guiding the magnetic flight is designed in the form of at least one shorting bolt which can be displaced parallel to the direction of movement of the piston. Reliable contact between the guide plate and the piston can also be produced in this way. In practice, three to twelve such shorting bolts are used.
  • the magnetic circuit from the permanent magnet via the front cover plate, the outer jacket, the rear cover plate, the guide bush, the piston, the short-circuit plate and the stop plate are closed off within components ferromagnetic materials.
  • a magnetic system is always particularly effective when the magnetic field lines run within their entire length within magnetically conductive materials. The effect of the bistable magnet is therefore further increased if not only is a connection for the magnetic field favorable from the permanent magnet via the guide plate and the device guiding the magnetic flux to the piston is ensured, but also the magnetic circuit is closed in the other direction.
  • the field lines run from the magnet over the front cover plate and the outer jacket to the rear cover plate and from there via the guide bush to the piston. It is essential that all the components mentioned are made of ferromagnetic material.
  • the structure is essentially cylindrical, the actuating rod being located in the region of the cylinder axis and being displaceable parallel to it, and the permanent magnet and piston being coaxial with the actuating rod are arranged. This enables a compact and robust design of the bistable magnet.
  • the housing is designed as a sheet metal bracket, which is preferably formed in one piece with the front cover plate. This enables the creation of a bistable magnet of particularly simple construction.
  • An essentially U-shaped sheet metal component represents the housing and the front cover plate.
  • the bistable magnet shown in Fig. 1 consists of a substantially cylindrical outer shell 1, which is connected to a plate 1a.
  • the bistable magnet is closed at both ends by a front cover plate 2 and a rear cover plate 2a.
  • An annular permanent magnet 3 is firmly connected to the front cover plate 2.
  • a guide plate 4 connects to the permanent magnet 3.
  • An actuating rod 9 is mounted centrally in the bistable magnet and can be displaced in the axial direction and serves to actuate a pinch valve 16.
  • a piston 6 is connected to the actuating rod 9.
  • the piston 6 has a stop surface 17a which interacts with a corresponding counter surface 17b on the rear cover plate 2a.
  • a damping plate 7 is applied to the stop surface 17a.
  • a pole face 18a is provided which interacts with the pole face 18b of the magnetic short-circuit plate 5.
  • the magnetic short-circuit plate 5 is vertical in the disengaged state of the piston 6 and lies over a recessed in a groove O-ring 5a on the guide plate 4.
  • the centering takes place via a sleeve 14 which slides on the actuating rod 9.
  • the piston 6 is mounted in the rear cover plate 2a via a guide bush 11a made of ferromagnetic material and connected to the actuating rod 9 via the guide bush 10.
  • the actuating rod 9 is also mounted in the front cover plate 2 by means of the guide bush 10a.
  • a compression spring 12 acts between the sleeve 14 and a collar 9a of the actuating rod 9 and presses the piston 6 into the disengaged position.
  • the actuating rod 9 is axially displaceable relative to the piston 6.
  • the fixation takes place on the one hand by placing the clamping bracket 19 on the outer surface 6a of the piston 6 and by a spring 13 which is supported on the collar 9a of the actuating rod 9. If the piston 6 moves into its engaged position and the pinch valve 16 reaches a stop before the piston 6 is completely in its engaged position and the magnetic forces have thus reached their maximum force, the piston 6 can also move with the actuating rod 9 held in place move on.
  • the spring 13 is then compressed and the clamping bracket 19 lifts somewhat from the outer surface 6a of the piston 6. This makes it possible to compensate for tolerances in the pinch valve 16.
  • an electromagnet 8 is provided, which is mounted on the housing and concentric with the actuating rod 9.
  • the function of the bistable magnet shown in FIG. 1 is explained in more detail below.
  • the piston 6 is in its disengaged position.
  • the hose 20 of the double-function hose pinch valve 16 is squeezed.
  • the hose 21 is free in this position.
  • the actuating rod 9 is held in its disengaged position by the force of the compression spring 12.
  • the coil 8 is magnetized by a short current pulse, so that the piston 6 is moved axially against the force of the spring 12.
  • the path of the piston 6 is limited by the abutment of the stop surfaces 17a and the counter surface 17b.
  • the damping plate 7 made of elastic material dampens the impact upon impact and effectively prevents noise.
  • the piston 6 In the engaged position, the piston 6 is held by the force of the permanent magnet 3, so that a current flow through the coil 8 is no longer required.
  • the pole faces 18a of the piston 6 and 18b of the magnetic short-circuit plate 5 come so close to one another that the magnetic short-circuit plate 5 is inclined under the action of the magnetic forces, as shown in FIG. 2. In this way it is ensured that the magnetic short-circuit plate 5 touches both the guide plate 4 and the piston 6.
  • the magnetic field lines can therefore reach the piston 6 from the permanent magnet 3 via the guide plate 4 and the magnetic short-circuit plate 5 without an air gap. This ensures a particularly great attraction.
  • the magnetic circuit is closed via the guide bush 11, the rear cover plate 2a, the outer jacket 1 and the front cover plate 2 to form the permanent magnet 3. It is important for the function that the outer jacket 1, the cover plates 2 and 2a, the guide plate 4, the magnetic short-circuit plate 5, the guide bushing 11 and the piston 6 are made of ferromagnetic material.
  • the magnetic short-circuit plate 5 travels only a very short distance when it is deformed, so that the noise development is negligibly small.
  • the magnetic short-circuit plate 15 deforms under the action of the magnetic forces, wherein it assumes a slightly conical position.
  • a number of radial slots are provided for easier deformation of the magnetic short-circuit plate.
  • Web 22 ensure the cohesion of the individual segments separated by the slots. It is also possible to omit the webs 22 so that the individual segments are held together only by the O-ring 5a.
  • the piston 6 is returned to its original disengaged position by magnetizing the coil 8 by an opposite current pulse.
  • the piston 6 then returns to its disengaged position under the force of the compression spring 12.
  • the magnetic forces of the permanent magnet 3 are in this position due to the relatively large
  • the gap between the pole faces 18a and 18b is so small that the piston 6 is held in its disengaged position by the spring 12 even after the current flow through the coil 8 has been switched off.
  • the magnetic short-circuit plate 15 returns to its flat position under the action of the elastic forces, the damping ring 5a effectively preventing noise when it strikes the guide plate 4.
  • the magnetic contact can be made via a package of short-circuit blades 5b, which are arranged between the guide plate 4 and the piston 6.
  • a soft coil spring 5c made of ferromagnetic material is provided as a device for guiding the magnetic flux.
  • the solenoid valve according to the invention achieves extremely high holding forces with small dimensions and is very quiet during the switching process.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)
  • Thin Magnetic Films (AREA)
  • Actuator (AREA)

Claims (13)

  1. Aimant bistable, destiné en particulier à actionner des soupapes ou organes analogues, comprenant un piston mobile (6), présentant une surface polaire, maintenu dans une de ses deux positions stables par un aimant permanent (3) et présentant une surface de butée (17a) qui détermine avec une contrepartie (17b) solidaire du boîtier une position extrême du piston (6), lequel présente, en plus de la butée (17a) une surface polaire (18a) qui coopère avec une surface polaire fixe (18b), caractérisé en ce que la surface de butée (17a) est munie d'une plaque d'amortissement (7) et en ce que, dans la zone de ces surfaces polaires (18a, 18b), est prévu un dispositif conducteur du flux magnétique portant l'entrefer entre ces surfaces polaires (18a, 18b), dispositif qui, par déformation ou déplacement, peut établir un contact entre ces surfaces polaires (18a, 18b).
  2. Aimant bistable selon la revendication 1, caractérisé en ce que sa commutation est assurée par une bobine électromagnétique (8).
  3. Aimant bistable selon l'une des revendications 1 ou 2, caractérisé en ce que le piston (6), en position d'enclenchement, est maintenu par l'aimant permanent, tandis qu'un ressort (12) assure son maintien en position de déclenchement.
  4. Aimant bistable, selon l'une des revendications 1 à 3, caractérisé en ce qu'il comporte un boîtier (1) dont l'aimant permanent (3) est solidaire du boîtier et en ce qu'une plaque conductrice (4) montée sur la face de l'aimant permanent (3) en regard du piston (6) et contre laquelle s'appuie le dispositif conducteur du flux magnétique.
  5. Aimant bistable selon l'une des revendications 1 à 4, caractérisé en ce que le dispositif conducteur du flux magnétique est constitué de préférence d'une plaque annulaire de court-circuit (5) qui, en position d'enclenchement du piston (6) s'incline pour prendre une position oblique.
  6. Aimant bistable selon l'une des revendications 1 à 4, caractérisé en ce que le dispositif conducteur du flux magnétique est constitué de préférence d'une plaque annulaire de court-circuit (15) qui, en position d'enclenchement du piston (6) se déforme pour prendre une position conique.
  7. Aimant bistable selon l'une des revendications 5 ou 6, caractérisé en ce que la plaque (5 ; 15) est munie d'une rainure pouvant recevoir un anneau d'amortissement (5a).
  8. Aimant bistable selon l'une des revendications 1 à 4, caractérisé en ce que le dispositif conducteur du flux magnétique est constitué par un paquet de lamelles annulaires de court-circuit (5b), qui, en position d'enclenchement du piston, s'inclinent pour prendre une position sensiblement conique.
  9. Aimant bistable selon l'une des revendications 1 à 4, caractérisé en ce que le dispositif conducteur du flux magnétique est constitué par un ressort hélicoïdal (5c) ferromagnétique doux.
  10. Aimant bistable selon l'une des revendications 1 à 4, caractérisé en ce que le dispositif conducteur du flux magnétique est constitué par au moins une broche de court-circuit (5d), mobile parallèlement à la direction de déplacement du piston.
  11. Aimant bistable selon l'une des revendications 5 à 10, caractérisé en ce que, dans la position d'enclenchement du piston (6), le circuit magnétique fermé traverse les constituants ferromagnétiques, à savoir l'aimant permanent (3), un couvercle avant (2), une enveloppe externe (1), un couvercle arrière (20), une douille de guidage (11), le piston (6), la plaque de court-circuit (5) et la plaque conductrice (4).
  12. Aimant bistable selon l'une des revendications 1 à 11, caractérisé en ce qu'il a une construction essentiellement cylindrique, qu'il comprend une tige de manoeuvre (9) dans la zone de l'axe du cylindre et pouvant se déplacer selon cette direction et que l'aimant permanent (3) et le piston (6) sont coaxiaux à la tige de manoeuvre (9).
  13. Aimant bistable selon l'une des revendications 1 à 11, caractérisé en ce que le boîtier est constitué par un étrier en tôle de préférence en une seule pièce comportant un couvercle frontale (2).
EP89890201A 1988-12-09 1989-07-31 Aimant bistable Expired - Lifetime EP0373142B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT3020/88 1988-12-09
AT0302088A AT397164B (de) 1988-12-09 1988-12-09 Bistabiler magnet

Publications (2)

Publication Number Publication Date
EP0373142A1 EP0373142A1 (fr) 1990-06-13
EP0373142B1 true EP0373142B1 (fr) 1993-09-01

Family

ID=3544068

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89890201A Expired - Lifetime EP0373142B1 (fr) 1988-12-09 1989-07-31 Aimant bistable

Country Status (8)

Country Link
US (1) US4910487A (fr)
EP (1) EP0373142B1 (fr)
AT (1) AT397164B (fr)
AU (1) AU610426B2 (fr)
DE (1) DE58905461D1 (fr)
ES (1) ES2016784T3 (fr)
IL (1) IL91242A0 (fr)
ZA (1) ZA895929B (fr)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353799A (en) * 1991-01-22 1994-10-11 Non Invasive Technology, Inc. Examination of subjects using photon migration with high directionality techniques
AT396622B (de) * 1990-02-19 1993-10-25 Avl Verbrennungskraft Messtech Elektromagnetisch betätigbares ventil
US6703560B2 (en) * 1998-09-15 2004-03-09 International Business Machines Corporation Stress resistant land grid array (LGA) module and method of forming the same
FR2792109B1 (fr) * 1999-04-12 2001-06-01 Schneider Electric Sa Electroaimant a circuit magnetique simplifie
FR2792108B1 (fr) 1999-04-12 2001-05-04 Schneider Electric Sa Electroaimant a courant continu
US6948697B2 (en) 2000-02-29 2005-09-27 Arichell Technologies, Inc. Apparatus and method for controlling fluid flow
US20070241298A1 (en) 2000-02-29 2007-10-18 Kay Herbert Electromagnetic apparatus and method for controlling fluid flow
US6609698B1 (en) 2000-10-25 2003-08-26 Arichell Technologies, Inc. Ferromagnetic/fluid valve actuator
US7921480B2 (en) 2001-11-20 2011-04-12 Parsons Natan E Passive sensors and control algorithms for faucets and bathroom flushers
US7437778B2 (en) * 2001-12-04 2008-10-21 Arichell Technologies Inc. Automatic bathroom flushers
US7396000B2 (en) 2001-12-04 2008-07-08 Arichell Technologies Inc Passive sensors for automatic faucets and bathroom flushers
AU2002351230A1 (en) * 2001-12-04 2003-06-17 Arichell Technologies, Inc. Electronic faucets for long-term operation
CA2471734C (fr) * 2001-12-26 2011-02-22 Arichell Technologies, Inc. Dispositifs de chasse d'eau equipes de nouveaux capteurs et regulateurs
US20060006354A1 (en) * 2002-12-04 2006-01-12 Fatih Guler Optical sensors and algorithms for controlling automatic bathroom flushers and faucets
US9169626B2 (en) * 2003-02-20 2015-10-27 Fatih Guler Automatic bathroom flushers
US6752371B2 (en) * 2002-06-19 2004-06-22 Arichell Technologies, Inc. Valve actuator having small isolated plunger
CA2490249C (fr) * 2002-06-24 2013-02-26 Arichell Technologies, Inc. Systemes de distribution d'eau automatises a commande asservie
US7731154B2 (en) * 2002-12-04 2010-06-08 Parsons Natan E Passive sensors for automatic faucets and bathroom flushers
US20110017929A1 (en) * 2003-02-20 2011-01-27 Fatih Guler Low volume automatic bathroom flushers
USD598974S1 (en) 2004-02-20 2009-08-25 Sloan Valve Company Automatic bathroom flusher cover
CA2458063C (fr) 2003-02-20 2013-04-30 Arichell Technologies, Inc. Chasses d'eau de conception modulaire
USD621909S1 (en) 2004-02-20 2010-08-17 Sloan Valve Company Enclosure for automatic bathroom flusher
USD623268S1 (en) 2004-02-20 2010-09-07 Sloan Valve Company Enclosure for automatic bathroom flusher
USD629069S1 (en) 2004-02-20 2010-12-14 Sloan Valve Company Enclosure for automatic bathroom flusher
USD620554S1 (en) 2004-02-20 2010-07-27 Sloan Valve Company Enclosure for automatic bathroom flusher
JP2006335874A (ja) * 2005-06-02 2006-12-14 Kao Corp 生分解性樹脂用可塑剤
FR2896615A1 (fr) * 2006-01-20 2007-07-27 Areva T & D Sa Actionneur magnetique a aimant permanent a volume reduit
TWI354079B (en) * 2008-10-03 2011-12-11 Univ Nat Taipei Technology Bi-directional electromechanical valve
DE102009015833B4 (de) * 2009-04-01 2011-04-28 Hydac Electronic Gmbh Elektromagnetische Stellvorrichtung
DE102009030479B4 (de) * 2009-06-24 2011-04-28 Saia-Burgess Dresden Gmbh Magnetauslöser
DE102009049009B4 (de) * 2009-10-09 2012-10-04 Pierburg Gmbh Aktuator für eine Verbrennungskraftmaschine
KR101158423B1 (ko) * 2010-05-26 2012-06-22 주식회사 케피코 차량의 자동변속기용 유압 솔레노이드 밸브
WO2012125213A1 (fr) 2011-03-15 2012-09-20 Sloan Valve Company Robinets automatiques
US9695579B2 (en) 2011-03-15 2017-07-04 Sloan Valve Company Automatic faucets
ES1085629Y (es) * 2013-05-29 2013-10-16 Coprecitec Sl Válvula de cierre de gas con seguridad térmica
GB201615379D0 (en) * 2016-09-09 2016-10-26 Camcon Medical Ltd Electromagnetic actuator
US10993546B2 (en) 2016-10-28 2021-05-04 Sleep Number Corporation Noise reducing plunger
DE102018116979A1 (de) * 2018-07-13 2020-01-16 Svm Schultz Verwaltungs-Gmbh & Co. Kg Elektromagnetischer Aktuator
DE102018117008A1 (de) * 2018-07-13 2020-01-16 Svm Schultz Verwaltungs-Gmbh & Co. Kg Elektromagnetischer Aktuator mit Lagerelement
US11832728B2 (en) 2021-08-24 2023-12-05 Sleep Number Corporation Controlling vibration transmission within inflation assemblies

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1817592A (en) * 1931-08-04 sokoloff
DE1021075B (de) * 1953-06-06 1957-12-19 Nils Knut Edvard Berglund Polarisiertes Relais
FR1205106A (fr) * 1954-02-24 1960-01-29 Perfectionnements aux électro-aimants et dispositifs analogues
US2881367A (en) * 1956-06-18 1959-04-07 James P Watson Articulated armature means
US3713059A (en) * 1970-12-05 1973-01-23 Hosiden Electronics Co Solenoid operated plunger device
US3961298A (en) * 1975-05-07 1976-06-01 The Singer Company Dual plunger solenoid
JPS59126608A (ja) * 1983-01-07 1984-07-21 Aisin Seiki Co Ltd ソレノイド装置
CH646544A5 (de) * 1983-04-11 1984-11-30 Pavlovsky Rudolf Verfahren und einrichtung zur anpassung der wirkung eines elektromagneten an eine vom elektromagneten zu betaetigende komponente.
US4470030A (en) * 1983-05-18 1984-09-04 Ledex, Inc. Trip solenoid
DE3323982A1 (de) * 1983-07-02 1985-01-10 Messerschmitt Boelkow Blohm Bistabile, elektromagnetische betaetigungsvorrichtung
DE3423469A1 (de) * 1984-06-26 1986-01-02 Harting Elektronik Gmbh Monostabiler betaetigungsmagnet

Also Published As

Publication number Publication date
AU610426B2 (en) 1991-05-16
EP0373142A1 (fr) 1990-06-13
ATA302088A (de) 1993-06-15
DE58905461D1 (de) 1993-10-07
ZA895929B (en) 1990-05-30
ES2016784T3 (es) 1993-12-16
US4910487A (en) 1990-03-20
IL91242A0 (en) 1990-03-19
AT397164B (de) 1994-02-25
ES2016784A4 (es) 1990-12-01
AU3931489A (en) 1990-06-14

Similar Documents

Publication Publication Date Title
EP0373142B1 (fr) Aimant bistable
DE3215057C2 (de) Selbsthaltendes solenoid
EP1859462B1 (fr) Dispositif d'actionnement magnetique
DE3334159A1 (de) Magnetventil
WO2003030188A1 (fr) Actionneur electromagnetique
EP0898780B1 (fr) Commutateur electrique a entrainement magnetique
DE112011104482T5 (de) Magnetbetätigte Vorrichtung
DE3932274C2 (de) Polarisierte elektromagnetische Vorrichtung
EP1188222A1 (fr) Organe d'entrainement lineaire magnetique
EP0686989A1 (fr) Appareil bistable de commutation
DE602004007646T3 (de) Elektromagnetischer antrieb
EP1897108B1 (fr) Dispositif de commutation electrique dote d'elements de reglage magnetiques pour un element de commutation
EP1351262B1 (fr) Electroaimant à courant continu
EP2179430B1 (fr) Actionneur electromagnetique
DE2821842C2 (de) Elektromagnetische Antriebsvorrichtung
WO2008055863A1 (fr) Dispositif de production d'une force définie
EP1085549B1 (fr) Contacteur bistable
DE1965810C3 (de) Vakuumschalter
DE102008063689C5 (de) Elektromagnet mit Permanentmagnet
DE2836705C2 (de) Auslöse-Elektromagnet
DE102018216223B3 (de) Aktor und Verfahren zur Betätigung eines Hochspannungsschalters
DE2916279C2 (fr)
DE69209155T2 (de) Elektromagnetischer Auslöser mit Schlagbolzen
DE3246256C2 (de) Elektromagnetisches Relais
DE1960809C3 (de) Schaltmagnet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

ITCL It: translation for ep claims filed

Representative=s name: MODIANO & ASSOCIATI S.R.L.

GBC Gb: translation of claims filed (gb section 78(7)/1977)
17P Request for examination filed

Effective date: 19900731

17Q First examination report despatched

Effective date: 19920820

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

REF Corresponds to:

Ref document number: 58905461

Country of ref document: DE

Date of ref document: 19931007

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930914

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2016784

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940719

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19940801

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970725

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990501

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050731