EP0358921B1 - Rohrbündel-Apparat - Google Patents

Rohrbündel-Apparat Download PDF

Info

Publication number
EP0358921B1
EP0358921B1 EP19890114306 EP89114306A EP0358921B1 EP 0358921 B1 EP0358921 B1 EP 0358921B1 EP 19890114306 EP19890114306 EP 19890114306 EP 89114306 A EP89114306 A EP 89114306A EP 0358921 B1 EP0358921 B1 EP 0358921B1
Authority
EP
European Patent Office
Prior art keywords
medium
treated
separating device
solid particles
tube cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19890114306
Other languages
English (en)
French (fr)
Other versions
EP0358921A1 (de
Inventor
Rainer Dr.-Ing. Greffrath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGL Technik GmbH
Original Assignee
Dorr Oliver Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dorr Oliver Deutschland GmbH filed Critical Dorr Oliver Deutschland GmbH
Publication of EP0358921A1 publication Critical patent/EP0358921A1/de
Application granted granted Critical
Publication of EP0358921B1 publication Critical patent/EP0358921B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G1/00Non-rotary, e.g. reciprocated, appliances
    • F28G1/12Fluid-propelled scrapers, bullets, or like solid bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D13/00Heat-exchange apparatus using a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers

Definitions

  • the invention relates to a tube bundle apparatus for heat transfer with heat exchanger tubes arranged between tube sheets, an inlet chamber and an outlet chamber and a device for cleaning the heat exchanger tubes, which topples over a separation device for solid particles and a pump, the suction side of which is connected to the outlet chamber and the pressure side of which is connected to the inlet chamber is.
  • Such a tube bundle apparatus is known from BE-A-569 651.
  • Pipe bundle apparatuses for the transfer of heat from a liquid or gaseous medium to a liquid, in which, together with the medium to be treated, foreign particles which are insoluble in this liquid are passed through the heating pipes, are also described in DE-A-28 15 825, DE-A -34 32 864, DE-A-36 25 408 or EP-A-0 132 873.
  • the foreign or solid particles serve to keep the inside of the heating pipes free of deposits and crystal formation, and are normally circulated.
  • the above prior art describes the use of this so-called fluidized bed technology for the incrustation and contamination-free operation of heat-transferring apparatus. These are always arrangements with a standing or moving fluidized bed. With these arrangements, the particles are significantly heavier than the medium to be warmed up or cooled.
  • the tubes are always arranged vertically and are flowed through from bottom to top, the flow rate of the liquid having to be in a certain ratio to the sinking rate of the particles in the still liquid.
  • Controlling the backflow of particles from the top Water chamber to the bottom is done by suitable hydraulic internals.
  • the solid particles are conveyed in the circuit by a jet pump. They are drawn in by the jet pump from the outlet chamber of the tube bundle apparatus and mixed with the stream of the medium to be treated that feeds the jet pump. This, together with the solid particles homogeneously distributed therein, is fed via a return pipe to the inlet chamber of the tube bundle apparatus and flows through the heat exchanger tubes, where heat is added or removed depending on the process.
  • the flow through the tubes is turbulent at the speed usual for heat exchangers.
  • the entrained, abrasive solid particles collide against the inside of the pipes due to the turbulent flow, thus preventing incrustations, dirt and caking.
  • the foreign particles are separated from the treated medium by means of a mechanical separation device arranged in the outlet chamber.
  • the training and The solid particles are thus introduced using a jet pump, the medium to be treated itself serving as the propellant.
  • the separating device is designed as a flat sieve, slotted sieve or rake-like, whereby it can be advantageous to make it roof-shaped or to arrange it inclined to the direction of flow. This enables a targeted movement of the solid particles during separation. Even if there are differences in density between the particles and the medium, the particles are transported to the discharge nozzle.
  • a slotted screen inclined against the direction of flow or a rake has the advantage that the particles do not stick, but due to the inclination of the rake, a downward resulting force is exerted on the particles, so that they also act without gravity along the rake move towards the discharge nozzle.
  • the jet pump is formed by a diffuser arranged centrally in the tube bundle in connection with a nozzle placed in front of it.
  • a diffuser arranged centrally in the tube bundle in connection with a nozzle placed in front of it.
  • the separating device is designed as a conical sieve, there is no additional space requirement for arranging the nozzle in the outlet chamber.
  • the fact that in this case the supply of the medium to be treated and the discharge of the treated medium take place at the same end of the tube bundle apparatus may make it possible, in certain circumstances, for piping to be particularly favorable without the need for thermal expansion compensation.
  • the partial flow should preferably be sufficient to suck off the solid particles and to compress this partial flow to the inlet pressure of the heat exchanger.
  • the jet pump can be dimensioned smaller will.
  • this advantage must be bought with the installation of a second pump.
  • the specific weight of the abrasive solid particles is the same size or at most 50% greater than that of the medium to be treated. Due to the fact that particles are used to produce the abrasive cleaning of the pipes, the density of which is equal to or only slightly greater than that of the medium to be treated, the particles remain suspended even at a lower flow rate and are therefore homogeneously distributed in the liquid. Settling or accumulation of the solid particles at points of weak flow is thus avoided or very largely reduced. It also ensures uniform loading of the entire tube bundle with particles, so that all tubes are cleaned evenly. This configuration is particularly advantageous for the installation of tube bundle apparatus regardless of the position. they also enables a multi-flow design of the tube bundle apparatus.
  • the density of the solid particles is the same or only slightly greater than the medium to be treated, they easily follow the flow through the heat exchanger even when there is a greater deflection or large differences in speed, which is beneficial for the design freedom with regard to heat exchangers and lines. It is also advantageous that the flow rate outside the heat exchanger tubes can be lower than in conventional processes, since there is no risk of segregation and settling. This means lower pressure losses and thus cost savings. While in the previous methods for maintaining a very specific sinking speed of the particles, depending on the medium, a certain grain size had to be observed relatively precisely, a further advantage of the proposed measure is that the size of the solid particles can be chosen freely.
  • the solid particles flow at the same speed as the liquid and therefore also follow the deflections that may be present in heat exchangers. This means that even existing heat exchangers can be converted or retrofitted without any process engineering problems.
  • the number of solid particles can also be freely selected within wide limits and can be chosen to be smaller or larger depending on the tendency of the medium to be treated to become dirty, which represents a considerable process advantage.
  • the tube bundle apparatus consists of a container jacket 1, in which the tube sheets 2 and 3 are arranged with intermediate heat exchanger tubes 4, and the container bases 5 and 6 with the inlet and outlet nozzles 7 and 8.
  • the heat exchanger tubes 4 are from a heating or Washed cooling medium, which is supplied via a nozzle 9, either as shown here in Co-current or counter-current flows, and is discharged via a nozzle 10.
  • the space between the tube plate 2 and the container base 5 represents the inlet chamber 11 for the medium to be treated and the space between the tube plate 3 and the container base 6 represents the outlet chamber 12 for the medium being treated.
  • a separation device 13 shown here schematically as a flat screen, is arranged, with which the solid particles 14 are separated from the treated medium.
  • the treated medium freed from the abrasive solid particles 14, leaves the tube bundle apparatus via the outlet nozzle 8, while the solid particles are withdrawn from the tube bundle apparatus via the discharge nozzle 15. They are sucked in by a jet pump 16 together with a small partial stream of the treated medium, which is just sufficient for the transport, ie the warmed or cooled liquid.
  • the jet pump 16 essentially consists of a nozzle 17 and a diffuser 18, which at the same time forms part of the return line 19.
  • the main flow of the medium to be treated is fed to the tube bundle apparatus by the pump 20.
  • a partial flow of the medium to be treated is supplied to the jet pump 16 by a second pump 21 as the driving medium.
  • the solid particles 14, which were separated from the treated medium in the outlet chamber 12 by the separating device 13, are conducted together with a small partial flow of the treated medium via the return line 19 and the jet pump 16 in a constant cycle.
  • a relatively small jet pump is used in this procedure.
  • the jet pump 16 is acted upon by the pump 21 with the entire volume flow of the medium to be treated; that makes a larger jet pump necessary.
  • the second pump is not required.
  • Fig. 4 shows an alternative embodiment of the invention, wherein the jet pump 16 is arranged within the tube bundle apparatus.
  • the nozzle 17 of the jet pump 16 is located within the outlet chamber 12, the diffuser 18 being arranged centrally within the tube bundle formed from the heat exchanger tubes 4 as a return and being connected on the one hand to the inlet chamber 11 and on the other hand to the outlet chamber 12.
  • a conical sieve is provided as a separating device 13 for the abrasive solid particles 14 within the outlet chamber 12.
  • the medium to be treated is fed to the nozzle 17 via the pump 21, the solid particles being sucked out of the outlet chamber 12 and passed together with the medium to be treated via the heat exchanger tubes 4.
  • the treated medium is discharged on the same side of the tube bundle apparatus on which the material to be treated is fed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cleaning In General (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

  • Die Erfindung betrifft einen Rohrbündel-Apparat zur Wärmeübertragung mit zwischen Rohrböden angeordneten Wärmetauscherrohren, einer Eintrittskammer und einer Austrittskammer sowie einer Vorrichtung zur Reinigung der Wärmetauscherrohre, die eine Abtrenneinrichtung für Feststoffpartikel und eine Pumpe umfallt, deren Saugseite mit der Austrittskammer und deren Druckseite mit der Eintrittskammer verbunden ist.
  • Ein derartiger Rohrbündel-Apparat ist aus der BE-A-569 651 bekannt.
  • Rohrbündel-Apparate zur Übertragung von Wärme von einem flüssigen oder gasförmigen Medium auf eine Flüssigkeit, bei denen zusammen mit dem zu behandelnden Medium in dieser Flüssigkeit unlösliche Fremdpartikel durch die Heizrohre geführt werden, sind außerdem in DE-A-28 15 825, DE-A-34 32 864, DE-A-36 25 408 oder EP-A-0 132 873 beschrieben. Die Fremd- oder Feststoffpartikel dienen dazu, die Innenseite der Heizrohre frei von Ablagerungen und Kristallbildung zu halten, und werden normalerweise im Kreislauf geführt. Im vorstehenden Stand der Technik wird die Anwendung dieser sogenannten Wirbelschicht-Technik für den verkrustungs- und verschmutzungsfreien Betrieb von wärmeübertragenden Apparaten beschrieben. Hierbei handelt es sich stets um Anordnungen mit stehender oder wandernder Wirbelschicht. Bei diesen Anordnungen sind die Partikel deutlich schwerer als das aufzuwärmende oder zu kühlende Medium. Die Rohre sind stets senkrecht angeordnet und werden von unten nach oben durchströmt, wobei die Strömungsgeschwindigkeit der Flüssigkeit in einem bestimmten Verhältnis zur Sinkgeschwindigkeit der Partikel in der ruhenden Flüssigkeit stehen muß.
  • Die Steuerung des Rückflusses der Partikel von der oberen Wasserkammer zur unteren erfolgt durch geeignete hydraulische Einbauten.
  • Die bekannten Anordnungen haben folgende Nachteile:
    • 1. Die Wahl der Größe der Feststoffpartikel und der Strömungsgeschwindigkeit ist viskositätsabhängig.
    • 2. Es sind relativ große Mengen an Partikeln (z.B. Edelstahl, Glas, Quarz usw.) erforderlich.
    • 3. Der Rohrbündel-Apparat kann nur senkrecht aufgestellt werden.
    • 4. Eine mehrflutige Bauweise der Rohrbündel ist nicht möglich.
    • 5. Mit zunehmendem Durchmesser des Rohrbündel-Apparates wird die gleichmäßige Verteilung der Partikel auf die Rohre sowie die Rückführung schwieriger.
    • 6. Bei versehentlichem Betrieb mit zu hoher Durchflußgeschwindigkeit können Partikel aus dem Apparat ausgetragen werden, so daß das Wirbelgut unter Umständen verlorengeht.
  • Die vorstehend aufgeführten Nachteile dürften hauptsächlich dafür verantwortlich sein, daß bisher von einer nennenswerten Markteinführung solcher Apparate nicht die Rede sein kann, obwohl sich diese Technik z.B. für die Eindampfung von zur Verkrustung und Verschmutzung neigenden Abwässern geradezu anbietet.
  • Aus der BE-A-569 651 und der DE-B-1 247 359 sind auch bereits liegende Wärmetauscher mit einem zur Reinigung dienenden Feststoffpartikel-Kreislauf über eine außenliegende Leitungsführung bekannt, die eine Pumpe und eine Abtrenneinrichtung für die Feststoffpartikel umfallt. Der dadurch bedingte verhältnismäßig lange außerhalb des Wärmetauschers verlaufende Weg des mit Feststoffpartikeln beladenen Mediums unter anderem durch die Pumpe bringt dort die Gefahr von Schäden und Betriebsstörungen mit sich. Es ist Aufgabe der Erfindung, diese Schwierigkeiten zu beseitigen und eine zuverlässigere Reinigung zu erreichen.
  • Diese Aufgabe wird bei einem Rohrbündel-Apparat der eingangs angegebenen Art dadurch gelöst, daß die Abtrenneinrichtung in der Austrittskammer angeordnet ist und daß die Aus- und Einschleusung der Feststoffpartikel mit einer durch das zu behandelnde Medium betriebenen Strahlpumpe zwischen der Austrittskammer und der Eintrittskammer erfolgt.
  • Die Feststoffpartikel werden dabei von einer Strahlpumpe im Kreislauf gefördert. Sie werden von der Strahlpumpe aus der Austrittskammer des Rohrbündel-Apparates angesaugt und dem die Strahlpumpe speisenden Strom des zu behandelnden Mediums beigemischt. Dieses wird zusammen mit den darin homogen verteilten Feststoffpartikeln über ein Rückführrohr der Eintrittskammer des Rohrbündel-Apparates zugeleitet und strömt durch die Wärmetauscherrohre, wo ihm je nach Verfahren Wärme zugeführt oder entzogen wird. Die Rohre werden mit der für Wärmetauscher üblichen Geschwindigkeit turbulent durchströmt. Die mitgeführten, abrasiven Feststoffpartikel stoßen aufgrund der turbulenten Strömung gegen die Innenseite der Rohre und verhindern so Verkrustungen, Verschmutzungen und Anbackungen. Die Abtrennung der Fremdpartikel aus dem behandelten Medium erfolgt mittels einer in der Austrittskammer angeordneten, mechanischen Trenneinrichtung. Die Aus- und Einschleusung der Feststoffpartikel erfolgt also mit Hilfe einer Strahlpumpe, wobei das zu behandelnde Medium selbst als Treibmedium dient.
  • Dadurch wird der Vorteil eines äußerst einfachen Aufbaues erreicht. Es kommen insbesondere keine bewegten Teile oder Einrichtungen mit dem Gemisch aus Medium und abrasiven Feststoffen in Berührung, was für die Betriebssicherheit und den störungsfreien Betrieb solcher Rohrbündel-Apparate von ausschlaggebender Bedeutung ist. Durch die Anordnung der Abtrenneinrichtung in der Austrittskammer und Verwendung einer Strahlpumpe, die keinen eigenen Antrieb erfordert, ergeben sich insbesondere ein sehr einfacher und kompakter Aufbau einer solchen Anlage, wobei von besonderem Vorteil ist, daß die Einbaulage beliebig und je nach dem zur Verfügung stehenden Raumangebot frei gewählt werden kann.
  • Je nach Einbaulage, Viskosität des zu behandelnden Mediums, seiner Strömungsgeschwindigkeit sowie der Größe und dem spezifischen Gewicht der Feststoffpartikel ist die Abtrenneinrichtung als Flachsieb, Schlitzsieb oder rechenartig ausgebildet, wobei es vorteilhaft sein kann, sie dachförmig auszuführen oder geneigt zur Strömungsrichtung anzuordnen. Damit ist eine gezielte Bewegung der Feststoffpartikel beim Abtrennen möglich. Auch bei Dichteunterschieden zwischen Partikeln und Medium ist ein Transport der Partikel zum Austragsstutzen hin gewährleistet. Ein gegen die Strömungsrichtung geneigtes Schlitzsieb bzw. ein Rechen haben den Vorteil, daß die Partikel nicht haften bleiben, sondern bedingt durch die Neigung des Rechens eine nach unten gerichtete resultierende Kraft auf die Partikel ausgeübt wird, so daß sich diese auch ohne Schwerkrafteinfluß entlang des Rechens zum Austragsstutzen hin bewegen.
  • In weiterer Ausgestaltung der Erfindung wird vorgeschlagen, daß die Strahlpumpe durch einen zentral im Rohrbündel angeordneten Diffusor in Verbindung mit einer diesem vorgesetzten Düse gebildet ist. Dadurch ist eine besonders raumsparende, kompakte Anlagenausführung möglich. Der Vorteil dieser Anordnung ist im Fortfall der verbindenden Rohrleitungen zwischen der Strahlpumpe und dem Rohrbündel-Apparat zu sehen, wobei gleichzeitig der Wirkungsgrad der Strahlpumpe verbessert wird. Durch die zentrale Rückführung und die innenliegende Strahlpumpe ergeben sich die kürzest möglichen Strömungswege und damit eine Verringerung der Strömungsverluste und außerdem geringe Wärmeverluste. Durch das als Diffusor ausgebildete, innenliegende Rückführrohr vergrößert sich der Außendurchmesser des Rohrbündel-Apparates bei gleicher Wärmeaustauschfläche nur unwesentlich. Die Baulänge oder -höhe (je nach Einbaulage) vergrößert sich durch die erfindungsgemäße innenliegende Strahlpumpe nicht oder nur geringfügig, da die Austrittskammer strömungstechnisch und konstruktiv bedingt ohnehin ein relativ großes Volumen hat.
  • Inbesondere wenn dabei die Abtrenneinrichtung als Kegelsieb ausgebildet ist, entsteht kein zusätzlicher Platzbedarf, um die Düse in der Austrittskammer anzuordnen. Die Tatsache, daß in diesem Falle die Zuführung des zu behandelnden Mediums und die Abführung des behandelten Mediums am selben Ende des Rohrbündel-Apparates erfolgen, ermöglicht unter Umständen eine besonders günstige Rohrleitungsführung ohne Wärmedehnungsausgleichs-Notwendigkeit.
  • Eine zusätzliche Verbesserung des Betriebsablaufs ergibt sich dann, wenn die Strahlpumpe mit einem Teilstrom des zu behandelnden Mediums von weniger als 20 %, vorzugsweise 5 bis 10%, des Gesamtstroms betrieben wird.
  • Der Teilstrom soll vorzugsweise gerade ausreichen, die Feststoffpartikel abzusaugen und diesen Teilstrom auf den Eintrittsdruck des Wärmetauschers zu verdichten.
  • Wenn nur ein so großer Teil des zu behandelnden Mediums der Strahlpumpe zugeleitet, wie als Treibstrahl für die rückgeführte Menge an behandeltem Medium erforderlich ist, und der Rest des Mediums mit einer gesonderten Pumpe der Eintrittskammer direkt zugeleitet wird, kann die Strahlpumpe in ihren Dimensionen kleiner ausgelegt werden. Dieser Vorteil muß jedoch mit der Installation einer zweiten Pumpe erkauft werden. Je nach zu behandelndem Medium und dessen Viskosität kann es vorteilhafter sein, den gesamten Volumenstrom des zu behandelnden Mediums durch die Strahlpumpe zu führen, da hierbei der Treibdruck und die Strömungsgeschwindigkeit geringer sind und damit die mechanische Belastung von Strahlpumpe und Feststoffpartikeln gering gehalten wird.
  • Besondere Vorteile ergeben sich aus einer Weiterbildung der Erfindung, wenn das spezifische Gewicht der abrasiven Feststoffpartikel genauso groß oder höchstens 50 % größer ist als das des zu behandelnden Mediums. Dadurch, daß zur Erzeugung der abrasiven Reinigung der Rohre Partikel verwendet werden, deren Dichte gleich oder nur wenig größer ist als die des zu behandelnden Mediums, bleiben die Partikel auch bei geringerer Strömungsgeschwindigkeit in der Schwebe und damit homogen in der Flüssigkeit verteilt. Ein Absetzen oder Ansammeln der Feststoffpartikel an Stellen schwacher Strömung wird somit vermieden bzw. sehr weitgehend reduziert. Es wird außerdem die gleichmäßige Beaufschlagung des gesamten Rohrbündels mit Partikeln gewährleistet, so daß sämtliche Rohre gleichmäßig gereinigt werden. Ganz besonders vorteilhaft ist diese Ausgestaltung für den lageunabhängigen Einbau von Rohrbündel-Apparaten. Sie ermöglicht darüber hinaus eine mehrflutige Bauweise der Rohrbündel-Apparate. Da die Dichte der Feststoffpartikel gleich oder nur geringfügig größer ist als des zu behandelnden Mediums, folgen sie der Strömung durch den Wärmetauscher auch bei stärkerer Umlenkung oder großen Geschwindigkeitsunterschieden problemlos, was günstig für die Gestaltungsfreiheit hinsichtlich Wärmetauscher und Leitungen ist. Es ist darüber hinaus von Vorteil, daß die Strömungsgeschwindigkeit außerhalb der Wärmetauscherrohre geringer sein kann als bei herkömmlichen Verfahren, da die Gefahr des Entmischens und Absetzens nicht gegeben ist. Das bedeutet geringere Druckverluste und damit Kosteneinsparungen. Während bei den bisherigen Verfahren zur Einhaltung einer ganz bestimmten Sinkgeschwindigkeit der Partikel je nach Medium eine relativ exakt einzuhaltende, bestimmte Korngröße notwendig war, besteht ein weiterer Vorteil der vorgeschlagenen Maßnahme darin, daß die Grölle der Feststoffpartikel frei gewählt werden kann. Die Feststoffpartikel strömen mit der gleichen Geschwindigkeit wie die Flüssigkeit und folgen daher auch den in Wärmetauschern unter Umständen vorhandenen Umlenkungen. Somit können auch vorhandene Wärmetauscher ohne verfahrenstechnische Probleme entsprechend um- bzw. nachgerüstet werden. Auch die Anzahl der Feststoffpartikel ist in weiten Grenzen frei wählbar und kann je nach Verschmutzungsneigung des zu behandelnden Mediums kleiner oder größer gewählt werden, was einen erheblichen Verfahrensvorteil darstellt.
  • Ausführungsbeispiele der Erfindung sind in den Fig. 1 bis 4 schematisch dargestellt und nachfolgend näher beschrieben, wobei auf geläufige Details verzichtet wurde. Es zeigen:
    • Fig. 1 einen Rohrbündel-Apparat mit außenliegender Rückführung
    • Fig. 2 eine Verfahrensführung, bei der nur ein Teil des zu behandelnden Mediums als Treibstrahl dient
    • Fig. 3 eine Verfahrensführung, bei der das gesamte zu behandelnde Medium als Treibstrahl dient
    • Fig. 4 einen Rohrbündel-Apparat mit innenliegender Rückführung und im Inneren angeordneter Strahlpumpe.
  • Der Rohrbündel-Apparat besteht aus einem Behältermantel 1, in dem die Rohrböden 2 und 3 mit dazwischenliegenden Wärmetauscherrohren 4 angeordnet sind, und den Behälterböden 5 und 6 mit den Ein- und Austrittsstutzen 7 bzw. 8. Die Wärmetauscherrohre 4 werden von einem Heiz- oder Kühlmedium umspült, das über einen Stutzen 9 zugeführt wird, entweder wie hier dargestellt im Gleichstrom oder im Gegenstrom fließt, und über einen Stutzen 10 abgeführt wird. Der Raum zwischen Rohrboden 2 und Behälterboden 5 stellt die Eintrittskammer 11 für das zu behandelnde Medium und der Raum zwischen Rohrboden 3 und Behälterboden 6 die Austrittskammer 12 für das behandelte Medium dar. In der Austrittskammer 12 ist eine hier schematisch als Flachsieb dargestellte Abtrenneinrichtung 13 angeordnet, mit der die Feststoffpartikel 14 aus dem behandelten Medium abgeschieden werden. Das behandelte, von den abrasiven Feststoffpartikeln 14 befreite Medium verläßt den Rohrbündel-Apparat über den Austrittsstutzen 8, während die Feststoffpartikel über den Austragsstutzen 15 aus dem Rohrbündel-Apparat abgezogen werden. Sie werden zusammen mit einem kleinen, gerade für den Transport ausreichenden Teilstrom des behandelten Mediums, d.h. der aufgewärmten oder abgekühlten Flüssigkeit von einer Strahlpumpe 16 angesaugt. Die Strahlpumpe 16 besteht im wesentlichen aus einer Düse 17 und einem Diffusor 18, der gleichzeitig einen Teil der Rückführleitung 19 darstellt.
  • Bei der in Fig. 2 dargestellten Verfahrensführung wird der Hauptstrom des zu behandelten Mediums dem Rohrbündel-Apparat durch die Pumpe 20 zugeführt. Ein Teilstrom des zu behandelnden Mediums wird der Strahlpumpe 16 von einer zweiten Pumpe 21 als Treibmedium zugeführt. Die Feststoffpartikel 14, die in der Austrittskammer 12 von der Abtrenneinrichtung 13 von dem behandelten Medium abgetrennt wurden, werden zusammen mit einem kleinen Teilstrom des behandelten Mediums über die Rückführleitung 19 und die Strahlpumpe 16 im steten Kreislauf geführt. Bei dieser Verfahrensführung kommt eine relativ kleine Strahlpumpe zum Einsatz.
  • Bei der Verfahrensführung entsprechend Fig. 3 wird demgegenüber die Strahlpumpe 16 mit dem gesamten Mengenstrom des zu behandelnden Mediums von der Pumpe 21 beaufschlagt; das macht eine größere Strahlpumpe erforderlich. Dafür entfällt die zweite Pumpe.
  • Fig. 4 zeigt eine alternative Ausgestaltung der Erfindung, wobei die Strahlpumpe 16 innerhalb des Rohrbündel-Apparates angeordnet ist. Die Düse 17 der Strahlpumpe 16 befindet sich innerhalb der Austrittskammer 12, wobei der Diffusor 18 zentral innerhalb des aus den Wärmetauscherrohren 4 gebildeten Rohrbündels als Rückführung angeordnet und einerseits mit der Eintrittskammer 11 und andererseits mit der Austrittskammer 12 verbunden ist. Als Abtrenneinrichtung 13 für die abrasiven Feststoffpartikel 14 ist in diesem Falle innerhalb der Austrittskammer 12 ein Kegelsieb vorgesehen. Das zu behandelnde Medium wird der Düse 17 über die Pumpe 21 zugeführt, wobei die Feststoffpartikel aus der Austrittskammer 12 angesaugt und gemeinsam mit dem zu behandelnden Medium über die Wärmetauscherrohre 4 geführt werden. Das behandelte Medium wird auf derselben Seite des Rohrbündel-Apparates abgeführt, auf der das zu behandelnde zugeführt wird.

Claims (9)

  1. Rohrbündel-Apparat zur Wärmeübertragung mit zwischen Rohrböden (2, 3) angeordneten Wärmetauscherrohren (4), einer Eintrittskammer (11) und einer Austrittskammer (12) sowie einer Vorrichtung zur Reinigung der Wärmetauscherrohre (4), die eine Abtrenneinrichtung (13) für Feststoffpartikel (14) und eine Pumpe (16) umfaßt, deren Saugseite mit der Austrittskammer (12) und deren Druckseite mit der Eintrittskammer (11) verbunden ist, dadurch gekennzeichnet, daß die Abtrenneinrichtung (13) in der Austrittskammer (12) angeordnet ist und daß die Aus- und Einschleusung der Feststoffpartikel (14) mit einer durch das zu behandelnde Medium betriebenen Strahlpumpe (16) zwischen der Austrittskammer (12) und der Eintrittskammer (11) erfolgt.
  2. Rohrbündel-Apparat nach Anspruch 1, dadurch gekennzeichnet, daß die Abtrenneinrichtung (13) als Flachsieb ausgebildet ist.
  3. Rohrbündel-Apparat nach Anspruch 1, dadurch gekennzeichnet, daß die Abtrennvorrichtung (13) rechenartig ausgebildet ist.
  4. Rohrbündel-Apparat nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Abtrennvorrichtung (13) dachförmig ausgebildet ist.
  5. Rohrbündel-Apparat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Abtrennvorrichtung (13) geneigt zur Strömungsrichtung des zu behandelnden Mediums angeordnet ist.
  6. Rohrbündel-Apparat nach Anspruch 1, dadurch gekennzeichnet, daß die Strahlpumpe (16) durch einen zentral im Rohrbündel (4) angeordneten Diffusor (18) in Verbindung mit einer diesem vorgesetzten Düse (17) gebildet ist.
  7. Rohrbündel-Apparat nach Anspruch 6, dadurch gekennzeichnet, daß die Abtrennvorrichtung (13) als Kegelsieb ausgebildet ist.
  8. Rohrbündel-Apparat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Strahlpumpe (16) mit einem Teilstrom des zu behandelnden Mediums von weniger als 20 %, vorzugsweise 5 bis 10 %, des Gesamtstroms betrieben wird.
  9. Rohrbündel-Apparat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das spezifische Gewicht der Feststoffpartikel (14) mindestens ebenso groß und höchstens um 50 % größer als das des zu behandelnden Mediums ist.
EP19890114306 1988-09-15 1989-08-03 Rohrbündel-Apparat Expired - Lifetime EP0358921B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3831385 1988-09-15
DE19883831385 DE3831385C2 (de) 1988-09-15 1988-09-15 Verfahren und Vorrichtung zum Betreiben eines Rohrbündel-Apparates

Publications (2)

Publication Number Publication Date
EP0358921A1 EP0358921A1 (de) 1990-03-21
EP0358921B1 true EP0358921B1 (de) 1992-11-04

Family

ID=6363015

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890114306 Expired - Lifetime EP0358921B1 (de) 1988-09-15 1989-08-03 Rohrbündel-Apparat

Country Status (2)

Country Link
EP (1) EP0358921B1 (de)
DE (1) DE3831385C2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440869A (zh) * 2016-08-30 2017-02-22 朱清敏 自清洁循环换热装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4010478A1 (de) * 1990-03-31 1991-10-02 Krupp Buckau Maschinenbau Gmbh Vorrichtung zur waermeuebertragung
DE4016043A1 (de) * 1990-05-18 1991-11-21 Krupp Buckau Maschinenbau Gmbh Vorrichtung zur uebertragung von waerme
GB2318165B (en) * 1996-10-10 2000-07-12 Biofence Ltd Photobioreactor having mobile cleaning means
AUPP158098A0 (en) 1998-01-29 1998-02-26 Arnold, Geoffery Peter Laser alignment apparatus and method
NL1019670C2 (nl) * 2001-12-27 2003-07-01 Klarex Beheer B V Inrichting voor het uitvoeren van een fysisch en/of chemisch proces, zoals een warmtewisselaar.
FR2863697B1 (fr) * 2003-12-12 2008-09-12 Technos Et Cie Echangeur de chaleur muni de moyens de nettoyage.
DE102009014786A1 (de) 2008-08-18 2010-02-25 Coperion Gmbh Bearbeitungsanlage für Schüttgut
CN104713413B (zh) * 2013-12-13 2017-01-04 衢州学院 一种换热器在线强化除垢装置
CN103968689A (zh) * 2014-05-26 2014-08-06 英尼奥斯欧洲股份公司 丙烯腈制造中的废水冷却器
CN107764108B (zh) * 2016-08-23 2019-05-14 中国石油化工股份有限公司 固体颗粒有效循环的流化床换热器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE569651A (de) *
DD8154A (de) *
FR646861A (fr) * 1927-12-20 1928-11-16 Cie Des Surchauffeurs Perfectionnements aux appareils destinés au nettoyage des tubes de chaudière
DE1126060B (de) * 1957-05-23 1962-03-22 Steinmueller Gmbh L & C Kugelregenreinigungsanlage
DE1247359B (de) * 1962-01-22 1967-08-17 Hitachi Ltd Reinigungsvorrichtung fuer Roehren-Waermetauscher
NL7703939A (nl) * 1977-04-12 1978-10-16 Esmil Bv Werkwijze en inrichting voor het uitwisselen van warmte.
DE3131124C1 (de) * 1981-08-06 1982-10-28 Taprogge Gesellschaft mbH, 4000 Düsseldorf Reinigungsfangsieb für Kondensator-Reinigungsanlagen mit Kühlwasser-Reinigungskreislauf
NL192055C (nl) * 1983-07-22 1997-01-07 Eskla Bv Inrichting voor het bedrijven van fysische en/of chemische processen, in het bijzonder een warmtewisselaar met circulatie van korrelmassa.
DE3432864A1 (de) * 1984-09-07 1986-03-20 Robert Prof. Dr.-Ing. 5100 Aachen Rautenbach Waermetauscher fuer die physikalische und/oder chemische behandlung einer fluessigkeit
DE3625408A1 (de) * 1986-07-26 1988-02-04 Krupp Gmbh Verfahren zur vermeidung von ablagerungen in senkrecht stehenden verdampferheizrohren und vorrichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440869A (zh) * 2016-08-30 2017-02-22 朱清敏 自清洁循环换热装置

Also Published As

Publication number Publication date
DE3831385C2 (de) 1997-06-12
DE3831385A1 (de) 1990-03-29
EP0358921A1 (de) 1990-03-21

Similar Documents

Publication Publication Date Title
EP0029933B1 (de) Vorrichtung und Verfahren zum periodischen Abreinigen von Wärmeaustauscherrohren von Feststoffablagerungen und Verwendung dieser Vorrichtung
DE69400918T2 (de) Vorrichtung zur durchführung von physikalischen und/oder chemischen verfahren, zum beispiel ein wärmetauscher
DE3783227T2 (de) System und zufuehrungsleitung fuer ein brennstoffzellenkuehlmittel.
EP0358921B1 (de) Rohrbündel-Apparat
DE3144863C2 (de) Wärmetauscher mit Fließbett
DE2825273A1 (de) Abscheider
EP0077851B1 (de) Gaskühler-Anordnung zu Kohlevergasungsanlage
DE3244769A1 (de) Vorrichtung zur feinstaubabscheidung bei einem wirbelschichtreaktor
DE2019210A1 (de) Vorrichtung zur Abtrennung von Katalysatorteilchen
DE3703706C2 (de) Verfahren und Anordnung zum Reinigen eines kontaminierten Heissgasstromes
DE3432864A1 (de) Waermetauscher fuer die physikalische und/oder chemische behandlung einer fluessigkeit
DE4330782A1 (de) Kesselsystem mit Verbrennung in der Wirbelschicht unter Druck
EP0313758B1 (de) Verfahren und Vorrichtung zum Kühlen von Flugstaub
DE2503637A1 (de) Verfahren und vorrichtung zur herstellung von prills
EP0203445B1 (de) Rohgas-Reingas-Wärmetauscher
DE202019106487U1 (de) Staubabscheider und Verdampfungstrockner
DE19521741C2 (de) Durchlaufabscheider mit zwei Stufen zum Abtrennen von Feststoffteilchen aus einer strömenden Flüssigkeit
DE2652365A1 (de) Verfahren und vorrichtung zur entfernung von verunreinigungen aus einem gasstrom
DE60010532T2 (de) Vorrichtung zur durchführung von physikalischen und/oder chemischen verfahren, zum beispiel ein wärmetauscher
WO1993000148A1 (de) Nassreinigungseinrichtung, insbesondere zum abscheiden gasförmiger und/oder flüssiger und/oder fester verunreinigungen aus gasströmen
WO1999024773A1 (de) Vorrichtung zum wärmeaustausch zwischen einem wärmeträgerfluid und einem feststoff
DE3511877A1 (de) Durchlaufdampferzeuger
EP0451518B1 (de) Vorrichtung zur Wärmeübertragung
EP0097332B1 (de) Wirbelschicht-Wärmeaustauscher
DE3939028C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB IT NL

17P Request for examination filed

Effective date: 19900906

17Q First examination report despatched

Effective date: 19910326

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DORR-OLIVER DEUTSCHLAND GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: SIGRI GREAT LAKES CARBON GMBH TE WIESBADEN, BONDSR

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;SIGRI GREAT LAKES CARBON GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940628

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950803

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: SGL TECHNIK GMBH;SGL CARBON AKTIENGESELLSCHAFT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980731

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980831

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000428

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050803