EP0365985A1 - Borlegierte Stähle und Verfahren zum Glühen derselben - Google Patents

Borlegierte Stähle und Verfahren zum Glühen derselben Download PDF

Info

Publication number
EP0365985A1
EP0365985A1 EP89119308A EP89119308A EP0365985A1 EP 0365985 A1 EP0365985 A1 EP 0365985A1 EP 89119308 A EP89119308 A EP 89119308A EP 89119308 A EP89119308 A EP 89119308A EP 0365985 A1 EP0365985 A1 EP 0365985A1
Authority
EP
European Patent Office
Prior art keywords
boron
annealing
products
gas atmosphere
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89119308A
Other languages
English (en)
French (fr)
Inventor
Helmut Dr.-Ing. Brandis
Bernd Dr.-Ing. Huchtemann
Peter Dr.-Ing. Schüler
Dietrich Dr.-Ing. Werner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thyssen Stahl AG
Original Assignee
Thyssen Edelstahlwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssen Edelstahlwerke AG filed Critical Thyssen Edelstahlwerke AG
Publication of EP0365985A1 publication Critical patent/EP0365985A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/68Boronising
    • C23C8/70Boronising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Definitions

  • the invention relates to boron-alloyed steels and a method for annealing products made of steels with boron contents up to 200 ppm in the temperature range from 850 to 1,050 o C.
  • the invention is based on the object, in the high-temperature annealing of products made of steels with boron in dissolved form, to prevent boron from escaping or boron from the steel even being supplied in a predefined quantity in dissolved form without a hard boride layer on the surface forms.
  • a steel is proposed according to the invention and a method in which the products are annealed in a non-oxidizing gas atmosphere with a boron potential supplied by a source of powdered boron oxide (B2O3) of such a size that the products retain their boron content maintain or record.
  • B2O3 powdered boron oxide
  • the method according to the invention is not comparable to the known boronization of steels, in which the boron activity in the annealing atmosphere is of a completely different order of magnitude around or above 1, while in the method according to the invention it is several orders of magnitude lower.
  • the steel in the borated zone absorbs boron contents in the% range when boroning, with the formation of iron boride (FeB and Fe2B), i.e. contents which are far above the solubility limit (in the gamma iron at 1000 o C approx. 75 ppm B). Boronizing is described in the Technical book "Borieren" by A. Graf von Matuschka (1977), Carl Hanser Verlag. Boron processes are also known from DE-OS 2 126 379 and GB-PS 1 435 045.
  • annealing should take place in the equilibrium state, that is to say under constant temperature, pressure and concentration conditions, including constant boron activity or constant boron partial pressure in the annealing atmosphere.
  • the method according to the invention is therefore aimed at the layer-free setting of a content of dissolved boron in the matrix, without having to remove a hard boron layer that is produced in the process.
  • the glow gas atmosphere consists mainly of hydrogen
  • the boron potential can be greatly reduced in the presence of B2O3, because at most traces of oxygen are still contained in the glow gas atmosphere.
  • the neutral atmosphere also protects the steel from scaling and boron depletion.
  • the annealing preferably takes place in the boron-containing gas atmosphere in the box without circulating the gas atmosphere, because then depletion of the boron annealing atmosphere can be prevented by condensation of the boron oxide. Instead, the boron potential can be maintained in the annealing gas atmosphere for hours.
  • the process according to the invention also makes it possible to case-harden products and even products made of a steel that does not contain boron, and at the same time with soluble boron in an amount up to about 200 ppm B to alloy.
  • Nicholson had only succeeded in alloying iron from an iron boride coating layer with boron if the sample was completely surrounded by boron powder when annealed in a hydrogen atmosphere. In contrast, boron did not diffuse into an iron sample in vacuum or under helium as a protective gas. Grabke / Paju (op. Cit.) Recently did not consider the simultaneous carburizing of steel and alloying with boron possible.
  • the boron source consisting of inexpensive powdered boron oxide can be mixed with the case hardener during annealing with simultaneous carburizing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Die Erfindung betrifft borlegierte Stähle und ein Verfahren zum Glühen von Erzeugnissen aus Stählen mit Gehalten bis 200 ppm Bor im Temperaturbereich von 850 bis 1.050 oC. Kennzeichen der Erfindung ist, daß die Erzeugnisse in einer nichtoxidierenden Gasatmosphäre mit einem durch eine Quelle aus pulverförmigem Boroxid gelieferten Borpotential einer solchen Größe im Gleichgewichtszustand geglüht werden, daß die Erzeugnisse ihren Borgehalt beibehalten oder aufnehmen. Die Borquelle beträgt mengenmäßig etwa 100 g B₂O₃ pro m³ Glühraum.
In einer hauptsächlich aus Wasserstoff bestehenden Glühgas-­atmosphäre bei Atmosphärendruck kann der Wasserdampfpartialdruck in Gegenwart von B₂O₃ auf die gewünschte Boraktivität innerhalb des Bereichs von 10⁻³ bis 10⁻⁵ eingestellt werden.
Die Erzeugnisse können während des Glühens gleichzeitig auch einsatzgehärtet werden. Dabei kann das Einsatzhärtemittel, mit pulverförmigem Boroxid als Borquelle vermischt sein.

Description

  • Die Erfindung betrifft borlegierte Stähle und ein Verfahren zum Glühen von Erzeugnissen aus Stählen mit Borgehalten bis 200 ppm im Temperaturbereich von 850 bis 1.050 oC.
  • Beim Glühen von Stählen, die Bor in gelöster Form, also bis 100 ppm, enthalten, im Bereich erhöhter Temperatur um 1.000 oC ist immer wieder beobachtet worden, daß die Erzeugnisse zumindest im Oberflächenbereich in unerwünschter Weise an Bor verarmen. So fanden z.B. T. Inoue und Y. Ochida in: Lecture No. S. 1351, presented at the 102nd ISIJ meeting 1981 bei einem niedriglegierten Stahl mit 0,2 % C und 30 ppm B nach einem Glühen bei 900 oC für 2 h in strömendem Argon eine Borverarmung bis zu einer Tiefe von 0,4 mm von der Oberfläche. Das gleiche Ergebnis wurde erzielt, wenn anstelle von Argon in Luft geglüht wurde. Sie empfahlen daher borlegierte Stähle unter Vakuum von 13,3 mPa in Anwesenheit eines Zirkoniumgetters zu glühen. Auch P.E. Busby, M.E. Warga und C. Wells in: Journal of Metals, November 1953, S. 1463/8 beobachteten bei Glühungen im Austenitgebiet, also oberhalb von etwa 900 oC, ein gleichzeitiges Abdampfen von Kohlenstoff und Bor aus einem niedriglegierten Stahl mit 0,43 % C und 38 ppm B in feuchtem Wasserstoff. M.E. Nicholson in: Journal of Metals, February 1954, S. 185/90 stellten eine stärkere Anreicherung von Bor im Kern der Proben fest und führten dies auf die Bildung von Borverbindungen zurück. Sie empfahlen, bei der Borzugabe vor allem den Sauerstoffgehalt zu berücksichtigen, denn ein Teil desselben würde sich mit Bor zu Boroxid verbinden, wodurch der lösliche Anteil von Bor, der härtbarkeitssteigernd wirkt, verringert würde.
  • Borlegierte Stähle zeigen häufig sehr unterschiedliche Härtbarkeit. Da es in dieser Hinsicht an einer systematischen Untersuchung fehlt, ist der Ursachzusammenhang bislang ungeklärt.
  • Der Erfindung liegt nun die Aufgabe zugrunde, beim Hochtemperaturglühen von Erzeugnissen aus Stählen mit Bor in gelöster Form zu verhindern, daß Bor entweicht bzw. Bor dem Stahl sogar in definiert vorgebbarer Menge in gelöster Form zugeführt wird, ohne daß sich an der Oberfläche eine harte Boridschicht bildet.
  • Zur Lösung dieser Aufgabe wird erfindungsgemäß ein Stahl nach Anspruch 1 und ein Verfahren vorgeschlagen, bei dem die Erzeugnisse in einer nichtoxidierenden Gasatmosphäre mit einem durch eine Quelle aus pulverförmigem Boroxid (B₂O₃) gelieferten Borpotential einer solchen Größe im Gleichgewichtszustand geglüht werden, daß die Erzeugnisse ihren Borgehalt beibehalten oder aufnehmen.
  • Das erfindungsgemäße Verfahren ist nicht mit dem bekannten Borieren von Stählen vergleichbar, bei dem die Boraktivität in der Glühatmosphäre in einer ganz anderen Größenordnung um oder über 1 liegt, während sie beim erfindungsgemäßen Verfahren um mehrere Zehnerpotenzen niedriger liegt. Dementsprechend nimmt der Stahl in der borierten Zone beim Borieren unter Bildung von Eisenborid (FeB und Fe₂B) Borgehalte im %-Bereich auf, also Gehalte, die weit oberhalb der Löslichkeitsgrenze (im Gamma-Eisen bei 1000 oC circa 75 ppm B) liegen. Das Borieren ist beschrieben in dem Fachbuch "Borieren" von A. Graf von Matuschka (1977), Carl Hanser Verlag. Borierverfahren sind auch bekannt aus der DE-OS 2 126 379 und GB-PS 1 435 045.
  • Beim erfindungsgemäßen Verfahren soll im Gleichgewichtszustand, also unter konstanten Temperatur-, Druck- und Konzentrationsbedingungen, einschließlich konstanter Boraktivität bzw. konstantem Borpartialdruck in der Glühatmosphäre geglüht werden. Fig. 1 macht die Abhängigkeit des Borgehalts von der Boraktivität deutlich. Danach steigt der Borgehalt mit temperaturabhängigem Gradienten mit zunehmender Boraktivität und beträgt im Gamma-Eisen bei 1000oC bei einer Boraktivität aB = 10⁻³ etwa 70 ppm B, entsprechend einem Molenbruch des Bors von XB = 3,5 . 10⁻⁴. Im Bereich löslicher Borgehalte im Eisen, d.h. bis etwa 200 ppm B, liegt die Boraktivität nach Fig. 1 also im Bereich von 10⁻³ bis 10⁻⁴, während sie beim Borieren wie vorerwähnt wesentlich größer ist. Das erfindungsgemäße Verfahren zielt also auf das schichtfreie Einstellen eines Gehaltes an gelöstem Bor in der Matrix ab, ohne daß eine dabei entstandene harte Borierschicht entfernt werden muß.
  • Wie sich bei Versuchen herausgestellt hat, kommt man mit einem Einsatz vom 100 g B₂O₃ pro m³ Glühraum als Borquelle für die einige Stunden in Anspruch nehmende Glühung unter Gleichgewichtsbedingungen aus. Man stellt dabei die Glühbedingungen (Druck, Temperatur, Zusammensetzung des Glühgasgemischs) ein und glüht dann im Gleichgewichtszustand, so daß reproduzierbare Verhältnisse herrschen.
  • Wenn die Glühgasatmosphäre hauptsächlich aus Wasserstoff besteht, kann in Gegenwart von B₂O₃ das Borpotential stark verringert werden, weil allenfalls noch Spuren von Sauerstoff in der Glühgasatmosphäre enthalten sind.
  • Außerdem schützt die neutrale Atmosphäre den Stahl vor einer Verzunderung und Borverarmung. In bevorzugter Ausgestaltung des erfindungsgemäßen Verfahrens wird dabei empfohlen, den Wasserdampfpartialdruck in der H₂-Glühgasatmosphäre auf die gewünschte Boraktivität einzustellen, sorgfältig zu messen und beim Auftreten von Anderungen des Wasserdampfpartialdrucks diesen auf den Sollwert im Bereich von 10⁻³ bis 10⁻⁵ einzuregulieren. Über die von der Bildungsgleichung von Boroxid abgeleitete Partialdruckbeziehung
    Figure imgb0001
    ist die Boraktivität aB in einer reinen Wasserstoffatmosphäre nämlich nur noch vom Wasserdampfpartialdruck PH₂O abhängig(K = Konstante).
  • Damit ergibt sich die Möglichkeit, die Boraktivität in der Glühgasatmosphäre über eine Änderung des Wasserdampfpartialdrucks zu beeinflussen.
  • Bevorzugt erfolgt das Glühen in der borhaltigen Gasatmosphäre im Kasten ohne Umwälzen der Gasatmosphäre, denn dann kann ein Verarmen der Glühatmosphäre an Bor durch Auskondensieren des Boroxids verhindert werden. Stattdessen kann das Borpotential auch über Stunden in der Glühgasatmosphäre erhalten bleiben.
  • Entgegen herrschender Meinung (Nicholson a.a.O. und Grabke/Paju in: Steel Research 8/88 S. 336) gelingt es mit dem erfindungsgemäßen Verfahren borhaltige Erzeugnisse auch einsatzzuhärten und sogar Erzeugnisse aus einem Stahl, der kein Bor enthält, einsatzzuhärten und gleichzeitig mit löslichem Bor in einer Menge bis etwa 200 ppm B zu legieren.
  • Nicholson war es nur dann gelungen, Eisen aus einer Eisenboridüberzugsschicht mit Bor aufzulegieren, wenn die Probe beim Glühen in einer Wasserstoffatmosphäre vollständig mit Borpulver umgeben war. In Vakuum oder unter Helium als Schutzgas gelang das Eindiffundieren von Bor in eine Eisenprobe dagegen nicht. Grabke/Paju (a.a.O.) hielten erst kürzlich das gleichzeitige Aufkohlen von Stahl und Auflegieren mit Bor nicht für möglich.
  • Die aus preiswertem pulverförmigen Boroxid bestehende Borquelle kann beim Glühen mit gleichzeitigem Aufkohlen mit dem Einsatzhärtemittel vermischt werden.

Claims (6)

1. Borlegierte Stähle, dadurch gekennzeichnet, daß sie im geglühten Zustand einen definierten (gelösten) Borgehalt im Bereich bis 200 ppm besitzen.
2. Verfahren zum Glühen von Erzeugnissen aus Stählen mit Gehalten bis 200 ppm Bor im Temperaturbereich von 850 bis 1.050 oC, dadurch gekennzeichnet, daß die Erzeugnisse in einer nichtoxidierenden Gasatmosphäre mit einem durch eine Quelle aus pulverförmigem Boroxid (B₂O₃) gelieferten Borpotential einer solchen Größe im Gleichgewichtszustand geglüht werden, daß die Erzeugnisse ihren gelösten Borgehalt beibehalten oder aufnehmen.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß 100 g B₂O₃ pro m³ Glühraum eingesetzt wird.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß in einer hauptsächlich aus Wasserstoff bestehenden Glühgas- atmosphäre bei Atmosphärendruck der Wasserdampfpartialdruck in Gegenwart von B₂O₃ auf die gewünschte Boraktivität innerhalb des Bereichs von 10⁻³ bis 10⁻⁵ eingestellt wird.
5. Verfahren nach einem der Ansprüche 2, 3 oder 4, dadurch gekennzeichnet, daß die Erzeugnisse während des Glühens einsatzgehärtet werden.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Einsatzhärtemittel, mit pulverförmigem Boroxid vermischt, verwendet wird.
EP89119308A 1988-10-22 1989-10-18 Borlegierte Stähle und Verfahren zum Glühen derselben Withdrawn EP0365985A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3836102 1988-10-22
DE3836102 1988-10-22
DE3917071A DE3917071C1 (de) 1988-10-22 1989-05-26
DE3917071 1989-05-26

Publications (1)

Publication Number Publication Date
EP0365985A1 true EP0365985A1 (de) 1990-05-02

Family

ID=25873531

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89119308A Withdrawn EP0365985A1 (de) 1988-10-22 1989-10-18 Borlegierte Stähle und Verfahren zum Glühen derselben

Country Status (4)

Country Link
US (1) US5022933A (de)
EP (1) EP0365985A1 (de)
KR (1) KR910008148A (de)
DE (1) DE3917071C1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840132A (en) * 1996-04-24 1998-11-24 Arch Development Corporation Lubricated boride surfaces
ES2188401B1 (es) * 2001-10-10 2004-03-01 Linares Fernanda Ruiz Acero en su composicion hidrogeno
WO2003074758A1 (en) * 2002-03-01 2003-09-12 Stichting Voor De Technische Wetenschappen Method of forming a diamond coating on an iron-based substrate and use of such an iron-based substrate for hosting a cvd diamond coating
CN102963902B (zh) * 2012-11-14 2014-10-29 陕西科技大学 一种层状形貌硼酸晶体材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1671870A (en) * 1926-02-27 1928-05-29 Taylorwharton Iron And Steel C Method of treating manganese steel
EP0242032A2 (de) * 1986-04-15 1987-10-21 Allegheny Ludlum Corporation Verfahren zum Vermindern der Eisenverluste in Kornorientierten Silizium-Stählen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2126379C3 (de) * 1971-05-27 1979-09-06 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Verfahren zum Borieren von Metallen, insbesondere von Stahl
US3922038A (en) * 1973-08-10 1975-11-25 Hughes Tool Co Wear resistant boronized surfaces and boronizing methods
FR2339678A1 (fr) * 1976-01-28 1977-08-26 Ugine Aciers Aciers a caracteristiques mecaniques ameliorees par additions controlees de b, al et n
JPS58174551A (ja) * 1982-04-03 1983-10-13 Sumitomo Electric Ind Ltd ボロン含有鋼およびその製造方法
JPS60128247A (ja) * 1983-12-16 1985-07-09 Ube Ind Ltd 破粉砕機部材用の高靭性耐摩耗鋳鋼
JPS60174852A (ja) * 1984-02-18 1985-09-09 Kawasaki Steel Corp 深絞り性に優れる複合組織冷延鋼板とその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1671870A (en) * 1926-02-27 1928-05-29 Taylorwharton Iron And Steel C Method of treating manganese steel
EP0242032A2 (de) * 1986-04-15 1987-10-21 Allegheny Ludlum Corporation Verfahren zum Vermindern der Eisenverluste in Kornorientierten Silizium-Stählen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
METAL SCIENCE AND HEAT TREATMENT, Band 24, Nr. 3/4, März-April 1982, Seiten 260-263, Plenum Publishing Corp., New York, US; L.S. LYAKHOVICH: "Boriding of steels in gaseous media" *
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 199 (C-359)[2255], 11. Juli 1986, Seite 80 C 359; & JP-A-61 41 718 (ORIENTAL ENG. K.K.) 28-02-1986 *

Also Published As

Publication number Publication date
US5022933A (en) 1991-06-11
KR910008148A (ko) 1991-05-30
DE3917071C1 (de) 1990-04-19

Similar Documents

Publication Publication Date Title
DE2126379C3 (de) Verfahren zum Borieren von Metallen, insbesondere von Stahl
DE2419716A1 (de) Eisenteil und verfahren zum auftragen eines ueberzugs, der bestaendig gegen verschleiss, fressen und korrosion ist und der die schlagfestigkeit und die haftbarkeit von schmierfilmen verbessert
DE2263576A1 (de) Verschleissfeste schnellarbeitsstaehle mit guttr schleifbarkeit und hoher zaehigkeit
EP0662525B1 (de) Verfahren zur Vermeidung von Randoxidation beim Aufkohlen von Stählen
DE1219239B (de) Gesinterte, stahlgebundene Karbid-Hartlegierung
DE3917071C1 (de)
EP0046567A2 (de) Verfahren zum Glühen chromhaltiger Eisenmetalle in einem Schutzgas
EP1122331B1 (de) Verfahren zum Nitrieren und/oder Nitrocarburieren von höher legierten Stählen
DE2517147C2 (de) Verfahren zur Tiefsttemperaturbehandlung von metallischen oder nichtmetallischen Werkstoffen
DE1621204B1 (de) Verfahren zur verbesserung der haltbarkeit von chrom schutzschichten auf metallen bei hohen temperaturen in stickstoffhaltiger atomsphäre
DE1221804B (de) Verfahren zur Herstellung stahlgebundener Karbidhartlegierungen mit genau voraus-bestimmbarem Kohlenstoffgehalt der Grundlegierung
DE746005C (de) Eisen oder Stahl fuer Gegenstaende, deren Oberflaeche durch thermische Diffusion an Chrom angereichert werden soll
DE1928695C3 (de) Die Verwendung eines austenitischen Stahls als Werkstoff für die Luftfahrtindustrie
DE2929551C3 (de) Mittel zum Diffusionsbeschichten von Eisenmetallen
DE3030109C2 (de) Mittel zum Diffusionsbeschichten von Eisenmetallen
DE2315165A1 (de) Verfahren zum nitrieren eisenhaltiger teile
DE1902209A1 (de) Verfahren zur Oberflaechenhaertung
DE3827141C1 (en) Process for alitising objects of austenitic steel or nickel-based alloys
DE102011111493A1 (de) Verfahren zur Steigerung der Korrisionsbeständigkeit nichtrostender martensitischer Stähle durch Austenitformhärten
DE2018709C3 (de) Verfahren zur Verbesserung der Verschleißfestigkeit von Eisenwerkstoffen
DE2123348C3 (de)
DE3935486A1 (de) Verfahren zum gaskarbonitrierhaerten von bauteilen aus eisenwerkstoffen
DE2146472C3 (de) Pulverförmiges Borierungsmittel
DE19946327B4 (de) Verfahren zur Senkung der Kernhärte beim Einsatzhärten nichtrostender martensitischer Stähle mit Stickstoff
DE2053063C3 (de) Verfahren zur Abscheidung von Metallkarbidschichten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19900518

17Q First examination report despatched

Effective date: 19920410

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19930702