EP0356335A1 - Peptide signal et séquences d'ADN codant pour celui-ci - Google Patents
Peptide signal et séquences d'ADN codant pour celui-ci Download PDFInfo
- Publication number
- EP0356335A1 EP0356335A1 EP89402328A EP89402328A EP0356335A1 EP 0356335 A1 EP0356335 A1 EP 0356335A1 EP 89402328 A EP89402328 A EP 89402328A EP 89402328 A EP89402328 A EP 89402328A EP 0356335 A1 EP0356335 A1 EP 0356335A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polypeptide
- peptide
- signal peptide
- bacteria
- plasmid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108010076504 Protein Sorting Signals Proteins 0.000 title claims abstract description 36
- 108091028043 Nucleic acid sequence Proteins 0.000 title claims abstract description 15
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 45
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 35
- 229920001184 polypeptide Polymers 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 24
- 241000894006 Bacteria Species 0.000 claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 claims abstract description 23
- 235000001014 amino acid Nutrition 0.000 claims abstract description 17
- 229940024606 amino acid Drugs 0.000 claims abstract description 17
- 150000001413 amino acids Chemical class 0.000 claims abstract description 17
- 239000013604 expression vector Substances 0.000 claims abstract description 7
- 230000002068 genetic effect Effects 0.000 claims abstract description 7
- 239000013598 vector Substances 0.000 claims abstract description 7
- 229930182817 methionine Natural products 0.000 claims abstract description 5
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 claims abstract description 5
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 claims abstract description 4
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 claims abstract description 4
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims abstract description 4
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 claims abstract description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims abstract description 4
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims abstract description 4
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims abstract description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000004472 Lysine Substances 0.000 claims abstract description 4
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims abstract description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims abstract description 4
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000004473 Threonine Substances 0.000 claims abstract description 4
- 235000004279 alanine Nutrition 0.000 claims abstract description 4
- 235000009582 asparagine Nutrition 0.000 claims abstract description 4
- 229960001230 asparagine Drugs 0.000 claims abstract description 4
- 235000018417 cysteine Nutrition 0.000 claims abstract description 4
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims abstract description 4
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims abstract description 4
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims abstract description 4
- 230000008569 process Effects 0.000 claims abstract description 4
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 claims abstract description 4
- 102000007625 Hirudins Human genes 0.000 claims description 23
- 108010007267 Hirudins Proteins 0.000 claims description 23
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 claims description 23
- 229940006607 hirudin Drugs 0.000 claims description 23
- 239000006228 supernatant Substances 0.000 claims description 18
- 102000002265 Human Growth Hormone Human genes 0.000 claims description 17
- 108010000521 Human Growth Hormone Proteins 0.000 claims description 17
- 239000000854 Human Growth Hormone Substances 0.000 claims description 17
- 239000002243 precursor Substances 0.000 claims description 17
- 230000003204 osmotic effect Effects 0.000 claims description 14
- 230000035939 shock Effects 0.000 claims description 14
- 230000035772 mutation Effects 0.000 claims description 7
- 238000012217 deletion Methods 0.000 claims description 5
- 230000037430 deletion Effects 0.000 claims description 5
- 241000588724 Escherichia coli Species 0.000 claims description 4
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 claims description 3
- 241000219995 Wisteria Species 0.000 claims description 3
- 101150006779 crp gene Proteins 0.000 claims description 3
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 abstract 2
- 239000004471 Glycine Substances 0.000 abstract 1
- 239000012634 fragment Substances 0.000 description 58
- 239000013612 plasmid Substances 0.000 description 55
- 239000000243 solution Substances 0.000 description 16
- 239000000725 suspension Substances 0.000 description 14
- 108090000623 proteins and genes Proteins 0.000 description 12
- 230000029087 digestion Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000000872 buffer Substances 0.000 description 10
- 230000006698 induction Effects 0.000 description 10
- 235000018102 proteins Nutrition 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 8
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 8
- 238000004128 high performance liquid chromatography Methods 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 7
- 239000000020 Nitrocellulose Substances 0.000 description 6
- 229920001220 nitrocellulos Polymers 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 5
- 210000001322 periplasm Anatomy 0.000 description 5
- 108091008146 restriction endonucleases Proteins 0.000 description 5
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000004019 antithrombin Substances 0.000 description 4
- 230000009089 cytolysis Effects 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- LWGJTAZLEJHCPA-UHFFFAOYSA-N n-(2-chloroethyl)-n-nitrosomorpholine-4-carboxamide Chemical compound ClCCN(N=O)C(=O)N1CCOCC1 LWGJTAZLEJHCPA-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- PCKRJVZAQZWNKM-WHFBIAKZSA-N Asn-Asn-Gly Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O PCKRJVZAQZWNKM-WHFBIAKZSA-N 0.000 description 1
- QGNXYDHVERJIAY-ACZMJKKPSA-N Asn-Gln-Cys Chemical compound C(CC(=O)N)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)N)N QGNXYDHVERJIAY-ACZMJKKPSA-N 0.000 description 1
- GWIJZUVQVDJHDI-AVGNSLFASA-N Asp-Phe-Glu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(O)=O)C(O)=O GWIJZUVQVDJHDI-AVGNSLFASA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 0 CCC*(C)(C)CC(C*=N)=C(*)C(C)CC Chemical compound CCC*(C)(C)CC(C*=N)=C(*)C(C)CC 0.000 description 1
- UXUSHQYYQCZWET-WDSKDSINSA-N Cys-Glu-Gly Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O UXUSHQYYQCZWET-WDSKDSINSA-N 0.000 description 1
- DZSICRGTVPDCRN-YUMQZZPRSA-N Cys-Gly-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CS)N DZSICRGTVPDCRN-YUMQZZPRSA-N 0.000 description 1
- OXFOKRAFNYSREH-BJDJZHNGSA-N Cys-Ile-Leu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)O)NC(=O)[C@H](CS)N OXFOKRAFNYSREH-BJDJZHNGSA-N 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- BUAKRRKDHSSIKK-IHRRRGAJSA-N Glu-Glu-Tyr Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 BUAKRRKDHSSIKK-IHRRRGAJSA-N 0.000 description 1
- HPJLZFTUUJKWAJ-JHEQGTHGSA-N Glu-Gly-Thr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(O)=O HPJLZFTUUJKWAJ-JHEQGTHGSA-N 0.000 description 1
- GXMXPCXXKVWOSM-KQXIARHKSA-N Glu-Ile-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CCC(=O)O)N GXMXPCXXKVWOSM-KQXIARHKSA-N 0.000 description 1
- ZAPFAWQHBOHWLL-GUBZILKMSA-N Glu-Ser-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(=O)O)N ZAPFAWQHBOHWLL-GUBZILKMSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- OCDLPQDYTJPWNG-YUMQZZPRSA-N Gly-Asn-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)CN OCDLPQDYTJPWNG-YUMQZZPRSA-N 0.000 description 1
- BULIVUZUDBHKKZ-WDSKDSINSA-N Gly-Gln-Asn Chemical compound NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O BULIVUZUDBHKKZ-WDSKDSINSA-N 0.000 description 1
- PDUHNKAFQXQNLH-ZETCQYMHSA-N Gly-Lys-Gly Chemical compound NCCCC[C@H](NC(=O)CN)C(=O)NCC(O)=O PDUHNKAFQXQNLH-ZETCQYMHSA-N 0.000 description 1
- IALQAMYQJBZNSK-WHFBIAKZSA-N Gly-Ser-Asn Chemical compound [H]NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(O)=O IALQAMYQJBZNSK-WHFBIAKZSA-N 0.000 description 1
- DGTOKVBDZXJHNZ-WZLNRYEVSA-N Ile-Thr-Tyr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)N DGTOKVBDZXJHNZ-WZLNRYEVSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- PPBKJAQJAUHZKX-SRVKXCTJSA-N Leu-Cys-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@H](C(O)=O)CC(C)C PPBKJAQJAUHZKX-SRVKXCTJSA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- AUEJLPRZGVVDNU-UHFFFAOYSA-N N-L-tyrosyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CC1=CC=C(O)C=C1 AUEJLPRZGVVDNU-UHFFFAOYSA-N 0.000 description 1
- ULWBBFKQBDNGOY-RWMBFGLXSA-N Pro-Lys-Pro Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CCCCN)C(=O)N2CCC[C@@H]2C(=O)O ULWBBFKQBDNGOY-RWMBFGLXSA-N 0.000 description 1
- TYYBJUYSTWJHGO-ZKWXMUAHSA-N Ser-Asn-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(O)=O TYYBJUYSTWJHGO-ZKWXMUAHSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- NLJKZUGAIIRWJN-LKXGYXEUSA-N Thr-Asp-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CS)C(=O)O)N)O NLJKZUGAIIRWJN-LKXGYXEUSA-N 0.000 description 1
- ONNSECRQFSTMCC-XKBZYTNZSA-N Thr-Glu-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O ONNSECRQFSTMCC-XKBZYTNZSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- YQYFYUSYEDNLSD-YEPSODPASA-N Val-Thr-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O YQYFYUSYEDNLSD-YEPSODPASA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- -1 acids amines Chemical class 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000010310 bacterial transformation Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 101150084863 cya gene Proteins 0.000 description 1
- 230000006743 cytoplasmic accumulation Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 1
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 1
- 108010050848 glycylleucine Proteins 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- ZCYVEMRRCGMTRW-YPZZEJLDSA-N iodine-125 Chemical compound [125I] ZCYVEMRRCGMTRW-YPZZEJLDSA-N 0.000 description 1
- 229940044173 iodine-125 Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-M lysinate Chemical compound NCCCCC(N)C([O-])=O KDXKERNSBIXSRK-UHFFFAOYSA-M 0.000 description 1
- 108010064235 lysylglycine Proteins 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 108010070643 prolylglutamic acid Proteins 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 108010078580 tyrosylleucine Proteins 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/61—Growth hormone [GH], i.e. somatotropin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/81—Protease inhibitors
- C07K14/815—Protease inhibitors from leeches, e.g. hirudin, eglin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/62—DNA sequences coding for fusion proteins
- C12N15/625—DNA sequences coding for fusion proteins containing a sequence coding for a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/034—Fusion polypeptide containing a localisation/targetting motif containing a motif for targeting to the periplasmic space of Gram negative bacteria as a soluble protein, i.e. signal sequence should be cleaved
Definitions
- the present invention relates to a new signal peptide, the DNA sequences coding for it, the expression vectors carrying one of these, the gram-negative bacteria transformed by them as well as a method of periplasmic production of a polypeptide using the latter.
- polypeptides synthesized as a precursor in the cytoplasm and exported to the periplasm, the space between the cytoplasmic membrane and the bacterial wall, where they accumulate in the form a mature polypeptide, that is to say a polypeptide capable of ensuring its specific biological action.
- polypeptides are in particular enzymes, such as for example alkaline phosphatase.
- gram negative bacteria can be used to cause them to produce in their periplasm a polypeptide which is foreign to them.
- periplasmic production is of certain interest because the separation of said polypeptide from the other constituents of the periplasm is easier than the separation of the latter from the other components of the cytoplasm, as is required in the case of production with cytoplasmic accumulation.
- the polypeptide accumulates in its mature form without the addition of an N-terminal methionine which would then have to be eliminated and without the adoption of an unfavorable secondary conformation.
- a polypeptide for its production to be periplasmic, a polypeptide must be synthesized in the form of a precursor corresponding to the mature polypeptide extended at its N-terminal end of a peptide generally consisting of 15 to 30 amino acids called peptide signal .
- This signal peptide which plays a role determinant in the secretion of the polypeptide, is cleaved during the process thus releasing the mature polypeptide into the periplasm.
- the Applicant noting that the choice of a bacterial signal peptide could determine for the precursor of a heterologous polypeptide, (in particular of eukaryotic origin) as and when it is synthesized in the bacteria, the uptake by the latter of an inappropriate secondary conformation, has designed a new signal peptide which allows a good yield of periplasmic production of biologically active heterologous polypeptides.
- the invention therefore relates to a new signal peptide of formula: MXKSTLLLLFLLLCLPSWNAG A or A, C, F, G, K, L, M, N, P, S, T and W denote amino acids according to the following code:
- A Alanine
- C Cysteine
- F Phenylalanine
- G Wisteria
- K Lysine
- L Leucine
- M Methionine
- N Asparagine
- W Tryptophan
- X represents a direct bond between M and K, an amino acid chosen from the set of 20 amino acids of the genetic code or a peptide comprising 2, 3 or 4 amino acids each chosen independently of one another from the set of 20 amino acids of the genetic code.
- a particularly preferred signal peptide is that in which X represents a direct bond between M and K, or all or part of the peptide of sequence APSG.
- the invention relates to the DNA sequences coding for the signal peptide according to the invention.
- Any sequence that degeneration of the genetic code allows can be used.
- Two particularly popular sequences are: which codes for the signal-peptide peptide of formula (1): MAPSGKSTLLLLFLLLCLPSW NAGA and which codes for the signal peptide of formula (2): MKSTLLLLFLLLCLPSWNAGA
- the invention also relates to the expression vectors carrying a DNA sequence coding for a precursor of a polypeptide characterized in that the portion of this sequence coding for the signal peptide is a sequence according to the invention.
- the signal peptide according to the invention, the DNA sequences coding for it and the expression vectors carrying these sequences find their application in the periplasmic production of polypeptides by bacteria responding negatively to Gram stain test (so-called gram-negative bacteria) transformed by these vectors.
- the invention therefore also relates to gram-negative bacteria transformed by the vectors defined above.
- these we appreciate those which belong to the species Escherichia coli .
- the latter carry one or more mutations, if possible stable, for example deletion mutations, affecting the cya gene and / or the crp gene.
- the invention in another aspect, relates to a process for the periplasmic production of a polypeptide comprising culturing cells of previously defined gram-negative bacteria, subjecting the cells to osmotic shock and separating the recombinant polypeptide from the supernatant of osmotic shock.
- the method according to the invention allows production both in an inducible mode, when the expression of the DNA sequence encoding the precursor is placed under the control of an inducible promoter as in a constitutive mode, where the production of polypeptide is continuous from the culture of the transformed strain.
- the method according to the invention is suitable for the production of all kinds of heterologous polypeptides with respect to the strain used. It is thus suitable for the production of polypeptides of eukaryotic origin. They may be proteins strictly speaking, such as in particular human growth hormone (hGH) or smaller peptides, such as in particular a natural form or a variant of hirudin, for example the variant HV2 (Lys47).
- hGH human growth hormone
- smaller peptides such as in particular a natural form or a variant of hirudin, for example the variant HV2 (Lys47).
- the strategy implemented used fragments obtained from preexisting plasmids accessible to the public and fragments prepared by synthesis according to the techniques now commonly used.
- the cloning techniques used are those described by T. MANIATIS EF, FRITSCH and J. SAMBROOK in "Molecular cloning, a laboratory manual” (Cold Spring Harbor Laboratory, 1984).
- the synthesis of oligonucleotides is carried out using a Biosearch 4600 DNA synthesizer.
- Plasmid p163.1 (FIG. 1), described in patent application EP-A-0245138 (represented in FIG. 2 of this document, which does not show the BamHI site (1) represented in FIG. 1, was subjected. of the present application) and present in the strain deposited at the CNCM under the reference I-530 on February 17, 1986, with digestion by the enzymes PvuI and BamHI.
- This plasmid contains the gene coding for hGH.
- the plasmid pBR327 well known to those skilled in the art, was subjected (cf. SOBERON, X et al., Gene, 9 (1980) 287-305) to digestion with the enzymes PvuI and BamHI .
- fragment 3 is a synthetic BamHI (1) -BamHI (2) fragment containing the lac i gene and its promoter, the sequence of which is as follows, on which the two ends of the strand are identified by the numbers 1 and 2 to specify the orientation of the fragment in the plasmids described in FIGS. 2 and 3.
- Fragments 1, 2 and 3 were then ligated so as to obtain the plasmid p160,1 represented in FIG. 2.
- This plasmid was subjected to partial digestion with the restriction enzymes HincII and PstI.
- HincII and PstI The large HincII-PstI fragment, containing the origin of replication and represented in FIG. 2, was then ligated to fragment 4, represented below, which is a synthetic DNA fragment carrying a sequence coding for the first 44 acids amines of a natural precursor of hGH and upstream of this sequence of regulatory signals.
- the plasmid p380,1 (FIG. 3) was then subjected to digestion with the restriction enzymes ClaI and NdeI so as to eliminate therefrom the small fragment ClaI - NdeI from fragment 4 above and to replace it with the fragment ClaI - NdeI below:
- the resulting plasmid is plasmid p373.2 ( Figure 3).
- the plasmid p373.2 was subjected to digestion with the restriction enzymes NdeI and XbaI so as to eliminate therefrom the NdeI - XbaI fragment from fragment 4 above and to substitute for it the synthetic NdeI - XbaI fragment represented above. after.
- the plasmid p398 thus obtained contains the particularly appreciated DNA sequence coding for the signal peptide of formula (1). This sequence is delimited above by two arrows.
- the tests carried out concerned 6 clones of the plasmid p398 (Clones 2, 3, 5, 6, 7 and 8), the results being appreciated with respect to the plasmid p373.2 which contains a DNA sequence coding for the natural precursor of hGH. They consisted in cultivating the host-vector pairs concerned, previously prepared (cf. ⁇ 2.1), under conditions such that a sufficient biomass is obtained (cf. ⁇ 2.2), and that the cells subjected to an induction produce the hGH (cf. ⁇ 2.3), to collect by osmotic shock the proteins contained in the periplasmic space (cf. ⁇ 2.4), to subject the bacteria to a total lysis so as to have a total protein extract (cf. ⁇ 2.5), to measure the periplasmic hGH collected in 2.4 (see ⁇ 2.6) and to analyze by the so-called Western Blot technique the supernatants obtained in 2.4 and 2.5 (see ⁇ 2.7).
- the host-vector pairs were prepared according to the bacterial transformation techniques known to those skilled in the art and which are described in particular in the works below. - Molecular cloning - A Laboratory Manual - T. Maniatis EF, Fritsch and J. Sambrook - Cold Spring Harbor Laboratory - 1982. - Experiments in Molecular Genetics - JH MILLER - Cold Spring Harbor Laboratory - 1972.
- the LB medium used has the following characteristics: - its components introduced before autoclaving are: . Bactotryptone 10g . yeast extract 5 g . sodium chloride 5 g . distilled water qs 1 l - its pH is adjusted to 7.3 before autoclaving - ampicillin is added after autoclaving at a rate of 100 ⁇ g / ml
- the suspension prepared in a) was placed at 37 o C for 18 h so that the culture reaches the stationary growth phase.
- the dense suspension obtained was diluted in LB medium so as to obtain an optical density value read at 600 nm - OD at 600 nm - close to 0.03 and then 25 ml of this bacterial suspension were incubated at 37 o C with stirring until an OD at 600 nm close to 0.3 is obtained.
- IPTG isopropyl- ⁇ -D-thiogalactose
- the suspension supplemented with IPTG was stirred at 37 o C for 2 h 30.
- the pellet was taken up in a volume of buffer at pH 7 (solution A) (see above) so that the suspension obtained has an OD at 600 nm close to 10.
- the buffer used was prepared by addition in distilled water of: . tri (hydroxymethyl) aminomethane-HCl or tris-HCl added so as to have a final concentration of 30 mM. . ethylenediaminetetraacetic acid or EDTA added so as to have a final concentration of 1 mM.
- the suspension obtained in 2.4.a. was centrifuged for 5 minutes at 6000 g.
- the pellet was gently taken up at constant volume in a solution B prepared immediately and corresponding to solution A to which sucrose is added at the rate of 15 g per 100 ml.
- the suspension was left 10 minutes at 20 o C. It was then centrifuged for 5 minutes at 6000 g. The centrifuge tubes were placed in melting ice.
- the supernatant was carefully removed and substituted (at constant volume) with deionized water and brought to the temperature of melting ice beforehand.
- the suspension thus prepared (including the OD at 600 nm was around 10) was left for 5 minutes at 0 o C.
- the suspension obtained in 2.4.b. was centrifuged for 10 minutes at 18,000 g.
- the supernatant which contained the periplasmic localized proteins was collected.
- the pellet was resuspended in a volume of buffer such that 1 ml of suspension has an OD at 600 nm of 0.2.
- the buffer was prepared from a 2-fold concentrated buffer comprising a solution in distilled water: - 0.125 M Tris-HCl, pH 6.8; - sodium dodecyl sulfate (4% (w / v)); - glycerol (20% (w / v)); - ⁇ -mercaptoethanol (10% (w / v)); - bromophenol blue (0.02% (v / v)).
- the tube was placed 10 minutes in a water bath set at 100 o C and the suspension was centrifuged for 5 minutes at 6000 g and the supernatant was collected.
- the supernatant obtained in 2.4.c. was subjected to a high pressure liquid type chromatography using an apparatus fitted with a calibrated injection system and equipped with a detector set to 220 nm.
- a reverse phase column C 8 -300 Angstroms made of steel, 10 cm in length and 4.6 mm in internal diameter (SYNCHROM reference C 8 R103-10), .
- a mobile phase consisting of a linear gradient of 20 minutes passing respectively from 70 volumes of solution S1 and 30 volumes of solution S2 to 40 volumes of solution S1 and 60 volumes of solution S2.
- the flow rate was 1 ml per minute.
- the optical density of the fractions was measured and the amount of periplasmic hGH expressed in micrograms per ml of supernatant was determined by comparison with a preset standard range.
- buffer A 10 mM Tris-HCl, 170 mM NaCl, 1 mM KI
- buffer B buffer A supplemented with bovine serum albumin at 3 g per 100 ml
- an immune serum a polyclonal antibody recognizing mature hGH and its precursor
- plasmid 398 allows periplasmic production approximately doubled compared to that which allows plasmid 373.2.
- a plasmid called p400 was constructed from plasmid p373.2. It carries a DNA sequence coding for the variant (Lys47) HV2 described in EP-A-0273800 and the formula of which is recalled below: ILE THR TYR THR ASP CYS THR GLU SER GLY GLN ASN LEU CYS LEU CYS GLU GLY SER ASN VAL CYS GLY LYS GLY ASN LYS CYS ILE LEU GLY SER ASN GLY LYS GLY ASN GLN CYS VAL THR GLY GLU GLY THR PRO LYS PRO GLU SER HIS ASN ASN GLY ASP PHE GLU GLU ILE PRO GLU GLU TYR LEU GLN preceded by a sequence coding for the signal peptide according to the invention of formula (1).
- Plasmid p373.2 was subjected to digestion with the restriction enzymes NdeI and HindIII and the NdeI-HindIII fragment (fragment 6) containing the origin of replication, as represented in FIG. 3, was purified.
- This fragment contains a preferred DNA sequence coding for the signal peptide of formula (1) delimited by two arrows and followed by nucleotides corresponding to the first 3 codons of the hirudin variant (Lys47) HV2.
- the plasmid obtained is the plasmid p400, represented in FIG. 4.
- Plasmid p400 was introduced by transformation into the bacterial strain.
- the tests were carried out in parallel on two separate clones (clones p400,18 and p400,24) and in accordance with the procedure described in paragraphs 2.1 and 2.2 of Example 1.
- the cultures were induced according to the method indicated in paragraph 2.3 of example 1 but by making two adjustments to it: the induction was initiated by the addition of IPTG when the culture reached an OD at 600 nm of approximately 0.5 and it was maintained for 3 h 30 min for a first try and 5 p.m. for a second try.
- the cells were subjected to osmotic shock (cf. ⁇ 2.4, example 1) and the antithrombin activity of the hirudin of the collected supernatant was measured.
- osmotic shock cf. ⁇ 2.4, example 1
- the hirudin variant obtained from one of the clones was purified by high pressure liquid chromatography and its NH2-terminal sequence was determined.
- Example 3 Periplasmic production of a variant of hirudin using the signal peptide of formula:
- MKSTLLLLFLLLCLPSWNAGA uses DNA fragments obtained from the plasmid p400.18 described in Example 2 and a fragment obtained after site-directed mutagenesis in the phage M13mp19 marketed by AMERSHAM.
- NruI-EcoRI fragment obtained from phage M13mp19
- the plasmid obtained is the plasmid p460, represented in FIG. 5.
- the plasmid p460 was introduced by transformation into the bacterial strain described in Example 1.
- the tests were carried out in parallel on two separate clones (clones p460.2 and p460.4) in which the presence of the sequence of 63 nucleotides mentioned above was verified, and on the control clone p400.18, in accordance with procedure described in paragraphs 2.1 and 2.2 of Example 1.
- the cultures were induced according to the method indicated in paragraph 2.3 of Example 1 but by making two adjustments to it: the induction was initiated by the addition of IPTG when the culture reached an OD at 600 nm of approximately 0.5 and it was held for 2 hours.
- the supernatant obtained at the end of the osmotic shock was subjected to high pressure liquid chromatography HPLC, using an apparatus fitted with a calibrated injection system and equipped with a detector set to 220 nm.
- a reverse phase column C 8 -300 A o made of steel, 7.5 cm in length and 4.6 mm in internal diameter (BECKMAN Ultrapore reference 238 771).
- a mobile phase consisting of a linear gradient of 10 minutes, passing respectively from 85 volumes of solution S1 and 15 volumes of solution S2 to 50 volumes of solution S1 and 50 volumes of solution S2.
- the flow rate was 2 ml per minute.
- the optical density of the fractions was measured and the amount of variant (Lys47) HV2 periplasmic, expressed in milligrams per liter of supernatant, was determined by comparison with a standard solution of variant (Lys47) HV2.
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Endocrinology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Saccharide Compounds (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
- La présente invention concerne un nouveau peptide-signal, les séquences d'ADN codant pour celui-ci, les vecteurs d'expression portant l'une de ces dernières, les bactéries gram-négatives transformées par ceux-ci ainsi qu'un procédé de production périplasmique d'un polypeptide à l'aide de ces dernières.
- Il est connu que les bactéries gram-négatives produisent naturellement des polypeptides, synthétisés sous la forme d'un précurseur dans le cytoplasme et exportés vers le périplasme, espace compris entre la membrane cytoplasmique et la paroi bactérienne, où ils s'accumulent sous la forme d'un polypeptide mature, c'est-à-dire d'un polypeptide capable d'assurer son action biologique spécifique. Parmi ces polypeptides figurent notamment des enzymes, telles que par exemple la phosphatase alcaline.
- Il est connu également que l'on peut utiliser des bactéries gram négatives pour leur faire produire dans leur périplasme un polypeptide qui leur est étranger. Une telle production périplasmique revêt un intérêt certain car la séparation dudit polypeptide des autres constituants du périplasme est plus facile que la séparation de celui-ci des autres composants du cytoplasme, telle qu'elle est requise dans le cas d'une production avec accumulation cytoplasmique. Elle est également intéressante car le polypeptide s'accumule sous sa forme mature sans qu'il y ait addition d'une méthionine N-terminale qu'il faudrait ensuite éliminer et sans qu'il y ait adoption d'une conformation secondaire défavorable.
- On sait que, pour que sa production soit périplasmique, un polypeptide doit être synthétisé sous la forme d'un précurseur correspondant au polypeptide mature allongé à son extrémité N-terminale d'un peptide constitué généralement de 15 à 30 acides aminés appelé peptide-signal. Ce peptide-signal, qui joue un rôle déterminant dans la sécrétion du polypeptide, est clivé au cours du processus libérant ainsi le polypeptide mature dans le périplasme.
- S'agissant d'adapter des bactéries à la production périplasmique d'un polypeptide qui leur était étranger et notamment un polypeptide d'origine eucaryote, les premiers travaux ont consisté à transformer les bactéries à l'aide d'un vecteur d'expression portant une séquence d'ADN codant pour un précurseur naturel dudit polypeptide. Cette stratégie s'est à plusieurs reprises avérée peu adaptée en terme de quantité à une production industrielle.
- Une tentative pour apporter une solution satisfaisante a consisté à remplacer le peptide-signal naturel du polypeptide par celui d'un polypeptide bactérien synthétisé sous la forme d'un précurseur. La demande de brevet EP-A-0177343 présente des exemples de mise en oeuvre de tels peptides-signaux.
- La demanderesse, constatant que le choix d'un peptide-signal bactérien pouvait déterminer pour le précurseur d'un polypeptide hétérologue, (notamment d'origine eucaryote) au fur et à mesure de sa synthèse dans la bactérie, la prise par celui-ci d'une conformation secondaire inappropriée, a conçu un nouveau peptide-signal qui permet un bon rendement de production périplasmique de polypeptides hétérologues biologiquement actifs.
- L'invention concerne donc un nouveau peptide-signal de formule :
M X K S T L L L L F L L L C L P S W N A G A
où
A, C, F, G, K, L, M, N, P, S, T et W désignent des acides aminés selon le code suivant :
A = Alanine
C = Cystéine
F = Phénylalanine
G = Glycine
K = Lysine
L = Leucine
M = Méthionine
N = Asparagine
P = Proline
S = Sérine
T = Thréonine
W = Tryptophane
et X représente une liaison directe entre M et K, un acide aminé choisi dans l'ensemble des 20 acides aminés du code génétique ou un peptide comportant 2, 3 ou 4 acides aminés choisis chacun indépendament l'un de l'autre dans l'ensemble des 20 acides aminés du code génétique. - Un peptide-signal particulièrement apprécié est celui dans lequel X représente une liaison directe entre M et K, ou tout ou partie du peptide de séquence APSG.
- L'invention concerne, selon un autre aspect, les séquences d'ADN codant pour le peptide-signal selon l'invention. Toutes les séquences que permet la dégénérescence du code génétique peuvent être utilisées. Deux séquences particulièrement appréciées sont les suivantes : qui code pour le peptide signal-peptide de formule (1) :
M A P S G K S T L L L L F L L L C L P S W N A G A
et qui code pour le peptide-signal de formule (2) :
M K S T L L L L F L L L C L P S W N A G A - L'invention concerne encore les vecteurs d'expression portant une séquence d'ADN codant pour un précurseur d'un polypeptide caractérisé en ce que la portion de cette séquence codant pour le peptide-signal est une séquence selon l'invention.
- Le peptide-signal selon l'invention, les séquences d'ADN codant pour lui et les vecteurs d'expression portant ces séquences trouvent leur application dans la production périplasmique de polypeptides par les bactéries répondant de manière négative au test de coloration de Gram (bactéries dites gram-négatives) transformées par ces vecteurs.
- L'invention concerne donc également les bactéries gram-négatives transformées par les vecteurs précédemment définis. Parmi celles-ci on apprécie celles qui appartiennent à l'espèce Escherichia coli. De préférence ces dernières portent une ou plusieurs mutations si possible stables, par exemple des mutations par délétion, affectant le gène cya et/ou le gène crp.
- L'invention concerne selon un autre aspect un procédé de production périplasmique d'un polypeptide consistant à cultiver des cellules de bactéries gram-négatives précédemment définies, à soumettre les cellules à un choc osmotique et à séparer le polypeptide recombinant du surnageant du choc osmotique.
- Le procédé selon l'invention permet une production aussi bien selon un mode inductible, lorsque l'expression de la séquence d'ADN codant pour le précurseur est placée sous le contrôle d'un promoteur inductible que selon un mode constitutif, où la production du polypeptide est continue dés la mise en culture de la souche transformée.
- Le procédé selon l'invention convient à la production de toutes sortes de polypeptides hétérologues par rapport à la souche mise en oeuvre. Il est ainsi adapté à la production de polypeptides d'origine eucaryote. Il peut s'agir de protéines à proprement parler, telles que notamment l'hormone de croissance humaine (hGH) ou de peptides de plus petite taille, tels que notamment une forme naturelle ou un variant de l'hirudine, par exemple le variant HV2 (Lys⁴⁷).
- La présente invention va être maintenant décrite plus en détail à l'aide des trois exemples ci-après, dans lesquels il sera fait référence aux cinq figures annexées.
- La figure 1 représente une carte de restriction du plasmide p163,1. Les différents segments de restriction sont marqués de manière arbitraire selon la légende ci-dessous :
- La figure 2 représente la carte de restriction du plasmide p160,1 dont les fragments PvuI-XhoI-BamHI(1) et PvuI-ORI-bamHI(2) proviennent respectivement des plamides p163,1 et pBR327 et dont le petit fragment BamHI(2)-BamHI(1) est le fragment 3 décrit dans l'exemple 1 ci-après.
- La figure 3 représente une carte de restriction commune aux plasmides p380,1 et p373,2. Les différents segments de restriction sont marqués de manière arbitraire selon la légende ci-dessous :
- La figure 4 représente la carte de restriction du plasmide p400,18. Les différents fragments de restriction sont définis de manière arbitraire selon la légende ci-dessous :
- La figure 5 représente la carte de restriction du plasmide p460. Les différents fragments son définis de manière arbitraire selon la légende ci-dessous :
- Une souche de l'espèce Escherichia coli directement apparentée à la souche, décrite dans la demande de brevet EP-A-0245138 et déposée à la Collection Nationale de Cultures de Microorganismes (CNCM, Paris, France) le 17 Février 1986 sous la référence I-529, est mise en oeuvre. Cette souche porte une mutation cya par délétion et une mutation crp par délétion.
- Un plasmide portant une séquence d'ADN codant pour un précurseur de l'hGH dont le peptide-signal est celui de l'invention de formule (1) : M A P S G K S T L L L L F L L L C L P S W N A G A a été préparé. Ce plasmide a été dénommé p398.
- La stratégie mise en oeuvre a fait appel à des fragments obtenus à partir de plasmides préexistants accessibles au public et à des fragments préparés par voie de synthèse selon les techniques maintenant couramment utilisées. Les techniques de clonage employées sont celles décrites par T. MANIATIS EF, FRITSCH et J. SAMBROOK dans "Molecular cloning, a laboratory manual" (Cold Spring Harbor Laboratory, 1984). La synthèse des oligonucléotides est réalisée à l'aide d'un synthétiseur d'ADN Biosearch 4 600.
- On a soumis le plasmide p163,1 (figure 1), décrit dans la demande de brevet EP-A-0245138 (représenté sur la figure 2 de ce document, laquelle ne fait pas apparaître le site BamHI (1) représenté sur la figure 1 de la présente demande) et présent dans la souche déposée à la CNCM sous la référence I-530 le 17 Février 1986, à une digestion par les enzymes PvuI et BamHI. Ce plasmide contient le gène codant pour l'hGH. Le fragment PvuI-BamHI (1) - ci-après fragment 1 - contenant le site d'action de l'enzyme de restriction XhoI, représenté sur la figure 1, a été purifié.
- De même, on a soumis le plasmide pBR327, bien connu de l'homme de l'art, (cf. SOBERON, X et al., Gene, 9 (1980) 287-305) à une digestion par les enzymes PvuI et BamHI. Le fragment PvuI-BamHI (2) - ci-après fragment 2 -, contenant l'origine de réplication, a été purifié.
- Puis on a préparé le fragment 3, qui est un fragment synthétique BamHI(1)-BamHI(2) contenant le gène lac i et son promoteur dont la séquence est la suivante sur laquelle les deux extrémités du brin sont repérées par les nombres 1 et 2 pour préciser l'orientation du fragment dans les plasmides décrits aux figures 2 et 3.
- Les fragments 1, 2 et 3 ont été alors ligués de manière à obtenir le plasmide p160,1 représenté sur la figure 2.
- Ce plasmide a été soumis à une digestion partielle par les enzymes de restriction HincII et PstI. Le grand fragment HincII-PstI, contenant l'origine de réplication et représenté sur la figure 2, a été ensuite ligué au fragment 4, représenté ci-après, qui est un fragment synthétique d'ADN portant une séquence codant pour les 44 premiers acides aminés d'un précurseur naturel de l'hGH et en amont de cette séquence des signaux de régulation.
- Dans ce fragment, les acides aminés sont désignés par des lettres selon le code suivant :
A = Alanine
C = Cystéine
D = Acide aspartique
E = Acide glutamique
F = Phénylalanine
G = Glycine
H = Histidine
I = Isoleucine
K = Lysine
L = Leucine
M = Méthionine
N = Asparagine
P = Proline
Q = Glutamine
R = Arginine
S = Sérine
T = Thréonine
V = Valine
W = Tryptophane
Y = Tyrosine - Sont successivement soulignées dans ce fragment les séquences -35 (TTGCTT) et -10 (TATAAT) de la séquence promotrice, et la séquence de shine et Dalgarno bien connue de l'homme de l'art.
- Le plasmide p380,1 a été ainsi obtenu.
-
- Le plasmide résultant est le plasmide p373,2 (figure 3).
-
- Le plasmide p398 ainsi obtenu comporte la séquence d'ADN particulièrement appréciée codant pour le peptide-signal de formule (1). Cette séquence est délimitée ci-dessus par deux flèches.
- Les essais réalisés ont porté sur 6 clones du plasmide p398 (Clones 2, 3, 5, 6, 7 et 8), les résultats étant appréciés par rapport au plasmide p373,2 qui contient une séquence d'ADN codant pour le précurseur naturel de l'hGH. Ils ont consisté à cultiver les couples hôte-vecteur concernés, préalablement préparés (cf. § 2.1), dans des conditions telles qu'une biomasse suffisante soit obtenue (cf. § 2.2), et que les cellules soumises à une induction produisent l'hGH (cf. § 2.3), à recueillir par choc osmotique les protéines contenues dans l'espace périplasmique (cf. § 2.4), à soumettre les bactéries à une lyse totale de manière à disposer d'un extrait protéique total (cf. § 2.5), à doser l'hGH périplasmique recueillie en 2.4 (cf. § 2.6) et à analyser par la technique dite du Western Blot les surnageants obtenus en 2.4 et en 2.5 (cf. § 2.7).
- Les couples hôte-vecteur ont été préparés selon les techniques de transformation bactérienne connues de l'homme de l'art et qui sont décrites notamment dans les ouvrages ci-après.
- Molecular cloning - A Laboratory Manual - T. Maniatis E.F., Fritsch and J. Sambrook - Cold Spring Harbor Laboratory - 1982.
- Experiments in Molecular Genetics - J.H. MILLER - Cold Spring Harbor Laboratory - 1972. - Une colonie isolée obtenue sur milieu solide, (milieu LB + agar-agar) a été mise en suspension dans 5 ml d'un milieu (milieu LB).
- Le milieu LB utilisé a les caractéristiques ci-après :
- ses composants introduits avant autoclavage sont :. de la Bactotryptone 10 g . de l'extrait de levure 5 g . du chlorure de sodium 5 g . de l'eau distillée qsp 1 l
- de l'ampicilline est ajoutée après autoclavage à raison de 100 µg/ml - La suspension préparée en a) a été placée à 37oC pendant 18 h de façon que la culture arrive en phase de croissance stationnaire. La suspension dense obtenue a été diluée en milieu LB de manière à obtenir une valeur de densité optique lue à 600 nm - DO à 600 nm - proche de 0,03 puis 25 ml de cette suspension bactérienne ont été mis en incubation à 37oC sous agitation jusqu'à obtention d'une DO à 600 nm voisine de 0,3.
- A la suspension bactérienne obtenue selon 2.2.b, on a ajouté de l'isopropyl-β-D-thiogalactose (ou IPTG) en quantité telle que sa concentration finale soit égale à 1 mM ; l'IPTG a été ici utilisé pour provoquer le déclenchement et le maintien de la synthèse du précurseur de l'hGH en neutralisant l'action du répresseur venant normalement se fixer sur l'opérateur-Lactose.
- La suspension additionnée d'IPTG a été maintenue sous agitation à 37oC pendant 2 h 30.
- On s'est référé au protocole décrit par N.G. NOSSAL et L.A. HEPPEL dans "The Journal of Biological Chemistry 241 (1966) 3055-3063".
- Un échantillon de la suspension, telle qu'obtenue en 2.3. après induction, a été prélevé et centrifugé 5 minutes à 6 000 g.
- Le culot a été repris dans un volume de tampon à pH 7 (solution A) (cf. ci-dessus) de façon que la suspension obtenue présente une DO à 600 nm voisine de 10.
- Le tampon utilisé a été préparé par addition dans de l'eau distillée de :
. tri(hydroxyméthyl)aminométhane-HCl ou tris-HCl ajouté de façon à avoir une concentration finale de 30 mM.
. acide éthylènediaminetétraacétique ou EDTA ajouté de façon à avoir une concentration finale de 1 mM. - La suspension obtenue en 2.4.a. a été centrifugée 5 minutes à 6 000 g.
- Le culot a été repris délicatement à volume constant dans une solution B préparée extemporanément et correspondant à la solution A à laquelle est ajouté du saccharose à raison de 15 g pour 100 ml.
- La suspension a été laissée 10 minutes à 20oC. Puis elle a été centrifugée 5 minutes à 6 000 g. Les tubes de centrifugation ont été placés dans de la glace fondante.
- On a éliminé avec soin le surnageant et on lui a substitué (à volume constant) de l'eau désionisée et portée préalablement à la température de la glace fondante.
- La suspension ainsi préparée (dont la DO à 600 nm était voisine de 10) a été laissée 5 minutes à 0oC.
- La suspension obtenue en 2.4.b. a été centrifugée 10 minutes à 18 000 g.
- Le surnageant qui contenait les protéines à localisation périplasmique a été recueilli.
- Un échantillon de la suspension, telle qu'obtenue en 2.3. après induction, a été prélevé et centrifugé dans un tube Eppendorf 5 minutes à 6 000 g.
- Le culot a été remis en suspension dans un volume de tampon tel que 1 ml de suspension présente une DO à 600 nm de 0,2.
- Le tampon a été préparé à partir d'un tampon concentré 2 fois comprenant une solution dans l'eau distillée :
- du Tris-HCl 0,125 M, pH 6,8 ;
- du dodécylsulfate de sodium (4 % (p/v)) ;
- du glycérol (20 % (p/v)) ;
- du β-mercaptoéthanol (10 % (p/v)) ;
- du bleu de bromophénol (0,02 % (v/v)). - Le tube a été placé 10 minutes au bain-marie réglé à 100oC puis la suspension a été centrifugée pendant 5 minutes à 6 000 g et le surnageant a été recueilli.
- Le surnageant obtenu en 2.4.c. a été soumis à une chromatographie de type liquide haute pression à l'aide d'un appareillage muni d'un système d'injection calibré et équipé d'un détecteur réglé sur 220 nm.
- On a utilisé :
. une colonne phase inverse C 8 -300 Angströms, en acier, de 10 cm de longueur et de 4,6 mm de diamètre interne (SYNCHROM référence C 8 R103-10),
. une phase mobile constituée par un gradient linéaire de 20 minutes passant respectivement de 70 volumes de solution S1 et 30 volumes de solution S2 à 40 volumes de solution S1 et 60 volumes de solution S2. - Les solutions S1 et S2 avaient les caractéristiques suivantes :
- . S1 = eau purifiée contenant 0,1 % (v/v) d'acide trifluoroacétique,
- . S2 = acétonitrile pour HPLC contenant 0,08 % (v/v) d'acide trifluoroacétique.
- Le débit était de 1 ml par minute.
- La densité optique des fractions a été mesurée et la quantité d'hGH périplasmique exprimée en microgrammes par ml de surnageant a été déterminée par comparaison avec une gamme étalon préétablie.
- Il a été procédé successivement aux opérations suivantes :
- séparation électrophorétique sur gel (selon le protocole décrit par LAEMMLI, U.K., Nature 227 (1970) 680-685), des différentes protéines contenues dans chacun des surnageants obtenus selon 2.4.c. et 2.5 ; le gel utilisé était un gel de polyacrylamide (15 % p/v) contenant 0,5 % de dodécylsulfate de sodium ;
- transfert desdites protéines contenues dans le gel sur un filtre de nitrocellulose (selon la technique de H. TOWBIN et al. Proc. Natl. Acad. Scie. USA 76 (1979) 4350-4354) ;
- immunodétection réalisée selon la technique de BURNETTE (W.W. BURNETTE Anal. Biochem. 112 (1981) 195-203) ; elle implique successivement :
. le rinçage du filtre de nitrocellulose 10 minutes avec un tampon A (Tris-HCl 10 mM, NaCl 170 mM, KI 1 mM) ;
. la mise en contact du filtre de nitrocellulose pendant 30 minutes à 37oC avec un tampon B (tampon A additionné de sérum-albumine bovine à raison de 3 g pour 100 ml) ;
. la mise en contact du filtre de nitrocellulose pendant 18 h à 20oC avec un immun-sérum (un anticorps polyclonal reconnaissant l'hGH mature et son précurseur) ;
. le rinçage du filtre de nitrocellulose avec le tampon B ;
. la mise en contact du filtre de nitrocellulose pendant 6 h à 20oC avec une solution de protéine A marquée à l'iode 125 à 0,1 microcurie par ml ;
. le rinçage du filtre avec le tampon A ;
. le séchage du filtre entre deux feuilles absorbantes ;
. la mise au contact d'un film radiographique ;
. la révélation du film. - Les résultats sont reportés dans le tableau ci-après :
PLASMIDE TESTE Témoin PLASMIDE 398 373,2 398,2 398,3 398,5 398,6 398,7 398,8 hGH périplasmique exprimé en microgrammes par ml de surnageant recueilli après choc osmotique et ramené à une turbidité telle que DO à 600 nm = 1 1,5 2,5 2,9 2,8 3,1 3,1 3,4 - Il apparaît clairement que le plasmide 398 permet une production périplasmique multipliée environ par deux par rapport à celle que permet le plasmide 373,2.
- L'analyse des films autoradiographiques révèle que le précurseur n'a pas été détecté dans les extraits obtenus après lyse totale des bactéries transformées avec le plasmide p398 alors qu'il est détecté dans les extraits obtenus après lyse totale des bactéries du clone p373,2. Ceci montre que le peptide-signal selon l'invention est à même de permettre, avec une grande efficacité, le franchissement par le précurseur de la membrane cytoplasmique et sa maturation concomitante.
- Ces résultats soulignent le grand intérêt de l'utilisation du peptide-signal de formule (1) selon l'invention pour la production périplasmique d'une protéine telle que l'hormone de croissance humaine.
- La souche décrite à l'exemple 1 a été utilisée.
- Un plasmide dénommé p400 a été construit à partir du plasmide p373,2. Il porte une séquence d'ADN codant pour le variant (Lys⁴⁷)HV2 décrit dans EP-A-0273800 et dont la formule est ci-après rappelée :
ILE THR TYR THR ASP CYS THR GLU SER GLY GLN ASN LEU CYS LEU CYS GLU GLY SER ASN VAL CYS GLY LYS GLY ASN LYS CYS ILE LEU GLY SER ASN GLY LYS GLY ASN GLN CYS VAL THR GLY GLU GLY THR PRO LYS PRO GLU SER HIS ASN ASN GLY ASP PHE GLU GLU ILE PRO GLU GLU TYR LEU GLN
précédée d'une séquence codant pour le peptide-signal selon l'invention de formule (1). -
- Le plasmide p373,2 a été soumis à une digestion par les enzymes de restriction NdeI et HindIII et le fragment NdeI-HindIII (fragment 6) contenant l'origine de réplication, tel que représenté à la figure 3, a été purifié.
-
- Ce fragment contient une séquence d'ADN préférée codant pour le peptide-signal de formule (1) délimitée par deux flèches et suivie de nucléotides correspondant aux 3 premiers codons du variant de l'hirudine (Lys⁴⁷)HV2.
- Les fragments 5, 6 et 7 ont été ligués ; le plasmide obtenu est le plasmide p400, représenté sur la figure 4.
- Le plasmide p400 a été introduit par transformation dans la souche bactérienne.
- Les essais ont été réalisés en parallèle sur deux clones distincts (clones p400,18 et p400,24) et conformément au mode opératoire décrit aux paragraphes 2.1 et 2.2 de l'exemple 1. Les cultures ont été induites selon la méthode indiquée au paragraphe 2.3 de l'exemple 1 mais en y apportant deux aménagements : l'induction a été initiée par l'addition d'IPTG lorsque la culture a atteint une DO à 600 nm d'environ 0,5 et elle a été maintenue pendant 3h30 pour un premier essai et 17 h pour un second essai.
- Après induction, les cellules ont été soumises à un choc osmotique (cf. § 2.4, exemple 1) et l'activité antithrombine de l'hirudine du surnageant recueilli a été mesurée.
- La détermination de cette activité a fait appel à la technique décrite par Markwardt, F. et al. (Thromb. Haemostas. 52 (19) 160-163) et précisée par Harvey, R.P. et al. (Proc. Natl. Acad. Sci. USA 83 (1986) 1084-1088).
- Le variant de l'hirudine obtenu à partir de l'un des clones a été purifié par chromatographie liquide haute pression et sa séquence NH₂-terminale a été déterminée.
- Les résultats sont reportés sur le tableau ci-après.
- Ils sont exprimés en unités antithrombine par ml de surnageant recueilli après choc osmotique et ramené à une turbidité telle que DO à 600 nm = 10.
Plasmide p 400 clone p400,18 clone p400,24 Durée de l'induction 3h.30 241 369 17h 1595 983 - Les valeurs d'activité antithrombine spécifique de l'hirudine connues étant comprises entre 13000 et 17700 unités antithrombine par mg d'hirudine (Loison, G. et al., Bio/Technology 6:72-77 (1988)), on peut en déduire que l'on a extrait après 17 h d'induction de 5 à 10 mg d'hirudine par litre de surnageant à DO à 600 nm = 1.
- Une telle quantité est bien plus élevée que celle que Dodt J. et al. FEBS, 202 (1986) 373-377 ont décrite avec le variant HV1 de l'hirudine produit de façon périplasmique dans une souche d'E. coli transformée à l'aide d'un plasmide portant une séquence codant pour un précurseur hybride de l'hirudine dont le peptide-signal est celui de la phosphatase alcaline.
- Il a d'autre part été constaté que l'hirudine produite par le clone p40C,18 a bien l'extrémité NH₂-terminale caractéristique du variant (Lys⁴⁷)HV2.
- Ces résultats montrent que le peptide-signal selon l'invention de formule 1 est approprié à une production périplasmique efficace d'un peptide tel que le variant (Lys⁴⁷)HV2 de l'hirudine.
- La souche décrite à l'exemple 1 a été utilisée.
- La stratégie mise en oeuvre pour construire le plasmide p460 qui comprend une séquence codant pour le variant (Lys⁴⁷) HV2 de l'hirudine décrit dans EP-A-0273800, précédée d'une séquence codant pour le peptide-signal selon l'invention de formule (2) :
M K S T L L L L F L L L C L P S W N A G A
fait appel à des fragments d'ADN obtenus à partir du plasmide p400,18 décrit dans l'exemple 2 et à un fragment obtenu après mutagénèse dirigée dans le phage M13mp19 commercialisé par AMERSHAM. -
- α) On a soumis le plasmide p400,18 à une digestion par les enzymes Pst et EcoRI. Le fragment Pst-Eco RI de 3868 pb contenant l'origine de réplication ci-après appelé fragment 8 (représenté sur la figure 5 par F8), a été purifié.
- β) On a soumis le plasmide p400,18 à une digestion par les enzymes NruI et Pst I. Le petit fragment NruI-PstI de 1062 pb contenant le promoteur, ci-après appelé fragment 9 (représenté sur la figure 5 par F9), a été purifié.
-
- α) Le fragment Xhoi-EcoRI de 650 pb, issu du plasmide p400,18 par digestion à l'aide des enzymes XhoI et EcoRI et purification, qui contient la séquence codant pour le peptide signal de formule (1) : a été inséré dans le polylinker (polysite de clonage) du phage M13mp19 (AMERSHAM) aux sites de restriction SalI/EcoRI. La ligation des sites XhoI et SalI a entraîné la disparition de ces deux sites.
- β) Un oligonucléotide de 63 nucléotides de séquence : a été synthétisé. Cette séquence code pour le peptide-signal de formule (2).
- On a utilisé pour construire un fragment muté, en ce qui concerne la séquence codant pour le peptide-signal, par rapport au fragment obtenu en α) la technique de mutagénèse dirigée in vitro, mise en oeuvre à l'aide du kit AMERSHAM 1523. Cette technique, décrite en détail dans le livret accompagnant ce kit consiste en l'introduction d'un fragment XhoI-EcoRI de 650 pb (cf paragraphe α) ci-dessus) dans la forme double brin du phage M13mp19, la purification de la forme simple brin de ce phage recombinant, l'hybridation de l'oligonucléotide de 63 nucléotides mentionné ci-dessus, l'action de DNA polymérase de Klenoω puis de ligase de T4 afin d'obtenir une forme circulaire double brin du phage recombinant dont l'un des brins porte la mutation souhaitée.
- γ) Le phage contenant le fragment d'ADN muté a été soumis à une digestion par les enzymes NruI et EcoRI. Le fragment NruI-EcoRI contenant la séquence codant pour le peptide-signal de formule (2) et celle codant pour le variant (Lys⁴⁷) HV2 de l'hirudine, appelé ci-après fragment 10 (représenté sur la figure 5 par F 10) a été purifié.
- Les fragments 8, 9 et 10 ont été ligués ; le plasmide obtenu est le plasmide p460, représenté sur la figure 5.
- Le plasmide p460 a été introduit par transformation dans la souche bactérienne décrite à l'exemple 1.
- Les essais ont été réalisés en parallèle sur deux clones distincts (clones p460,2 et p460,4) dans lesquels on a vérifié la présence de la séquence de 63 nucléotides mentionnée ci-dessus, et sur le clone témoin p400,18, conformément au mode opératoire décrit aux paragraphes 2.1 et 2.2 de l'exemple 1. Les cultures ont été induites selon la méthode indiquée au paragraphe 2.3 de l'exemple 1 mais en y apportant deux aménagements : l'induction a été initiée par l'addition d'IPTG lorsque la culture a atteint une DO à 600 nm d'environ 0,5 et elle a été maintenue pendant 2 heures.
- Après induction, les cellules ont été soumises à un choc osmotique (cf. paragraphe 2.4, exemple 1) et le variant (Lys⁴⁷) HV2 de l'hirudine ainsi libéré dans le surnageant de culture a été dosé par HPLC.
- Le surnageant obtenu à l'issue du choc osmotique a été soumis à une chromatographie liquide haute pression HPLC, à l'aide d'un appareillage muni d'un système d'injection calibré et équipé d'un détecteur réglé sur 220 nm.
- On a utilisé :
. Une colonne phase inverse C 8 -300 Ao, en acier, de 7,5 cm de longueur et de 4,6 mm de diamètre interne (BECKMAN Ultrapore référence 238 771). . Une phase mobile constituée par un gradient linéaire de 10 minutes, passant respectivement de 85 volumes de solution S1 et 15 volumes de solution S2 à 50 volumes de solution S1 et 50 volumes de solution S2. - Les solutions S1 et S2 avaient les caractéristiques suivantes :
- . S1 = eau purifiée contenant 0,1% (v/v) d'acide trifluoroacétique.
- . S2 = acétonitrile pour HPLC contenant 0,08% (v/v) d'acide trifluoroacétique.
- Le débit était de 2 ml par minute.
- La densité optique des fractions a été mesurée et la quantité de variant (Lys⁴⁷) HV2 périplasmique, exprimée en milligramme par litre de surnageant, a été déterminée par comparaison avec une solution standard de variant (Lys⁴⁷) HV2.
- Les résultats sont reportés dans les tableaux ci-après. Ils sont exprimés en mg/l de surnageant recueilli à l'issue du choc osmotique et ramené à une densité optique à 600 nm de l.
PLASMIDE TESTE 1er essai Témoin 400,18 460,2 Variant (Lys⁴⁷) HV2 de l'hirudine en mg/l de surnageant recueilli à l'issue du choc osmotique et ramené à DO à 600 nm = 1 1,3 3,1 PLASMIDE TESTE 2ème essai Témoin 400,18 460,2 460,4 Variant (Lys⁴⁷) HV2 de l'hirudine en mg/l de surnageant recueilli à l'issue du choc osmotique et ramené à DO à 600 nm = 1 1,3 5,2 4,5 - Il apparaît à la lecture des tableaux ci-dessus que les plasmides 460,2 et 460,4 permettent une production périplasmique de variant (Lys⁴⁷) HV2 de l'hirudine, nettement plus importante que celle obtenue à l'aide du plasmide 400,18.
- Ces résultats montrent que le peptide-signal selon l'invention de formule (2) est particulièrement appropriée à une production périplasmique efficace d'un peptide tel que le variant (Lys⁴⁷) HV2 de l'hirudine.
Claims (15)
MXKSTLLLLFLLLCLPSWNAGA
où
A = Alanine
C = Cystéine
F = Phénylalanine
G = Glycine
K = Lysine
L = Leucine
M = Méthionine
N = Asparagine
P = Proline
S = Sérine
T = Thréonine
W = Tryptophane
et X représente une liaison directe entre M et K, un acide aminé choisi dans l'ensemble des 20 acides aminés du code génétique ou un peptide comportant 2, 3 ou 4 acides aminés choisis chacun indépendamment l'un de l'autre dans l'ensemble des 20 acides aminés du code génétique.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LV960298A LV5810B4 (lv) | 1988-08-24 | 1996-07-22 | Signalpeptids un to kodejosa DNS seciba |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8811188A FR2636643B1 (fr) | 1988-08-24 | 1988-08-24 | Peptide-signal, sequences d'adn codant pour celui-ci, vecteurs d'expression portant l'une de ces sequences et procede de production periplasmique d'un polypeptide |
FR8811188 | 1988-08-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0356335A1 true EP0356335A1 (fr) | 1990-02-28 |
EP0356335B1 EP0356335B1 (fr) | 1995-05-10 |
Family
ID=9369498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89402328A Expired - Lifetime EP0356335B1 (fr) | 1988-08-24 | 1989-08-23 | Peptide signal et séquences d'ADN codant pour celui-ci |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0356335B1 (fr) |
JP (1) | JP2535076B2 (fr) |
AT (1) | ATE122398T1 (fr) |
CA (1) | CA1334944C (fr) |
DE (1) | DE68922549T2 (fr) |
ES (1) | ES2074087T3 (fr) |
FR (1) | FR2636643B1 (fr) |
GR (1) | GR3016981T3 (fr) |
PT (1) | PT91511B (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0448093A2 (fr) * | 1990-03-22 | 1991-09-25 | Consortium für elektrochemische Industrie GmbH | Sécrétion des dérivés de hirudine |
US6514730B1 (en) | 1991-03-21 | 2003-02-04 | Consortium für elektrochemische Industrie GmbH | Secretion of hirudin derivatives |
WO2011114063A2 (fr) | 2010-03-17 | 2011-09-22 | Lfb Biotechnologies | Nouveau peptide signal, et son utilisation pour la production de proteines recombinantes |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004510410A (ja) * | 2000-06-05 | 2004-04-08 | コリクサ コーポレイション | 宿主細胞由来組換えタンパク質の分泌を促進するリーダーペプチド |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0170266A2 (fr) * | 1984-07-30 | 1986-02-05 | Wakunaga Seiyaku Kabushiki Kaisha | Procédé de préparation de protéine et vecteur, ADN recombinant et cellule transformée utilisés à cette fin |
EP0177343A1 (fr) * | 1984-10-05 | 1986-04-09 | Genentech, Inc. | ADN, cultures de cellules et méthodes pour sécréter des protéines hétérologiques et récupérer des protéines périplasmiques |
-
1988
- 1988-08-24 FR FR8811188A patent/FR2636643B1/fr not_active Expired - Lifetime
-
1989
- 1989-08-22 PT PT91511A patent/PT91511B/pt not_active IP Right Cessation
- 1989-08-23 DE DE68922549T patent/DE68922549T2/de not_active Expired - Lifetime
- 1989-08-23 CA CA000609139A patent/CA1334944C/fr not_active Expired - Lifetime
- 1989-08-23 EP EP89402328A patent/EP0356335B1/fr not_active Expired - Lifetime
- 1989-08-23 AT AT89402328T patent/ATE122398T1/de not_active IP Right Cessation
- 1989-08-23 ES ES89402328T patent/ES2074087T3/es not_active Expired - Lifetime
- 1989-08-24 JP JP1220106A patent/JP2535076B2/ja not_active Expired - Lifetime
-
1995
- 1995-08-02 GR GR950402097T patent/GR3016981T3/el unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0170266A2 (fr) * | 1984-07-30 | 1986-02-05 | Wakunaga Seiyaku Kabushiki Kaisha | Procédé de préparation de protéine et vecteur, ADN recombinant et cellule transformée utilisés à cette fin |
EP0177343A1 (fr) * | 1984-10-05 | 1986-04-09 | Genentech, Inc. | ADN, cultures de cellules et méthodes pour sécréter des protéines hétérologiques et récupérer des protéines périplasmiques |
Non-Patent Citations (4)
Title |
---|
EUR. J. BIOCHEM., vol. 133, 1983, pages 17-21, FEBS; G. VON HEIJNE: "Patterns of amino acids near signal-sequence cleavage sites" * |
GENE, vol. 39, 1985, pages 247-254, Elsevier Science Publishers; G.L. GRAY et al.: "Periplasmic production of correctly processed human growth hormone in Escherichia coli: natural and bacterial signal sequences are interchangeable" * |
NUCLEIC ACIDS RESEARCH, vol. 12, no. 13, juillet 1984, pages 5145-5164, IRL Press Limited, Oxford, GB; M.E.E. WATSON: "Compilation of published signal sequences" * |
THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 262, no. 13, 5 mai 1987, pages 6328-6333, The American Society of Biological Chemists, Inc., Baltimore, MD., US; L.T. DUONG et al.: "Synthetic signal peptide and analogs display different activities in mammalian and plant in vitro secretion systems" * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0448093A2 (fr) * | 1990-03-22 | 1991-09-25 | Consortium für elektrochemische Industrie GmbH | Sécrétion des dérivés de hirudine |
EP0448093A3 (en) * | 1990-03-22 | 1991-12-04 | Consortium Fuer Elektrochemische Industrie Gmbh | Secretion of hirudin derivatives |
JPH04211391A (ja) * | 1990-03-22 | 1992-08-03 | Consortium Elektrochem Ind Gmbh | ヒルジン誘導体、その取得法、組換えdna及び組換えベクター |
US5919895A (en) * | 1990-03-22 | 1999-07-06 | Consortium Fur Elektrochemische Industrie Gmbh | Secretion of hirudin derivatives |
US6514730B1 (en) | 1991-03-21 | 2003-02-04 | Consortium für elektrochemische Industrie GmbH | Secretion of hirudin derivatives |
WO2011114063A2 (fr) | 2010-03-17 | 2011-09-22 | Lfb Biotechnologies | Nouveau peptide signal, et son utilisation pour la production de proteines recombinantes |
US8883450B2 (en) | 2010-03-17 | 2014-11-11 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | Signal peptide, and use thereof for producing recombinant proteins |
Also Published As
Publication number | Publication date |
---|---|
PT91511A (pt) | 1990-03-08 |
ATE122398T1 (de) | 1995-05-15 |
JP2535076B2 (ja) | 1996-09-18 |
FR2636643B1 (fr) | 1990-12-28 |
CA1334944C (fr) | 1995-03-28 |
EP0356335B1 (fr) | 1995-05-10 |
FR2636643A1 (fr) | 1990-03-23 |
GR3016981T3 (en) | 1995-11-30 |
PT91511B (pt) | 1995-07-18 |
DE68922549D1 (de) | 1995-06-14 |
ES2074087T3 (es) | 1995-09-01 |
DE68922549T2 (de) | 1996-01-18 |
JPH02257883A (ja) | 1990-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0236210B1 (fr) | Procédé de préparation de la sérum albumine humaine mature | |
CA1341501C (fr) | Vecteurs d'expression et de secretion de l'hirudine par les levures transformees | |
JP2771204B2 (ja) | 遺伝子工学的手法による抗体の製造法 | |
FR2649991A2 (fr) | Utilisation de derives stables du plasmide pkd1 pour l'expression et la secretion de proteines heterologues dans les levures du genre kluyveromyces | |
FR2530662A1 (fr) | Nouveaux interferons animaux, leur procede de production et composition les contenant | |
EP0408461B1 (fr) | Protéine à activité urate oxydase, gène recombinant codant pour celle-ci, vecteur d'expression, micro-organismes et cellules transformées | |
Guisez et al. | Production and purification of recombinant human interleukin‐6 secreted by the yeast Saccharomyces cerevisiae | |
EP0356335B1 (fr) | Peptide signal et séquences d'ADN codant pour celui-ci | |
FR2619719A1 (fr) | Procede d'obtention d'interleukine-2 a partir de cellules eucaryotes, vecteurs necessaires a sa mise en oeuvre et lignees cellulaires hautement productrices | |
EP0407259A1 (fr) | Protéines hybrides entre une enzyme extracytoplasmique et au moins une autre protéine, leur procédé de préparation, ainsi que leurs applications | |
EP0167420A1 (fr) | Vecteurs d'expression du facteur IX, cellules transformées par ces vecteurs et procédé de préparation du facteur IX | |
Barthélémy et al. | Purification and biochemical properties of pitton's type 2 beta-lactamase (SHV 1) | |
CA1262695A (fr) | Procede de preparation microbiologique de la serum-albumine humaine | |
Emerick et al. | Expression of a β-lactamase preproinsulin fusion protein in Escherichia coli | |
JPH0779701B2 (ja) | 成長ホルモン放出因子を含むハイブリドポリペプチドをコ−ドする遺伝子 | |
EP0146462B1 (fr) | Vecteurs de clonage et d'expression de l'interféron-y, bactéries transformées et procédé de préparation de l'interféron-y | |
EP0360641B1 (fr) | Séquence d'ADN participant à la régulation de l'expression d'une séquence d'ADN codant pour un précurseur d'un polypeptide, vecteurs d'expression et procédé de production périplasmique du polypeptide | |
US5284768A (en) | Signal peptide, DNA sequences coding for the latter, expression vectors carrying one of these sequences, gram-negative bacteria transformed by these vectors, and process for the periplasmic production of a polypeptide | |
EP0245138B1 (fr) | Procédé microbiologique pour l'obtention d'une protéine par culture d'une souche bactérienne mutante | |
EP0435776A1 (fr) | Promoteur artificiel pour l'expression de protéines dans la levure | |
US5279947A (en) | DNA sequence participating in the regulation of the expression of a DNA sequence coding for a precursor of a polypeptide, expression vectors and process for the periplasmic production of the polypeptide | |
FR2704237A1 (fr) | Procédé d'adressage dans les levures. | |
JP3003135B2 (ja) | ポリペプチドの発現ベクター及びポリペプチドの製造法 | |
FR2667612A1 (fr) | Production stable de polypeptide actif m-csf. | |
WO1992005253A1 (fr) | Procede microbiologique de preparation de l'apolipoproteine aiv humaine ou de derives de celle-ci |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19900731 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ELF SANOFI |
|
17Q | First examination report despatched |
Effective date: 19930701 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SANOFI |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 122398 Country of ref document: AT Date of ref document: 19950515 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 68922549 Country of ref document: DE Date of ref document: 19950614 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950614 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2074087 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3016981 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Free format text: SANOFI TRANSFER- SANOFI-SYNTHELABO |
|
NLS | Nl: assignments of ep-patents |
Owner name: SANOFI-SYNTHELABO |
|
BECA | Be: change of holder's address |
Free format text: 20000928 *SANOFI-SYNTHELABO:174 AVENUE DE FRANCE, 75013 PARIS |
|
BECH | Be: change of holder |
Free format text: 20000928 *SANOFI-SYNTHELABO:174 AVENUE DE FRANCE, 75013 PARIS |
|
BECN | Be: change of holder's name |
Effective date: 20000928 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CA |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: SANOFI-AVENTIS Free format text: SANOFI-SYNTHELABO#174, AVENUE DE FRANCE#75013 PARIS (FR) -TRANSFER TO- SANOFI-AVENTIS#174, AVENUE DE FRANCE#75013 PARIS (FR) |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: SANOFI -AVENTIS |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20080918 Year of fee payment: 20 Ref country code: ES Payment date: 20080922 Year of fee payment: 20 Ref country code: LU Payment date: 20080902 Year of fee payment: 20 Ref country code: DE Payment date: 20080905 Year of fee payment: 20 Ref country code: NL Payment date: 20080803 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080818 Year of fee payment: 20 Ref country code: AT Payment date: 20080814 Year of fee payment: 20 Ref country code: IT Payment date: 20080827 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080903 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20080807 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20080716 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20090119 Year of fee payment: 20 |
|
BE20 | Be: patent expired |
Owner name: S.A. *SANOFI-AVENTIS Effective date: 20090823 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20090822 |
|
EUG | Se: european patent has lapsed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090824 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20090823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20090823 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20090822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20090824 |