EP0359748A1 - Messvorichtung zur bestimmung der temperatur von halbleiterkörpern und verfahren zur herstellung der messvorrichtung - Google Patents

Messvorichtung zur bestimmung der temperatur von halbleiterkörpern und verfahren zur herstellung der messvorrichtung

Info

Publication number
EP0359748A1
EP0359748A1 EP88903190A EP88903190A EP0359748A1 EP 0359748 A1 EP0359748 A1 EP 0359748A1 EP 88903190 A EP88903190 A EP 88903190A EP 88903190 A EP88903190 A EP 88903190A EP 0359748 A1 EP0359748 A1 EP 0359748A1
Authority
EP
European Patent Office
Prior art keywords
semiconductor body
thermocouple
semiconductor
measuring device
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP88903190A
Other languages
English (en)
French (fr)
Inventor
Spyridon Gisdakis
Helmut Tews
Peter Zwicknagl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0359748A1 publication Critical patent/EP0359748A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53174Means to fasten electrical component to wiring board, base, or substrate

Definitions

  • Measuring device for determining the temperature of Halbleiter ⁇ bodies processes for producing the measuring device and method for determining the temperature of semiconductor bodies currency ⁇ rend tempering
  • annealing processes In the manufacture of semiconductor products, e.g. Semiconductor wafers for electronic components, annealing processes often have to be carried out. It is important to control the temperature of a semiconductor body precisely during the tempering process and to regulate the temperature profile exactly.
  • the object of the invention is to provide methods and measuring devices with which the temperature of a semiconductor body can be determined precisely and reproducibly during a tempering process and to specify methods for producing such measuring devices.
  • thermocouple 5 is integrated in this semiconductor body 1.
  • the thermocouple ball 7 of this thermocouple 5 is located in a recess 6 in the semiconductor body 1 and is to be enclosed on all sides with semiconductor material.
  • thermocouple wires 8 of the thermocouple 5 are led out on the side of the recess 6 of the semiconductor body 1.
  • the recess 6 of the semiconductor body 1 can be created, for example, by mechanical processing after the manufacture of the semiconductor body 1.
  • the thermocouple ball 7 of the thermocouple 5 is introduced into the recess 6.
  • the thermocouple wires 8 are led out on the side of the recess 6 of the semiconductor body 1.
  • the semiconductor body 1 in this example consists of gallium arsenide, a III-V semiconductor. After the thermocouple 5 has been introduced into the recess 6, it is filled with liquid gallium 22 and the device is brought into a reaction tube 21. An arsenic-containing atmosphere is produced in the reaction tube 21, for example with As ⁇ or AsH.
  • a temperature of approximately 750 ° C. is set in the reaction tube 21.
  • the gallium that was introduced into the recess reacts with arsenic to form polycrystalline gallium arsenide, which grows into the semiconductor body 1 and thereby encloses the thermocouple ball 7 from all sides.
  • Another method for filling the recess 6 can be used if the semiconductor body 1 in the vicinity of the recess 6 consists of a single semiconductor element, for example silicon or germanium.
  • the recess 6 of the semiconductor body 1 can then be filled after the thermocouple 5 has been introduced by separating the semiconductor element from the gas phase.
  • the measuring device can also be manufactured such that the thermocouple wires 8 are led out on a side of the semiconductor body other than the side into which the thermocouple ball 7 is inserted.
  • the measuring device 32 contains a first semiconductor body 1, which is designed as a reference to the second semiconductor body 31, so that during the Annealing process the temperature profile measured in the first semiconductor body 1 agrees with the temperature profile in the second semiconductor body 31.
  • the measuring device 32 is arranged closely adjacent to the second semiconductor body 31 so that temperature fluctuations in the surroundings of the second semiconductor body 31 and the measuring device 32 do not lead to measurement errors.
  • the thermocouple wires 8 of the thermocouple 5 are led out through bores 34 in the first semiconductor body 1 to the side facing away from the second semiconductor body 31. It is thus achieved that the semiconductor bodies are arranged closer to one another.
  • the measuring device 32 can be used to determine the temperature that prevails in the interior of the second semiconductor body 31.
  • the temperature measurement in the interior of the first semiconductor body 1 is particularly advantageous if the semiconductor bodies make rapid temperature changes. are set and therefore the course of the surface temperature differs from the course of the temperature inside the semiconductor body.
  • the measuring device 32 can be constructed in such a way that the thermocouple group 7 is located in a very specific layer of the first semiconductor body 1, so that it can be used to determine how the temperature profile in the comparable layer of the second semiconductor body 31 is.
  • the temperature determined with the measuring device 32 can be used to regulate the temperature of the tempering process. The temperature control can thus be matched exactly to the temperature conditions in the second semiconductor body 31.
  • FIG. 4 schematically shows a measuring device for determining the surface temperature of a semiconductor body 1.
  • Two overlapping metal strips 42 and 43 are attached to the semiconductor body 1 by vapor deposition.
  • the metal strips 42 and 43 consist of a combination of thermocouple metals, e.g. Platinum / rhodium-platinum or nickel / chromium-nickel and have electrical connections 44.
  • the measuring device shown can be used for temperature determination when tempering a second semiconductor body 31.
  • the first semiconductor body 1 is selected such that it is designed as a reference to the second semiconductor body 31, the temperature of which is to be determined, and undergoes the same annealing process together with this second semiconductor body 31.
  • the measuring device schematically shows a measuring device for determining the surface temperature of a semiconductor body 1.
  • the measuring device contains a thermocouple 5 and a bearing weight 52, which weighs down the thermocouple ball 7 of the thermocouple 5.
  • the bearing weight 52 rests on the thermocouple ball 7, while the thermocouple wires 8 of the thermocouple 5 through holes 53 are passed through in the bearing weight 52.
  • the thermocouple ball 7 with the bearing weight 52 lies freely on the semiconductor body 1 during the measurement.
  • the measuring device can be used to determine the temperature of a second half-body 31 during an annealing process.
  • the temperature of the first semiconductor body 1 is determined as a reference semiconductor body with the aid of the measuring device, which body undergoes the same annealing process together with the second semiconductor body 31 and the measuring device.
  • FIG. 6 schematically shows a measuring device of the type as shown in FIG. 5, with the special feature that the support weight 52 is rotatably supported via an axis of rotation 61 with a fastening 62.
  • the support weight 52 lies on one side on the thermocouple ball 7 of the Thermocouples 5.
  • the thermocouple wires 8 of the thermocouple 5 are passed through holes in the support weight 52.
  • the rotatable mounting of the measuring device facilitates positioning on the semiconductor body 1, the surface temperature of which is to be determined with the aid of the measuring device.
  • the measuring device can be used to determine the temperature of a second semiconductor body 31 during an annealing process.
  • thermocouple materials can react chemically with components of semiconductors, for example aluminum of a chromium-aluminum thermocouple with arsenic of an arsenic-containing semiconductor.
  • thermocouple which is provided with a thin protective coating if there is a risk that components of the thermocouple react chemically with components of the semiconductor body.
  • the protective coating can consist of Si0 2 or Si_N, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

Meßvorrichtung zur Bestimmung der Temperatur von Halbleiter¬ körpern, Verfahren zur Herstellung der Meßvorrichtung und Ver- fahren zur Bestimmung der Temperatur von Halbleiterkörpern wäh- rend Temperprozessen
Bei der Herstellung von Halbleiterprodukten, z.B. Halbleiter¬ scheiben für elektronische Bauelemente, müssen oft Temper- prozesse durchgeführt werden. Dabei ist es wichtig, die Temperatur eines Halbleiterkörpers während des Temperpro¬ zesses genau zu kontrollieren und den Temperaturverlauf exakt zu regeln.
Aufgabe der Erfindung ist, Verfahren und Meßvorrichtungen anzu¬ geben, mit denen die Temperatur eines Halbleiterkörpers während eines Temperprozesses genau und reproduzierbar bestimmt werden kann und Verfahren zur Herstellung solcher Meßvorrichtungen anzugeben.
Die Aufgabe wird erfindungsgemäß gelöst durch die Merkmale des Anspruchs 1, 2, 3, 4, 6, bzw. 10. Weitere Ausgestaltungen der Erfindung gehen aus den Unteransprüchen hervor.
In den folgenden Figuren wird die Erfindung anhand von Aus¬ führungsbeispielen erläutert.
Fig. 1 zeigt schematisch einen Herstellungsschritt eines Ver¬ fahrens zur Herstellung einer Meßvorrichtung zur Bestimmung der Temperatur im Inneren eines Halbleiterkörpers 1. In diesen Halbleiterkörper 1 ist ein Thermoelement 5 integriert. Die Thermoelementkugel 7 dieses Thermoelements 5 befindet sich in einer Aussparung 6 des Halbleiterkör¬ pers 1 und soll von allen Seiten mit Halbleitermaterial um- schlössen werden. Dazu wird die Aussparung 6 des Halb¬ leiterkörpers 1 nach Einbringen des Thermoelements 5 mit pulverför igem Halbleitermaterial 2 gefüllt, das die gleiche chemische Zusammensetzung hat wie der Halbleiter- körper 1 in der Umgebung der Aussparung 6. Mit Hilfe eines
Laserstrahls 3 eines Lasers 4 wird das pulverför ige Halblei¬ termaterial 2 umgeschmolzen, so daß die Thermoelementkugel 7 von allen Seiten umschlossen ist. Das Umschmelzen kann auch mit anderen Verfahren durchgeführt werden, z.B. in einem Ofen. Es wird soviel pulverför iges Halbleitermaterial zugegeben, daß die Aussparung 6 nach dem Umschmelzen gerade aufgefüllt ist. Die Thermoelementdrähte 8 des Thermoelements 5 sind auf der Seite der Aussparung 6 des Halbleiterkörpers 1 herausgeführt.
Fig. 2 zeigt schematisch einen Herstellungsschritt eines wei¬ teren Verfahrens zur Herstellung einer Meßvorrichtung zur Be¬ stimmung der Temperatur im Inneren eines Halbleiter¬ körpers 1. Die Aussparung 6 des Halbleiterkörpers 1 kann z.B. durch mechanische Bearbeitung nach der Herstellung des Halbleiterkörpers 1 geschaffen sein. In die Aus¬ sparung 6 ist die Thermoelementkugel 7 des Thermoele¬ ments 5 eingebracht. Die Thermoelementdrähte 8 sind auf der Seite der Aussparung 6 des Halbleiterkörpers 1 heraus¬ geführt. Der Halbleiterkörper 1 besteht in diesem Bei- spiel aus Galliumarsenid, einem III-V Halbleiter. Nach Einbrin¬ gen des Thermoelements 5 in die Aussparung 6 wird diese mit flüssigem Gallium 22 gefüllt und die Vorrichtung in ein Reaktionsrohr 21 gebracht. In dem Reaktionsrohr 21 ist eine arsenhaltige Atmosphäre hergestellt, z.B. mit As^ oder AsH,. In dem Reaktionsrohr 21 wird eine Temperatur von ca. 750°C eingestellt. Das Gallium, das in die Aussparung eingebracht wurde, reagiert dabei mit Arsen zu polykristallinem Gallium¬ arsenid, das in den Halbleiterkörper 1 einwächst und da¬ bei die Thermoelementkugel 7 von allen Seiten umschließt. Ein weiteres Verfahren zum Auffüllen der Aussparung 6 kann angewendet werden, wenn der Halbleiterkörper 1 in der Umgebung der Aussparung 6 aus einem einzigen Halbleiterele¬ ment besteht, z.B. Silizium oder Germanium. Dann kann die Aussparung 6 des Halbleiterkörpers 1 nach Einbringen des Thermoelements 5 durch Abscheiden des Halbleiter¬ elements aus der Gasphase gefüllt werden.
Die Meßvorrichtung kann auch, wie in Fig. 3 dargestellt, so hergestellt sein, daß die Thermoelementdrähte 8 auf einer ande¬ ren Seite des Halbleiterkörpers herausgeführt sind, als der Seite, in die die Thermoelementkugel 7 eingebracht ist.
Fig. 3 zeigt schematisch die Anordnung mit einem zweiten Halb¬ leiterkörper 31 und einer Meßvorrichtung 32 in einem Temper¬ ofen 33. Die Meßvorrichtung 32 enthält einen ersten Halblei¬ terkörper 1, der als Referenz zu dem zweiten Halbleiterkörper 31 ausgebildet ist, damit während des Temperprozesses der im ersten Halbleiterkörper 1 gemessene Temperaturverlauf mit dem Temperaturverlauf in dem zweiten Halbleiterkörper 31 über¬ einstimmt. Die Meßvorrichtung 32 wird dicht benachbart dem zweiten Halbleiterkörper 31 angeordnet, damit Temperaturschwan- kungen der Umgebung des zweiten Halbleiterkörpers 31 und der Meßvorrichtung 32 nicht zu Meßfehlern führen. Die Thermoele¬ mentdrähte 8 des Thermoelements 5 sind in diesem Aus¬ führungsbeispiel durch Bohrungen 34 im ersten Halbleiterkörper 1 hindurch auf die dem zweiten Halbleiterkörper 31 abgewandte Seite nach außen geführt. Damit ist erreicht, daß die Halblei¬ terkörper dichter zueinander angeordnet sind. Wenn die Meßvor¬ richtung 32 zusammen mit dem zweiten Halbleiterkörper 31 den gleichen Temperprozeß erfährt, kann mit diesem Verfahren die Temperatur bestimmt werden, die im Inneren des zweiten Halb- leiterkörpers 31 herrscht. Die Temperaturmessung im Inneren des ersten Halbleiterkörpers 1 ist dann besonders vorteilhaft, wenn die Halbleiterkörper schnellen Temperaturänderungen aus- gesetzt sind und sich daher der Verlauf der Oberflächentempe¬ ratur vom Verlauf der Temperatur im Inneren der Halbleiterkör- per unterscheidet. Die Meßvorrichtung 32 kann speziell so auf¬ gebaut sein, daß die Thermoelementgruppe 7 sich in einer ganz bestimmten Schicht des ersten Halbleiterkörpers 1 befindet, so daß damit bestimmt werden kann, wie der Temperaturverlauf in der vergleichbaren Schicht des zweiten Halbleiterkörpers 31 ist. Die mit der Meßvorrichtung 32 bestimmte Temperatur kann zur Temperaturregelung des Temperprozesses herangezogen werden. Damit kann die Temperaturregelung genau auf die Temperaturver¬ hältnisse im zweiten Halbleiterkörper 31 abgestimmt werden.
Fig. 4 zeigt schematisch eine Meßvorrichtung zur Bestimmung der Oberflächentemperatur eines Halbleiterkörpers 1. Auf dem Halbleiterkörper 1 sind zwei sich überlappende Metallstreifen 42 und 43 durch Aufdampfen angebracht. Die Metall¬ streifen 42 und 43 bestehen aus einer Kombination von thermo- elementfähigen Metallen, z.B. Platin/Rhodium-Platin oder Nickel/Chrom-Nickel und haben elektrische Anschlüsse 44. Die dargestellte Meßvorrichtung kann zur Temperaturbestim¬ mung beim Tempern eines zweiten Halbleiterkörpers 31 eingesetzt werden. Dazu wird der erste Halbleiterkörper 1 so gewählt, daß er als Referenz zum zweiten Halbleiterkörper 31, dessen Temperatur bestimmt werden soll, ausgebildet ist und zusammen mit diesem zweiten Halbleiterkörper 31 denselben Temperprozeß erfährt.
Fig. 5 zeigt schematisch eine Meßvorrichtung zur Bestimmung der Oberflächentemperatur eines Halbleiterkörpers 1. Die Meßvorrichtung enthält ein Thermoelement 5 und ein Auflagegewicht 52, das die Thermoelementkugel 7 des Thermoelements 5 beschwert. Das Auflagegewicht 52 liegt auf der Thermoelementkugel 7 auf, während die Thermo¬ elementdrähte 8 des Thermoelements 5 durch Bohrungen 53 im Auflagegewicht 52 hindurchgeführt sind. Die Thermoele¬ mentkugel 7 mit dem Auflagegewicht 52 liegt während der Messung frei auf dem Halbleiterkörper 1 auf. Die Meßvorrichtung kann dazu verwendet werden, die Temperatur eines zweiten Halbkörpers 31 während eines Temperprozesses zu bestimmen. Dazu wird mit Hilfe der Meßvorrichtung die Temperatur des ersten Halbleiterkörpers 1 als Referenzhalbleiterkörper bestimmt, der zusammen mit dem zweiten Halbleiterkörper 31 und der Meßvorrichtung denselben Temperprozeß erfährt.
Fig. 6 zeigt schematisch eine Meßvorrichtung der Art wie in Fig. 5 dargestellt, mit der Besonderheit, daß das Auflagege- wicht 52 drehbar gelagert ist über eine Drehachse 61 mit einer Befestigung 62. Das Auflagegewicht 52 liegt mit einer Seite auf der Thermoelementkugel 7 des Thermoele¬ ments 5 auf. Die Thermoelementdrähte 8 des Thermo¬ elements 5 sind durch Bohrungen im Auflagegewicht 52 hin- durchgeführt. Die drehbare Lagerung der Meßvorrichtung er¬ leichtert das Positionieren auf den Halbleiterkörper 1, dessen Oberflächentemperatur mit Hilfe der Meßvorrichtung bestimmt werden soll. Die Meßvorrichtung kann wie die anhand von Fig. 4 beschriebene Meßvorrichtung zur Bestimmung der Temperatur eines zweiten Halbleiterkörpers 31 während eines Temperprozesses eingesetzt werden. Bei einer solchen Meßvorrichtung mit Auflagegewicht 52 ist es zweckmäßig, das Auflagegewicht 52 aus einem lichtdurchlässigen Material herzustellen, wenn der Temperprozeß durch Einstrahlen von Licht, insbesondere Laserlicht, durchgeführt wird.
Manche Thermoelementmaterialien können mit Bestandteilen von Halbleitern chemisch reagieren, z.B. Aluminium eines Chrom-Alumel-Thermoelements mit Arsen eines arsenhaltigen Halbleiters. Bei den Meßvorrichtungen, die ein im Halbleiter¬ körper integriertes Thermoelement enthalten und bei Meßvorrich¬ tungen, die ein Thermoelement mit Auflagegewicht enthalten, ist daher vorgesehen, ein Thermoelement zu verwenden, das mit einem dünnen Schutzüberzug versehen ist, wenn die Gefahr besteht, daß Bestandteile des Thermoelements mit Bestandtei¬ len des Halbleiterkörpers chemisch reagieren. Der Schutzüber¬ zug kann z.B. aus Si02 oder Si_N, bestehen.

Claims

Patentansprüche
1. Meßvorrichtung zur Bestimmung der Temperatur eines Halblei- terkörpers (1) mit einem Thermoelement (5) mit einer Thermoele¬ mentkugel (7) und mit Thermoelementdrähten (8), d a d u r c h g e k e n n z e i c h n e t , daß die Thermoelementkugel (7) von allen Seiten mit dem Halbleitermaterial, aus dem der Halbleiterkörper (1) besteht, umschlossen ist und daß die Thermoelementdrähte (8) durch das Halbleitermaterial nach außen führen.
2. Verfahren zur Herstellung einer Meßvorrichtung nach Anspruch 1, mit einem Halbleiterkörper (1) aus III-V-Halbleitermaterial, d a d u r c h g e k e n n z e i c h n e t , daß eine Aussparung (6) in diesem Halbleiterkörper (1) herge¬ stellt wird, daß die Thermoelementkugel (7) in diese Aussparung (6) einge- bracht wird, daß die Aussparung (6) mit einer Komponente des III-V-Halbleitermaterials aufgefüllt wird und daß der Halbleiterkörper (1) in einer die andere Komponente des III-V-Halbleitermaterials enthaltenden Atmosphäre erhitzt wird, so daß diese Komponente in das die Aussparung (6) auffüllende Material eingebaut wird.
3. Verfahren zur Herstellung einer Meßvorrichtung nach Anspruch 1 mit einem Halbleiterkörper (1) aus einem einzigen Halbleiter- element, d a d u r c h g e k e n n z e i c h n e t , daß eine Aussparung (6) in diesem Halbleiterkörper (1) herge¬ stellt wird, daß die Thermoelementkugel (7) in diese Aussparung (6) einge- bracht wird und daß die Aussparung (6) durch selektives Abscheiden des Halblei¬ terelementes aus der Gasphase aufgefüllt wird.
4. Verfahren zur Herstellung einer Meßvorrichtung nach Anspruch
1, d a d u r c h g e k e n n z e i c h n e t , daß eine Aussparung (6) in diesem Halbleiterkörper (1) herge- stellt wird, daß die Thermoelementkugel (7) in diese Aussparung (6) einge¬ bracht wird, daß die Aussparung (6) mit pulverför igem Halbleitermaterial (2) aufgefüllt wird und daß dieses pulverförmige Halbleitermaterial (2) durch Umschmel¬ zen verfestigt wird.
5. Verfahren nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , daß das Umschmelzen mit Hilfe eines Laserstrahls (3) durchge¬ führt wird.
6. Meßvorrichtung zur Bestimmung der Oberflächentemperatur eines Halbleiterkörpers (1) mit einem Thermoelement (5) mit einer Thermoelementkugel (7) und mit Thermoelementdrähten (8), d a d u r c h g e k e n n z e i c h n e t , daß die Thermoelementkugel (7) auf der Oberfläche des Halblei¬ terkörpers (1) aufliegt, daß ein Auflagegewicht (52), das die Thermoelemtenkugel (7) be- schwert, vorgesehen ist und daß die Thermoelementdrähte (8) durch dieses Auflagegewicht (52) geführt sind.
7. Meßvorrichtung nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , daß das Auflagegewicht (52) drehbar gelagert ist.
8. Meßvorrichtung nach Anspruch 6 oder 7, d a d u r c h g e k e n n z e i c h n e t , daß das Auflagegewicht (52) aus lichtdurchlässigem Material ist.
9. Meßvorrichtung nach einem der Ansprüche 1, 6, 7 oder 8, d a d u r c h g e k e n n z e i c h n e t , daß das Thermoelement mit einem dünnen Schutzüberzug versehen ist.
10. Verfahren zur Bestimmung der Temperatur eines zweiten Halb¬ leiterkörpers (31) während eines Temperprozesses mit Hilfe eines ersten Halbleiterkörpers (1), der denselben Temperprozeß simultan durchläuft und an dem die Temperaturmessung als Referenzhalbleiterkörper vorgenommen wird, d a d u r c h g e k e n n z e i c h n e t , daß während der Temperaturmessung der erste Halbleiterkörper (1) und der zweite Halbleiterkörper (31) sich nahe beieinander angeordnet in einem Temperofen (33) befinden und daß der erste Halbleiterkörper (1) als Meßvorrichtung (32) nach einem der An¬ sprüche 1, 6, 7, 8 oder 9 ausgebildet ist.
EP88903190A 1987-05-07 1988-04-27 Messvorichtung zur bestimmung der temperatur von halbleiterkörpern und verfahren zur herstellung der messvorrichtung Ceased EP0359748A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873715231 DE3715231A1 (de) 1987-05-07 1987-05-07 Messvorrichtung zur bestimmung der temperatur von halbleiterkoerpern, verfahren zur herstellung der messvorrichtung und verfahren zur bestimmung der temperatur von halbleiterkoerpern waehrend temperprozessen
DE3715231 1987-05-07

Publications (1)

Publication Number Publication Date
EP0359748A1 true EP0359748A1 (de) 1990-03-28

Family

ID=6327026

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88903190A Ceased EP0359748A1 (de) 1987-05-07 1988-04-27 Messvorichtung zur bestimmung der temperatur von halbleiterkörpern und verfahren zur herstellung der messvorrichtung

Country Status (5)

Country Link
US (1) US5052821A (de)
EP (1) EP0359748A1 (de)
JP (1) JPH02503352A (de)
DE (1) DE3715231A1 (de)
WO (1) WO1988008965A2 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284440A (ja) * 1989-04-26 1990-11-21 Mitsubishi Electric Corp 太陽電池溶接温度測定方法及び太陽電池特性確認方法
EP0406751A1 (de) * 1989-07-07 1991-01-09 Balzers Aktiengesellschaft Verfahren und Anordnung zur Ermittlung von Messdaten während der Behandlung von Scheiben
CA2073886A1 (en) * 1991-07-19 1993-01-20 Tatsuya Hashinaga Burn-in apparatus and method
JP3389624B2 (ja) * 1993-01-11 2003-03-24 東レ株式会社 糸継ぎ装置
US5967661A (en) * 1997-06-02 1999-10-19 Sensarray Corporation Temperature calibration substrate
DE19852080C1 (de) * 1998-11-11 2000-08-17 Trw Automotive Electron & Comp Verfahren und Vorrichtung zur Überwachung der Temperatur eines verlustbehafteten elektronischen Bauelements, insbesondere eines Leistungshalbleiters
US6475815B1 (en) * 1998-12-09 2002-11-05 Matsushita Electric Industrial Co., Ltd. Method of measuring temperature, method of taking samples for temperature measurement and method for fabricating semiconductor device
US6504392B2 (en) 1999-03-26 2003-01-07 International Business Machines Corporation Actively controlled heat sink for convective burn-in oven
US6190040B1 (en) * 1999-05-10 2001-02-20 Sensarray Corporation Apparatus for sensing temperature on a substrate in an integrated circuit fabrication tool
US6962437B1 (en) * 1999-12-16 2005-11-08 Lsi Logic Corporation Method and apparatus for thermal profiling of flip-chip packages
WO2001090710A1 (en) * 2000-05-25 2001-11-29 Kamel Fauzi Razali Thermocouple passing through encapsulant of integrated circuit
US20030231698A1 (en) * 2002-03-29 2003-12-18 Takatomo Yamaguchi Apparatus and method for fabricating a semiconductor device and a heat treatment apparatus
JP5451793B2 (ja) * 2012-02-10 2014-03-26 東京エレクトロン株式会社 温度センサ及び熱処理装置
JP6012413B2 (ja) * 2012-11-07 2016-10-25 安立計器株式会社 接触式温度計

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3462317A (en) * 1965-10-12 1969-08-19 Motorola Inc Thermocouple assembly
FR2123179B1 (de) * 1971-01-28 1974-02-15 Commissariat Energie Atomique
US4321827A (en) * 1980-03-31 1982-03-30 Rosemount Inc. Self aligning surface temperature sensor
DE3212026A1 (de) * 1982-03-31 1983-10-06 Siemens Ag Temperatursensor
JPS5997024A (ja) * 1982-11-25 1984-06-04 Shozo Asano 浸漬熱電対
US4571608A (en) * 1983-01-03 1986-02-18 Honeywell Inc. Integrated voltage-isolation power supply
JPS59155731A (ja) * 1983-02-25 1984-09-04 Mitsubishi Heavy Ind Ltd 測温体の装着方法
JPS6010137A (ja) * 1983-06-30 1985-01-19 Toshiba Corp サ−モパイル
JPS60230026A (ja) * 1984-04-27 1985-11-15 Mitsubishi Electric Corp 半導体検査装置の温度測定装置
US4590507A (en) * 1984-07-31 1986-05-20 At&T Bell Laboratories Variable gap devices
JPS61189657A (ja) * 1985-02-18 1986-08-23 Fuji Photo Film Co Ltd 半導体素子温度制御装置
US4808009A (en) * 1986-06-05 1989-02-28 Rosemount, Inc. Integrated semiconductor resistance temperature sensor and resistive heater
US4820659A (en) * 1986-07-16 1989-04-11 General Electric Company Method of making a semiconductor device assembly
JPH01295500A (ja) * 1988-05-24 1989-11-29 Taiyo Yuden Co Ltd チップ状電子部品マウント方法及びその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8808965A2 *

Also Published As

Publication number Publication date
JPH02503352A (ja) 1990-10-11
WO1988008965A3 (fr) 1988-12-29
WO1988008965A2 (fr) 1988-11-17
US5052821A (en) 1991-10-01
DE3715231A1 (de) 1988-11-17

Similar Documents

Publication Publication Date Title
EP0359748A1 (de) Messvorichtung zur bestimmung der temperatur von halbleiterkörpern und verfahren zur herstellung der messvorrichtung
DE69526718T2 (de) Temperatursensoren und Verfahren zur Messung der Temperatur eines Werkstücks
EP0318641B1 (de) Verfahren und Vorrichtung zur Übertragung thermischer Energie auf bzw. von einem plattenförmigen Substrat
DE69505146T2 (de) Temperaturkalibrierungssubstrat
Von Allmen et al. Phase transformations in laser‐irradiated Au‐Si thin films
DE3628513A1 (de) Duennfilmleiter und verfahren zur herstellung eines duennfilmleiters
DE2032872B2 (de) Verfahren zum Herstellen weichlötfähiger Kontakte zum Einbau von Halbleiterbauelementen in Gehäuse
DE2654063A1 (de) Verfahren zum herstellen eines bandes aus polykristallinem halbleitermaterial
DE1950126A1 (de) Verfahren zur Aufringung isolierender Filme und elektronische Bauelemente
DE19711702C1 (de) Anordnung zur Bearbeitung einer Substratscheibe und Verfahren zu deren Betrieb
DE1765402A1 (de) Verfahren zum Herstellen leitender Mehrfach-Durchfuehrungen
DE1931417B2 (de) Verfahren zur doppeldiffusion von halbleitermaterial
DE102007061777B4 (de) Verfahren zur Vakuumbeschichtung von zu beschichtenden Substraten und Vakkumbeschichtungsanlage
CH681581A5 (de)
DE3902628A1 (de) Duennschichtmaterial fuer sensoren oder aktuatoren und verfahren zu dessen herstellung
DE1914090A1 (de) Verfahren zum Herstellen von Ohmschen Kontakten und Leitungsfuehrungen auf Halbleitersubstraten
US3654694A (en) Method for bonding contacts to and forming alloy sites on silicone carbide
EP0060427A2 (de) Sensor zur Messung physikalischer Grössen sowie Verfahren zu seiner Herstellung und seine Verwendung
DE623425C (de)
SU730200A1 (ru) Способ изготовлени германиевых термо-СОпРОТиВлЕНий дл НизКиХ ТЕМпиРАТуР
DE1444422C (de) Vorrichtung zum Abscheiden von Schich ten aus Halbleitermaterial
DE1901320A1 (de) Verfahren zur Herstellung von hochohmigem Galliumarsenid
DE19540900A1 (de) Verfahren zum Verbinden zweier Körper aus Siliciumcarbid
Shen et al. Lead-free solder for assembly of thick-film hybrid modules for use in high-temperature applications
DE3914005A1 (de) Verfahren zum aufbringen von metall auf die oberflaeche von halbleiterscheiben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19891026

17Q First examination report despatched

Effective date: 19910416

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19911129