WO1992005253A1 - Procede microbiologique de preparation de l'apolipoproteine aiv humaine ou de derives de celle-ci - Google Patents

Procede microbiologique de preparation de l'apolipoproteine aiv humaine ou de derives de celle-ci Download PDF

Info

Publication number
WO1992005253A1
WO1992005253A1 PCT/FR1991/000732 FR9100732W WO9205253A1 WO 1992005253 A1 WO1992005253 A1 WO 1992005253A1 FR 9100732 W FR9100732 W FR 9100732W WO 9205253 A1 WO9205253 A1 WO 9205253A1
Authority
WO
WIPO (PCT)
Prior art keywords
promoter
gene
protein
plasmid
apolipoprotein
Prior art date
Application number
PCT/FR1991/000732
Other languages
English (en)
Inventor
Patrice Denefle
Martine Latta
Jean-François Mayaux
Anne Murry-Brelier
Original Assignee
Rhone-Poulenc Rorer S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone-Poulenc Rorer S.A. filed Critical Rhone-Poulenc Rorer S.A.
Publication of WO1992005253A1 publication Critical patent/WO1992005253A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/775Apolipopeptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli

Definitions

  • the present invention relates to a new method of protein synthesis. More particularly, the invention relates to a method implementing the techniques of genetic manipulation in vitro, to obtain an arrangement of sequences of deoxyribonucleic acids allowing the biosynthesis of human apolipoprotein AIV or of its derivatives by a bacterium.
  • Apolipoprotein AIV (apoAIV) is a protein made up of 376 amino acids, with a molecular weight of 46,000 daltons. It is a major component of the chylomicrons secreted in the lymph, but it has the distinction of being mainly in a form not associated with lipoproteins in the plasma (RB Weinberg et al., 1983, J. Lipid. Research, 24: 52- 59).
  • apoAIV is polymorphic, although the nature of this polymorphism is still unknown (G. Utermann et al., 1982, J. Biol. Chem. 257: 501-507).
  • the physiological role of apoAIV also remains relatively unknown.
  • LCAT lexathin-cholesterol-acyltransferase
  • rapoAIV most likely acts as a mediator of reverse cholesterol transport.
  • the study and characterization of this apolipoprotein appear very interesting in order to elucidate the factors influencing the reverse transport of cnolesterol, and this with a view to new therapies.
  • the possibility of producing significant quantities of apoAIV constitutes a necessity.
  • the study and the obtaining of molecules derived from apoAIV having for example an activity stimulating the efflux of cellular cholesterol, take all their interest, in particular if these molecules can allow for example to slow down the formation of atheroma plaques, and therefore reduce the risk of incidence of coronary accidents.
  • molecules derived from apoAIV is understood to mean molecules obtained from apoAIV by structural modifications, and in particular by derivative mutagenesis, introducing mutations, deletions or substitutions of residues.
  • a protein devoid of the serum contaminants which are obtained by purification.
  • a soluble protein is obtained which is pos ⁇ sible to purify without any prior denaturation step, and without recourse to extractions by affinity, for example with respect to intralipids.
  • the present invention therefore relates to a microbiological process for the preparation of the apolipoprotein ATV or derivatives thereof, according to which a bacterium capable of ensuring the maintenance of a plasmid containing a promoter, the binding site of the ribosomes of an efficiently translated gene, and the sequence coding for human apolipoprotein ATV or one of its derivatives, preceded by a translation start codon.
  • the host bacterium used additionally contains a heterologous gene coding for said specific RNA polymerase, either via an integrated defective bacteriophage, or directly on the plasmid used.
  • the T7 system can be used, that is to say a promoter derived from a gene of bacteriophage T7, which is specifically recognized by the RNA polymerase of bacteriophage T7.
  • the promoter of the T7 bacteriophage gene 10 gives in particular very good results.
  • a specific inhibitor of the start-up transcription complex of the chosen host bacterium is added to the culture medium, shortly after induction of the expression.
  • This makes it possible to transcribe, to the exclusion of all others, the gene which is placed under the control of the promoter which does not depend on the RNA polymerase of the host.
  • the production of stress proteins among which the protease of the Ion gene product, which could be induced by the expression of a heterologous gene, is prevented during the entire production phase of this heterologous protein.
  • the method of the invention is implemented by means of a bacterium chosen from the E. coli strains.
  • the subject of the invention is also the plasmids containing a promoter, the ribosome binding site of a gene efficiently translated, and the sequence coding for the apolipoprotein ATV human or a derivative thereof, preceded by a translation start codon. More particularly, the plasmids according to the invention additionally contain the gene coding for the RNA polymerase specific for the chosen promoter.
  • Another subject of the invention relates to bacteria which contain a plasmid of the invention, and in particular bacteria of the genus E.coli.
  • the human apoAIV sequence used in the invention was obtained from a genomic clone containing the Kpnl-HindlII fragment of the human apoAIV gene sequence, which contains the end of intron 2, the all of exon 3 as well as the 3 'untranslated sequence. This clone therefore did not contain, in particular, the first two exons of the human apoAIV gene (Elshourbagy et al. J.B.C. (1987)
  • the invention results in particular from the chemical synthesis of the 5 ′ end of the apoAIV sequence, so that this synthetic fragment contains the codons corresponding to the part of the mature protein encoded by the first two exons of the human gene, and also the first nucleotides of the 5 'region of exon 3 extending to the BstEII site.
  • the invention also results from the binding of this synthetic fragment to a DNA fragment containing the remainder of the apolipoprotein AIV gene sequence located after the BstEII site, used to effect the junction to the nearest nucleotide, then finally the binding of this coding sequence to signals permitting an important and regulated expression in a bacterium.
  • a host bacterium such as E.
  • apolipoprotein ATV apolipoprotein ATV
  • the different methodological approaches described in this invention clearly demonstrate that the level of production of apoAlV can vary considerably depending on the method used.
  • the invention also consists in the description of a process making it possible to obtain an accumulation in the bacterium of very large quantities of the apolipo ⁇ protein ATV in a soluble form. It has indeed been reported (RG Schoner et al. (1985) Biotechnology 3: 151-154) that the heterologous proteins synthesized at high level in E. coli are found in the cell in the form of insoluble aggregates. According to the present invention, apoAIV is produced in a non-aggregated form.
  • the Applicant has also developed a process for purifying the apolipo ⁇ human AIV protein synthesized in E. coli, using rapid methods which can be applied on an industrial scale.
  • the present invention therefore also relates to a process making it possible to purify under native conditions, that is to say without any denaturation step, the human apolipoprotein AIV produced by microbiological route, so that the protein thus produced has an identical three-dimensional structure to that of the native protein of natural origin.
  • the advantage of a system for expressing a recombinant protein is, in addition to the possibilities of being able to produce large quantities of the protein, also to be able to create, express and produce a large quantity of derivatives of this protein, corresponding either to natural variants of the protein that we have been able to identify and characterize from human serum from various clinical studies, or even to derivatives completely originals. All these derivatives can then be used directly to mimic or antagonize the effect of the protein of interest. They can also make it possible, by the comparative study of their intrinsic biological properties, to define and localize in the protein the various domains or polypeptide segments carrying a biological activity characteristic of the protein studied.
  • the present invention is therefore perfectly applicable to the production of apoAIV derivatives.
  • Figure 1 Nucleotide sequence of apoAIV produced in the context of the present invention.
  • Figure 2 Sequence of oligonucleotides used to prepare the apoAIV sequence.
  • Figure 3 Structure and construction of the plasmid pXL1697.
  • Figure 4 Structure of plasmid pXL1872.
  • FIG. 5 Structure of plasmid pXL534.
  • Figure 6 Structure of plasmids pXL1698 and pXL1699.
  • Figure 7 Structure of plasmids pXL1734 and ⁇ XL1735.
  • Figure 8 Structure of plasmid pXL1867.
  • the oligonucleotide phosphorylation buffer has the following composition: 5 mM Tris-HCl, 1 mM MgCl 2 , 0.6 M DTT, pH 7.5.
  • the nucleotide sequence of the apolipoprotein ATV gene described in the present invention differs from the previously published cDNA sequences (see in particular the list of cDNA sequences published by CY. Yang, ZW. Gu, I. Chong, W. Xiong, M Rosseneue, H. Yang, B. Lee, AM Gotto and L. Chan, 1989, BBA, 1002: 231-237).
  • the sequence coding for the signal peptide of the protein is absent, and, upstream of the first codon of the mature protein, a start codon for ATG translation has been placed (FIG. 1). This therefore introduces a supernumerary methionine upstream of the sequence of the mature protein, and thus makes it possible to express the gene coding only for the mature part of the protein.
  • this nucleotide sequence of the apolipoprotein AIV was obtained in an original way by the assembly of four oligonucleotides, represented in FIG. 2, which have been synthesized by chemical means and whose size is understood between 86 and 107 mer.
  • cohesive ends Xbal and EcoRI have been defined in order to allow assembly in two stages of the complete sequence of the apolipoprotein ATV.
  • the four oligodeoxynucleotides which were used to assemble the apolipoprotein ATV gene were synthesized by the phosphoramidite method (LJ. Bride and MH Caruthers (1983) Tetrahedron Lett. 24: 245) using the Bioresearch synthesizer. (Model 8600) according to the manufacturers' advice.
  • the oligonucleotides were purified on 15% acrylamide gel. Their sequence is given in Figure 2.
  • oligonucleotides were phosphorylated by treatment with T4 DNA kinase. Oligonucleotides A and C were paired with oligonucleotides B and D respectively under stoichiometric conditions. The hybridization of the oligonucleotides was carried out in Eppendorf tubes immersed in a beaker containing approximately 100 ml of water brought to 80 ° C. which is left to return to laboratory temperature.
  • the AB and CD fragments were ligated in the presence of T4 DNA ligase with the replicative form of the phage M13mpl0 previously digested with the Xbal and EcoRI enzymes.
  • pXL1695 The replicative form of the recombinant bacteriophage obtained called pXL1695 (M13mplOABCD) was used to transfect TG1 bacteria made competent by the CaCU method.
  • This replicon pXL1695 was purified, either in its form of single-stranded DNA and its sequence was verified, or in its form of replicative double-stranded DNA for the continuation of the constructions.
  • pXL1695 M13mpl0ABCD
  • pXL1694 a plasmid carrying a KnpI-HindIII fragment of approximately 3 kb containing the entire third exon of the apoAIV gene
  • Xbal and BstEII on the one hand
  • EcoRI and BstEII on the other.
  • pXL1695 a 167 base pair fragment was purified on acrylamide gel.
  • the replicative form of the vector M13mpl8amIV was digested with Xbal and EcoRI and a fragment of approximately 7 kb was purified on agarose gel.
  • the three fragments were pooled and ligated in the presence of T4 DNA ligase.
  • pXL1696 After transfection of TG1, clones containing the replicative form called pXL1696 were obtained. The complete coding sequence of the Xbal-EcoRI fragment thus cloned in pXL1696 was checked. This fragment was then re-extracted from pXL1696 and ligated in the presence of an EcoRI-HindUI fragment, of approximately 3 kb originating from pXL1694 and bearing in particular the end of exon 3 of the human apoAIV gene, and in the presence also of the vector M13mpl9, cut by the enzymes Xbal and HindIII.
  • the recombinant vector thus obtained, pXL1697 carries the entire coding sequence of apoAIV (1132 bp) as well as a genomic fragment of approximately 2 kb corresponding to intron 3 of the apoAIV gene (FIG. 3). .
  • this system includes:
  • the plasmids containing the Ptrp promoter must be propagated in E. coli strains containing the wild repressor gene trpR so that the Ptrp promoter does not express itself constitutively.
  • this system includes:
  • the right operator / promoter (O / PR) region of the bacteriophage lambda which allows efficient transcription of the distal DNA into messenger RNA, this transcription being modifiable by the presence of the repressor gene cl of the bacteriophage lambda,
  • the promoter region (PT7) of the bacteriophage T7 gene 10 which allows efficient transcription of the distal DNA into messenger RNA, this transcription being specifically ensured by the RNA polymerase of the bacteriophage T7, the gene 1 coding for the RNA bacteriophage T7 polymerase under the control of the lacUV5 promoter, cloned into the BamHI site of bacteriophage lambda D69, itself inserted into the genome of the strain of E. coli BL21 (F.W. Studier and B.A. Moffat, J. Mol. Biol. (1986) 189: 113-130),
  • a gene placed under the control of the PT7 promoter is therefore transcribed in the presence of T7 RNA polymerase, which is itself expressed in the presence of an inducer of the lacUV5 promoter, for example IPTG (Isopropyl- ⁇ -D-thiogalactopyranoside).
  • an inducer of the lacUV5 promoter for example IPTG (Isopropyl- ⁇ -D-thiogalactopyranoside).
  • IPTG Isopropyl- ⁇ -D-thiogalactopyranoside.
  • the presence of a plasmid (pL sS or pLysE) coding for the lysozyme of the bacteriophage T7 also makes it possible to maintain a better repression of the system in the absence of IPTG, by inhibition of the T7 RNA polymerase.
  • the present invention also relates to an original bacterial expression system in the sense that an antibiotic (rifampicin) is added shortly after induction of the expression of the protein of interest.
  • This antibiotic specifically inhibits RNA polymerase from the host without affecting the activity of T7 RNA polymerase, and therefore makes it possible to transcribe, to the exclusion of all others, the gene which is placed under the control of a T7 RNA polymerase dependent promoter.
  • the plasmid used for the construction of the apoAIV expression vector is the plasmid "pXL276", used for the production in E. coli of recombinant human serum albumin (see patent EP 198745).
  • This plasmid was digested with the EcoRV enzyme and then a deletion was obtained by the action of the exonuclease Bal31. This deletion covers a region between nucleotides 2442 and 4577 of the sequence of "PXL276", this region not being not essential in the expression of albinine. In this deletion was inserted a BamHI connector (5'-CGCGGATCCGCG-3 '). The resulting plasmid was called "pXL534", shown in Figure 5.
  • pXL1699 The plasmid thus constructed, called “pXL1699” is represented in FIG. 6. On this plasmid, it has been verified that the nucleotide sequence of the gene coding for apoAIV is identical to that expected.
  • the plasmid used for the construction is the vector pXL1029, used moreover for the production of recombinant human IL-l ⁇ and the construction of which has been described (G. Jung, P. Denèfle, J. Becquart and FF Mayaux, Ann. Inst. Pasteur / Microbiol. (1988) 139: 129-146).
  • An EcoRI-Ndel fragment of 1226 bp as well as an EcoRI-Hindi ⁇ fragment of 3125 base pairs both originating from the plasmid pXL1029 were ligated with the approximately 3 kb Ndel-HindIII fragment carrying in particular the coding sequence of the apoAIV and from pXL1697.
  • the vector obtained is called pXL1698 ( Figure 6).
  • the vector pXL1697 was linearized by Fokl, then its cohesive ends were filled with the Klenow fragment of DNA polymerase I from E. coli (PoIIK), the fragment obtained was again cut by Ndel and a 1.3 kb fragment was purified and then inserted into pET3a, itself cut with BamHI, filled with PoIIK, and cross-cut with Ndel.
  • the resulting expression vector, pXL1735 therefore contains, in addition to the coding sequence of apolipoprotein AIV, the first 160 base pairs of intron 3 originating from the genomic sequence of apolipoprotein AIV.
  • the strain which is derived from the E.coli B 54125 strain (collection of the Pasteur Institute) is used by transformation with the plasmid "pXL1699".
  • This plamide contains the functional gene for the apolipoprotein ATV under the control of the promoter of the tryptophan O Ptrp operon.
  • the expression of apolipoprotein ATV is therefore depressed when the bacterium is cultivated in the absence of tryptophane or in the presence of an analog such as 3- ⁇ -indolacrylic acid (Nichols B.P. and
  • This preculture is then used to inoculate to 1/100 a liter of the same synthetic medium, this time no longer containing tryptophan.
  • the production culture is stirred in an Erlenmeyer flask at 37 ° C. with monitoring of cell multiplication during the time required to reach the end of the exponential growth phase (approximately 6 hours).
  • the turbidity of the culture is then between 3 and 4 optical density units at 610 nm.
  • a 46,000 mobility band can be demonstrated in the bacterial extracts after electrophoresis on a polyacrylamide-SDS gel by immunodetection with a polyclonal rabbit serum directed against human apoAIV, after electrotransfer of this gel onto a nitrocellulose membrane. This result indicates that the plasmid pXL1699 makes it possible to express human rapoAIV specifically.
  • apoAIV being in this case under the control of the O / PR promoter, which is repressed by the product of the cits gene which is thermosensitive, it is therefore possible at first to multiply the bacteria at a temperature which is not permissive for l expression of the protein of interest and then induce the depression of the production of this protein by raising the temperature.
  • the bacteria are cultivated in LB medium containing an antibiotic, ampicillin, which makes it possible to select those which contain the expression plasmid.
  • the culture is maintained at 30 ° C. until the optical density reaches the value of 0.5 units at 610 nm.
  • the bacteria are then cultured at 42 ° C for 90 min.
  • the turbidity of the culture is then between 3 and 4 optical density units at 610 nm.
  • a 46,000 mobility band can be demonstrated in the bacterial extracts after electrophoresis on a polyacrylamide-SDS gel by immunodetection with a polyclonal rabbit serum directed against human apoAIV, after electrotransfer of this gel onto a nitrocellulose membrane. .
  • This result indicates that the plasmid pXL1698 makes it possible to express human apoAIV specifically.
  • the strain BL21 DE3 containing an apolipoprotein ATV expression plasmid under the control of the promoter of the bacteriophage T7 gene 10 is used.
  • the culture is stirred at 37 ° C to an optical density (measured at 610 nm) of 0.5.
  • IPTG is then added to the final concentration of 1 mM and the cells induced for the expression of T7 RNA polymerase are incubated for 90 or 180 min.
  • Analysis of the bacterial extracts by electrophoresis gel colored with coomassian blue reveals a very significant accumulation (10-20% of the total proteins) in the extracts of the 90 min cultures, of a polypeptide of 46,000 daltons corresponding to apolipoprotein ATV.
  • this protein is very difficult to demonstrate in the samples corresponding to 180 min of culture, which seems to indicate that the protein is effectively produced in this system, that it can accumulate during the first phase of production but that this accumulation induces proteolytic activity in the bacteria, which is then able to degrade the protein of interest during the second phase of production.
  • the protein can be stabilized by adding rifampicin during the production phase.
  • the only mRNAs that can then be neosynthesized are those that do not depend on E. coli RNA polymerase.
  • the cells which then produce only the single mRNA of apoAIV with the exception of all the others are incubated between 90 and 180 min at 37 ° C.
  • the recombinant human anoAIV produced represents 20 to 30% of the total proteins produced by the bacteria.
  • the protein is thus accumulated without degradation in the bacteria in soluble form.
  • apoAIV was extrapolated in a fermenter, by high density culture of E.coli in Fed-Batch mode. This production was carried out in a 2 liter fermenter (Setric) in 2 phases: a growth phase of the microorganism up to an OD600 of 30 to 40 (duration: approximately 5 h). This phase is carried out in the fermentation medium defined by Jung et al. (Ann._nst.Paste_r Microbiol. 1988, 139, 129-146); then a phase of induction of production, by adding IPTG and rifampicin, and increasing the rate of supply of carbon and nitrogen substrates (duration: approximately 1 hour 30 minutes). 2 - Cell lysis and recovery of recombinant human apoAIV
  • the cells are collected and then lysed, for example by sonication.
  • a Branson sonicator (model B30, Proscience, France) was used after concentrating the cells 30 times in PBS buffer (KC1 0.2 g / 1, KH2PO4 0.2 g / 1, NaCl 8 gA, Na2HPO4 1.25 g / 1).
  • the cells are broken at 4 ° C in continuous mode (2 pulses of 5 minutes).
  • the concentrated cell suspension can also be pretreated in the presence of Triton X-100 at room temperature before sonication.
  • heterologous proteins expressed at high level in E. coli are very often found in the form of aggregates insoluble in the cytoplasm (R.G. Schoner et Coll. (1985) Biotechnology, 3: 151-154). Under the expression conditions used, this is not the case for recombinant human apoAIV.
  • the bacterial culture is centrifuged at 6,000 rpm for 30 minutes and the pellet is taken up at the rate of 3 ml per gram of wet cells in buffer A (Na 2 HPO 4 81 mM, NaH 2 PO 4 19 mM; EDTA, 2 mM; PMSF, 1 mM; pH 7.5; ⁇ -mercaptoethanol 10 mM).
  • buffer A Na 2 HPO 4 81 mM, NaH 2 PO 4 19 mM
  • EDTA 2 mM
  • PMSF 1 mM
  • pH 7.5 pH ⁇ -mercaptoethanol 10 mM
  • the suspension is treated by 8 cycles of 3 minutes of ultrasound (BRANSON model set at 250W) at 4 ° C.
  • the extracts are centrifuged for 30 minutes at 15,000 rpm at 4 ° C.
  • the supernatant SI is stored and the pellet is washed in the same volume of buffer A and recentrifuged under the same conditions.
  • the dialysate is injected onto a QFF type ion exchange column (Pharmacia) and eluted with a NaCl gradient.
  • the fractions containing the apolipoprotein ATV are determined according to an Elisa test described in paragraph E.
  • the interesting fractions are combined and concentrated by precipitation with ammonium sulfate (final concentration: 80% saturation). After 15 minutes of incubation at 4 ° C with shaking, the suspension is centrifuged for 30 minutes at 15,000 rpm at 4 ° C. The pellet (C80) is recovered and taken up in buffer B and dialysis against 21 of buffer B.
  • the dialysate is injected onto an ion exchange column of the Mono Q type (Pharmacia) and eluted with a NaCl gradient.
  • the interesting fractions, identified by the Elisa test (paragraph E) and 15% SDS gel are combined and concentrated by precipitation in ammonium sulphate (final concentration: 80% saturation).
  • buffer D ammonium sulfate, 1.7 M; Na 2 HPO 4 8.1 mM, NaH 2 PO 4 1.9 mM; EDTA, 2 mM; pH 7.4
  • the dialysate is injected on a hydrophobic phenyl-sepharose interaction chromatography column (Pharmacia) and eluted with buffer E (Na 2 HPO 4 8.1 mM; NaH2pO 4 1.9 mM; EDTA, 2 mM; pH 7.4) .
  • buffer E Na 2 HPO 4 8.1 mM; NaH2pO 4 1.9 mM; EDTA, 2 mM; pH 7.4
  • the interesting fractions, identified by the Elisa test (paragraph E) and SDS polyacrylamide gel are pooled and dialyzed against buffer F (ammonium sulfate, 40% saturation; Na 2 HPO 4 8.1 mM; NaH2PO 4 1.9 mM; EDTA, 2 mM; ⁇ H7.4) and stored at 4 ° C.
  • the amino acid composition of the product obtained was also determined and confirms the identity of the purified protein with human apo AIV.
  • the quality of the protein obtained can still be assessed by ELISA test.
  • the test developed consists of adsorbing on an ELISA plate with a polyclonal rabbit serum directed against human apoAIV (diluted to 1 / 1000th), saturating this plate with gelatin, incubating the sample to be tested and finally, react an equimolar mixture of two monoclonal antibodies directed against apoAIV (MO3 and MO5, SERLIA, Institut Pasteur de Lille), followed by an immunoenzymatic revelation using a polyclonal anti-mouse serum coupled with peroxidase.
  • This test is easily calibrated with a range of dilutions of plasma apoAIV.
  • LCAT lecithin-cholesterol-acyl-transferase
  • HDL receptor It is also a natural ligand of the HDL receptor which is therefore capable of binding to this receptor and of stimulating an efflux of intracellular cholesterol.
  • the purified recombinant protein makes it possible to reconstitute proteoliposomes with DMPC (dimyristoylphosphatidylcholine) whose structure appears identical, in view of the behavior in exclusion chromatography, to that of the proteoliposomes reconstituted with apolipoprotein AIV extracted from human plasma. .
  • DMPC diristoylphosphatidylcholine
  • proteoliposomes are capable of stimulating the activation of __3cithin-Cholesterol-Acyl-Transferase (LCAT), in a test carried out on a purified extract of the human LCAT protein.
  • LCAT __3cithin-Cholesterol-Acyl-Transferase
  • Obl77 caused by the recombinant DMPC-AIV proteoliposomes is, after 4 hours of incubation, 46% of the cholesterol initially loaded with a maximum reached after 2 hours. This efflux is therefore identical to that which can be obtained with plasma DMPC-AIV proteoliposomes.
  • apolipoprotein produced microbiologically is identical from the point of view of its biological activities to the protein puri ed from human plasma.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

L'invention concerne un procédé microbiologique de préparation de l'apolipoprotéine AIV ou de dérivés par culture d'une bactérie capable d'assurer le maintien d'un plasmide contenant un promoteur, un site de fixation des ribosomes et un gène de structure codant pour ladite protéine précédé d'un codon de démarrage de la traduction. L'invention concerne également les plasmides et cellules hôtes utilisés dans le procédé.

Description

PROCEDE MICROBIOLOGIOUE DE PREPARATION DE L'APOLIPOPROTEINE AIV HUMAINE OU DE
DERIVES PE CELLE-CI
La présente invention concerne un nouveau procédé de synthèse pro- téique. Plus particulièrement, l'invention concerne un procédé mettant en oeuvre les techniques de manipulations génétiques in vitro, pour obtenir un arrangement de séquences d'acides déoxyribonucléiques permettant la biosynthèse de l'apolipoprotéine AIV humaine ou de ses dérivés par une bactérie. L'apolipoprotéine AIV (apoAIV) est une protéine constituée de 376 acides aminés, ayant une masse moléculaire de 46 000 daltons. Elle est un composant majeur des chylomicrons sécrétés dans la lymphe, mais elle présente la particularité d'être majoritairement sous forme non associée avec des lipoprotéines dans le plasma (R.B. Weinberg et Coll., 1983, J. Lipid. Research, 24 : 52-59). Par ailleurs, l'apoAIV plasmatique est polymorphe, bien que la nature de ce polymorphisme soit encore inconnue (G. Utermann et Coll., 1982, J. Biol. Chem. 257 : 501-507). Le rôle physiologique de l'apoAIV demeure également assez peu connu. On sait qu'elle peut activer in vitro la léxathin-cholestérol-acyltransférase (LCAT) (Steinmetz et Coll., 1985, J. Biol. Chem., 260 : 2258-2264) et qu'elle peut, comme l'apolipoprotéine AI, interférer avec la fixation des particules de HDL sur les cellules endothêliales aortiques bovines (Savion et Coll., 1987, EUT. J. Biochem., 257 : 4171-4178). Ces deux activités semblent indiquer que rapoAIV intervient très vraisemblablement comme médiateur du transport inverse du cholestérol. Dans ces conditions, l'étude et la caractérisation de cette apolipoprotéine apparaissent très intéressantes dans le but d'élucider les facteurs influençant le transport inverse du cnolestérol, et ceci en vue de thérapies nouvelles. Dans cette perspective, la possibilité de produire en quantités impor¬ tantes l'apoAIV constitue une nécessité. Par ailleurs, l'étude et l'obtention de molécules dérivées de l'apoAIV, ayant par exemple une activité stimulatrice de l'efflux du cho¬ lestérol cellulaire, prennent tout leur intérêt, notamment si ces molécules peuvent permettre par exemple de ralentir la formation des plaques d'athérome, et donc de diminuer le risque d'incidence d'accidents coronariens.
Jusqu'à présent, l'apolipoprotéine AIV était obtenue par purification à partir de fractions de plasma ou de sérum sanguin (EP 329 605). L'inconvénient de cette méthode résida dans la présence de contaminants et dans l'impossibilité d'obtenir des quantités suffisamment élevées de protéine. Les recherches en biologie moléculaire, la mise au point des techniques de séquençage de l'ADN (F. Sanger et Coll. 1975, J. Mol. Biol. 94 : 441 ; A.M. Maxam et W. Gilbert 1977 Prod. Natl. Acad. Sri. (USA) 74 : 560) qui ont permis de préciser l'organisation fonctionnelle et moléculaire des gènes, et les progrès effectués dans les techniques de construction génétique in vitro, offrent à présent la possibilité de faire synthétiser par un microorganisme, et en particulier une bactérie, une chaîne polypeptidique (voir par exemple F. Gros et Coll. 1979, Sciences de la Vie et Société, Documentation française Ed.).
Aussi, dans le but de remédier à la faible efficacité des systèmes de pré¬ paration de l'art antérieur, plusieurs équipes ont cherché à isoler, classer et séquencer le gène de l'apolipoprotéine AIV. Voir en particulier les travaux de Bogouski et Coll. (Proc. Natl. Acad. Sci 81 : 5021 (1984)).
Pourtant, en dépit de ces travaux et contrairement à d'autres apolipopro- téines telles que l'apoE ou rapoAII, l'expression de l'apoAIV n'a jamais pu être réali- ' sée par voie recombinante. II a maintenant été trouvé, et c'est ce qui constitue l'objet de la présente invention, qu'il est possible de préparer par voie microbiologique des quantités relati¬ vement élevées d'apolipoprotéine AIV.
Selon l'invention, il est donc possible de préparer d'importantes quantités d'apoAIV ou de molécules dérivées de l'apoAIV. On entend par molécules dérivées de l'apoAIV, des molécules obtenues à partir de l'apoAIV par modifications structurales, et notamment par mutagénèse dérigée, introduisant des mutations, des délétions ou des substitutions de résidus.
Toujours selon l'invention, il est possible de préparer une protéine dépourvue des contaminants sériques que l'on obtient par purification. Encore selon l'invention, on obtient une protéine soluble qu'il est pos¬ sible de purifier sans aucune étape de dénaturation préalable, et sans recours à des extractions par affinité, par exemple vis-à-vis d'intralipides.
La présente invention a donc pour objet un procédé microbiologique de préparation de l'apolipoprotéine ATV ou de dérivés de celle-ci, selon lequel on cultive une bactérie capable d'assurer le maintien d'un plasmide contenant un promoteur, le site de fixation des ribosomes d'un gène traduit avec efficacité, et la séquence codant pour l'apolipoprotéine ATV humaine ou un de ses dérivés, précédée d'un codon de démarrage de la traduction.
Bien que différents promoteurs connus de l'homme du métier puissent être employés, on préfère utiliser des promoteurs inductibles, et notamment des promoteurs inductibles reconnus par une ARN polymérase spécifique, qui diffère par sa structure et/ou ses propriétés de celle de l'hôte choisi. Dans ce cas, la bactérie hôte utilisée contient en outre un gène hétérologue codant pour ladite ARN polymérase spécifique, que ce soit par l'intermédiaire d'un bactériophage déf ectif intégré, ou direc- tement sur le plasmide utilisé. Dans un mode particulier de mise en oeuvre, on peut utiliser le système T7, c'est-à-dire un promoteur dérivé d'un gène du bactériophage T7, qui est reconnu spécifiquement par l'ARN polymérase du bactériophage T7. Le pro¬ moteur du gène 10 du bactériophage T7 donne notamment de très bons résultats.
Avantageusement, lorsque ce type de promoteur est utilisé, on ajoute au milieu de culture, peu après l'induction de l'expression, un inhibiteur spécifique du complexe de démarrage de la transcription de la bactérie hôte choisie. Ceci permet de transcrire, à l'exclusion de tout autre, le gène qui est placé sous le contrôle du promo¬ teur ne dépendant pas de la RNA polymérase de l'hôte. Dans ces conditions, la pro¬ duction de protéines de stress, parmi lesquelles la protéase du produit du gène Ion, qui pourraient être induites par l'expression d'un gène hétérologue, est empêchée durant toute la phase de production de cette protéine hétérologue.
Parmi les inhibiteurs spécifiques utilisables dans la présente invention, on peut citer certains antibiotiques, et notamment la rifampicine.
D'une manière avantageuse, le procédé de l'invention est mis en oeuvre au moyen d'un bactérie choisie parmi les souches d'E.coli.
L'invention a également pour objet les plasmides contenant un promo¬ teur, le site de fixation des ribosomes d'un gène traduit avec efficacité, et la séquence codant pour l'apolipoprotéine ATV humaine ou un dérivé de celle-ci, précédée d'un codon de démarrage de la traduction. Plus particulièrement, les plasmides selon l'in- vention contiennent en outre le gène codant pour la RNA polymérase spécifique du promoteur choisi.
Un autre objet de l'invention concerne les bactéries qui contiennent un plasmide de l'invention, et en particulier les bactéries du genre E.coli.
La séquence de l'apoAIV humaine utilisée dans l'invention a été obtenue à partir d'un clone génomique contenant le fragment Kpnl-HindlII de la séquence du gène humain de l'apoAIV, qui contient la fin de l'intron 2, la totalité de l'exon 3 ainsi que la séquence 3' non traduite. Ce clone ne contenait donc pas, en particulier, les deux premiers exons du gène de l'apoAIV humaine (Elshourbagy et coll. J.B.C. (1987)
262:7973). L'invention résulte notamment de la synthèse chimique de l'extrémité 5' de la séquence de l'apoAIV, de sorte que ce fragment synthétique contienne les codons correspondant à la partie de la protéine mature codée par les deux premiers exons du gène humain, et également les premiers nucléotides de la région 5' de l'exon 3 s'éten- dant jusqu'au site BstEII. L'invention résulte également de la liaison de ce fragment synthétique à un fragment d'ADN contenant le restant de la séquence du gène de l'apolipoprotéine AIV située après le site BstEII, utilisé pour effectuer la jonction au nucléotide près, puis enfin, de la liaison de cette séquence codante à des signaux per¬ mettant une expression importante et régulée chez une bactérie. Une bactérie hôte, telle que E.coli, contenant ces séquences peut conduire, après induction dans des conditions définies, à la production d'un taux d'apolipoprotéine ATV important. Les différentes approches méthodologiques décrites dans cette invention démontrent clairement que le niveau de production de l'apoAlV peut varier de façon considérable selon le procédé utilisé. L'invention consiste également en la description d'un procédé permettant d'obtenir une accumulation dans la bactérie de quantités très importantes de l'apolipo¬ protéine ATV sous une forme soluble. Il a en effet été rapporté (R.G. Schoner et Coll. (1985) Biotechnology 3 : 151-154) que les protéines hétérologues synthétisées à haut niveau chez E. coli se trouvent dans la cellule sous forme d'agrégats insolubles. Selon la présente invention, l'apoAIV est produite sous une forme non agrégée. La demanderesse a également mis au point un procédé permettant de purifier l'apolipo¬ protéine AIV humaine synthétisée chez E. coli, en utilisant des méthodes rapides et applicables à l'échelle industrielle.
La présente invention concerne donc également un procédé permettant de purifier dans les conditions natives, c'est-à-dire sans aucune étape de dénaturation, l'apolipoprotéine AIV humaine produite par voie microbiologique, afin que la protéine ainsi produite possède une structure tridimentionnelle identique à celle de la protéine native d'origine naturelle.
Les étapes de ce procédé sont décrites plus en détail dans la partie D. Par ailleurs, l'intérêt d'un système d'expression d'une protéine recombi¬ nante est, outre les possibilités de pouvoir produire des quantités importantes de la protéine, également de pouvoir créer, exprimer et produire en quantité importante des dérivés de cette protéine, correspondant soit à des variants naturels de la protéine que Ton a pu identifier et caractériser à partir de sérum humain provenant de diverses études cliniques, soit encore à des dérivés totalement originaux. Tous ces dérivés peuvent alors être utilisés directement pour mimer ou antagoniser l'effet de la protéine d'intérêt. Ils peuvent également permettre, par l'étude comparative de leurs propriétés biologiques intrinsèques, de définir et localiser dans la protéine les différents domaines ou segments polypeptiques portant une activité biologique caractéristique de la protéine étudiée.
La présente invention est donc parfaitement applicable à la production de dérivés de l'apoAIV.
Dans ce qui suit seront décrits successivement les constructions et les conditions d'expression du gène de l'apolipoprotéine ATV ainsi que les procédés de purification sous forme active de l'apolipoprotéine AIV produite.
PESCRFΠON PES FIGURES
Figure 1 : Séquence nucléotidique de l'apoAIV réalisée dans le cadre de la présente invention.
Figure 2 : Séquence des oligonucléotides utilisée pour préparer la séquence de l'apoAIV.
Figure 3 : Structure et construction du plasmide pXL1697.
Figure 4 : Structure du plasmide pXL1872.
Figure 5 : Structure du plasmide pXL534.
Figure 6 : Structure des plasmides pXL1698 et pXL1699. Figure 7 : Structure des plasmides pXL1734 et ρXL1735.
Figure 8 : Structure du plasmide pXL1867.
TECHNIQUES GENERALES
Les techniques classiques de purification de plasmides, de préparation des cellules compétentes pour la transformation par la méthode au CaC , sont décrites dans le manuel de laboratoire : T. Maniatis et Coll., Molecular cloning, 1982, Cold
Spring Harbor Laboratory. Les séquences d'ADN ont été déterminées par la méthode de Sanger (Smith AJ.H., 1980, Methods in Enzymol. 65 : 499-559). Les protocoles de clonage dans M13 sont décrits (Messing et Coll. 1981, Nucleic Acid Res. 9 :
309-321). Les endonucléases de restriction (New England Biolabs) ont été utisées selon les conseils du fabricant. Le tampon utilisé pour les ligatures a la comt sition suivante : Tris-HCl 50 mM, MgCL, 10 mM, DTT 15 mM, ATP 1 mM, pH 7,5. Le tampon de phosphorylation des oligonucléotides a la composition suivante : Tris-HCl 5 mM, MgCl2 1 mM, DTT 0,6 M, pH 7,5. A - SYNTHESE ET ASSEMBLAGE DE LA SEQUENCE CODANTE DE L'APOLIPOPROTEINE AIV
La séquence nucléotidique du gène de l'apolipoprotéine ATV décrite dans la présente invention diffère des séquences de cDNA publiées précédemment (voir en particulier la liste des séquences cDNA publiée par C-Y. Yang, Z-W. Gu, I. Chong, W. Xiong, M. Rosseneue, H. Yang, B. Lee, A.M. Gotto et L. Chan, 1989, B.B.A., 1002 : 231-237). Notamment, la séquence codant pour le peptide signal de la protéine est absente, et, en amont du premier codon de la protéine mature a été placé un codon de démarrage de la traduction ATG (Figure 1). Celui-ci introduit donc une méthionine surnuméraire en amont de la séquence de la protéine mature, et permet ainsi d'expri¬ mer le gène codant uniquement pour la partie mature de la protéine.
D'autre part, cette séquence nucléotidique de l'apolipo- protéine AIV a été obtenue d'une manière originale par l'assemblage de quatre oligonucléotides, représentés sur la figure 2, qui ont été synthétisés par voie chimique et dont la taille est comprise entre 86 et 107 mer. De plus, on peut remarquer sur la figure 2 que des extrémités cohésives Xbal et EcoRI ont été définies afin de permettre un assemblage en deux étapes de la séquence complète de l'apolipoprotéine ATV.
a - Synthèse des oligonucléotides
Les quatre oligodéoxynucléotides qui ont servi à l'assemblage du gène de l'apolipoprotéine ATV, ont été synthétisés par la méthode des phosphoramidites (LJ. Bride et M.H. Caruthers (1983) Tetrahedron Lett. 24 : 245) au moyen du synthé¬ tiseur Bioresearch (Modèle 8600) selon les conseils des fabricants. Les oligonucléo¬ tides ont été purifiés sur gel d'acrylamide 15 %. Leur séquence est donnée à la figure 2.
b - Première étape d'assemblage
Les oligonucléotides ont été phosphorylés par traitement avec la T4 DNA kinase. Les oligonucléotides A et C ont été appariés respectivement avec les oligonucléotides B et D dans des conditions stoechiométriques. L'hybridation des oligonucléotides a été réalisée dans des tubes Eppendorf immergés dans un bêcher contenant environ 100 ml d'eau portée à 80°C que l'on laisse revenir à la température du laboratoire.
Les fragments A-B et C-D ont été ligaturés en présence de T4 DNA ligase avec la forme réplicative du phage M13mpl0 au préalable digérée par les enzymes Xbal et EcoRI.
La forme réplicative du bactériophage recombinant obtenu appelé pXL1695 (M13mplOABCD) a servi à transfecter des bactéries TG1 rendues compé¬ tentes par la méthode au CaCU. Ce réplicon pXL1695 a été purifié, soit sous sa forme d'ADN simple brin et sa séquence a été vérifiée, soit sous sa forme d'ADN double brin réplicative pour la suite des constructions.
c - Deuxième étape d'assemblage
La forme réplicative de pXL1695 (M13mpl0ABCD) et un plasmide appelé pXL1694 portant un fragment KnpI-HindIII d'environ 3 kb contenant la totalité du troisième exon du gène de l'apoAIV (N.A. Elhourbagy, J. Biol. Chem., 1987, 262 : 7973-7981) ont été respectivement digérés par Xbal et BstEII d'une part et EcoRI et BstEII d'autre part. Dans le cas de pXL1695, un fragment de 167 paires de bases a été purifié sur gel d'acrylamide. La forme réplicative du vecteur M13mpl8amIV a été digérée par Xbal et EcoRI et un fragment d'environ 7 kb a été purifié sur gel d'agarose.
Les trois fragments on été rassemblés et ligaturés en présence de T4 DNA ligase.
Après transfection de TG1, des clones contenant la forme réplicative appelée pXL1696 ont été obtenus. La séquence codante complète du fragment Xbal-EcoRI ainsi clone dans pXL1696 a été vérifiée. Ce fragment a ensuite été re-extrait de pXL1696 et ligaturé en présence d'un fragment EcoRI-HindUI, d'environ 3 kb provenant de pXL1694 et portant en particulier la fin de l'exon 3 du gène de l'apoAIV humaine, et en présence également du vecteur M13mpl9, coupé par les enzymes Xbal et HindIII.
Le vecteur recombinant ainsi obtenu, pXL1697, porte la totalité de la séquence codante de l'apoAIV (1132 bp) ainsi qu'un fragment génomique d'environ 2 kb correspondant à l'intron 3 du gène de l'apoAIV (figure 3).
Une mutagênèse dirigée effectuée avec le kit de mutagénèse Amersham (RPN 1523) à l'aide de lOligodeoxynucléotide synthétique Sql087 : 5'-GCCCC1TTGGAGAGCTGAGGATCCCCTGGTGCACTGG CCCCA-3* a permis d'introduire sur pXL1697 un site BamHI immédiatement après le codon Stop (TGA) du gène de l'apoAIV. Le vecteur obtenu, pXL1866, a été coupé par les enzymes Xbal et bamHI et un fragment de 1,15 kb contenant la totalité de la séquence codante de l'apoAIV a été purifié sur gel d'agarose et religaturé dans M13mpl8am_V pour donner le vecteur ρXL1872 (figure 4).
B - CONSTRUCTION DES VECTEURS DΕXPRFSSTON DE L'APOLIPOPROTEINE ATV
1 - Isolement des signaux d'expression
a - Système Ptrp : ce système comprend :
- la région opérateur/promoteur de l'opéron trpLEDCBA d'Escherichia coli qui permet une transcription efficace de l'ADN distal en ARN messager, cette transcription étant modulable par la concentration en tryptophane dans le milieu de culture, - le site de fixation des ribosomes du gène cil du bactériophage lambda qui permet un démarrage de la traduction efficace de l'ARN messager, et
- les terminateurs Tl et T2 de l'opéron rmB qui permettent un arrêt de la transcription du gène situé en amont.
On note que les plasmides contenant le promoteur Ptrp doivent être propagés dans des souches de E.coli contenant le gène répresseur sauvage trpR afin que le promoteur Ptrp ne s'exprime pas de façon constitutive.
b - Système clts-O/PR : ce système comprend :
- la région opérateur/promoteur droite (O/PR) du bactériophage lambda qui permet une transcription efficace de l'ADN distal en ARN messager, cette transcription étant modulable par la présence du produit du gène répresseur cl du bactériophage lambda,
- l'allèle clts du gène répresseur cl du bactériophage lambda, qui conduit à l'expression d'une protéine thermosensible, permettant donc de produire en fonction de la température une protéine cl fonctionnelle (par exemple à 30°C) ou non (par exemple à 42°C), - le site de fixation des ribosomes du gène eu du bactériophage lambda qui permet un démarrage de la traduction efficace de l'ARN messager, et
- les terminateurs Tl et T2 de l'opéron rrnB qui permettent un arrêt de la transcription du gène situé en amont.
Dans ce système, l'expression d'un gène placé sous le contrôle du promo- teur O/PR est donc réprimée à basse température (par exemple 30°C) et totalement déréprimée à haute température (par exemple à 42°C). c - Système T7 : Ce système comprend :
- la région promoteur (PT7) du gène 10 du bactériophage T7 qui permet une transcription efficace de l'ADN distal en ARN messager, cette transcription étant spécifiquement assurée par l'ARN polymérase du bactériophage T7, - le gène 1 codant pour l'ARN polymérase du bactériophage T7 sous contôle du promoteur lacUV5, clone dans le site BamHI du bactériophage lambda D69, lui même inséré dans le génome de la souche d'E. coli BL21 (F.W. Studier et B.A. Moffat, J. Mol. Biol. (1986) 189 : 113-130),
- le site de fixation des ribosomes du gène 10 du bactériophage T7 qui permet un démarrage de la traduction efficace de l'ARN messager, et
- le terminateur du bactériophage T7 qui permet un arrêt de la transcription du gène situé en amont.
Dans ce système, un gène placé sous le contrôle du promoteur PT7 est donc transcrit en présence de l'ARN polymérase de T7, qui est elle-même exprimée en présence d'un inducteur du promoteur lacUV5, par exemple l'IPTG (Isopropyl-β-D-thiogalactopyranoside). La présence d'un plasmide (pL sS ou pLysE) codant pour le lysozyme du bactériophage T7 permet en outre de maintenir une meil¬ leure répression du système en absence d'IPTG, par inhibition de l'ARN polymérase de T7. La présente invention concerne également un système d'expression bactérien original en ce sens que l'on ajoute un antibiotique (de la rifampicine) peu de temps après l'induction de l'expression de la protéine d'intérêt. Cet antibiotique inhibe spécifiquement l'ARN polymérase de l'hôte sans affecter l'activité de l'ARN polymé¬ rase de T7, et permet donc de transcrire à l'exclusion de tout autre, le gène qui est placé sous contrôle d'un promoteur dépendant de l'ARN polymérase de T7.
2 - Construction des vecteurs d'expression
a - exemple 1 : système O Ptrp
Le plasmide utilisé pour la construction du vecteur d'expression de l'apoAIV est le plasmide "pXL276", utilisé pour la production chez E.coli de la sérum-albumine humaine recombinante (voir brevet EP 198745).
Ce plasmide a été digéré par l'enzyme EcoRV puis une délétion a été obtenue par action de l'exonucléase Bal31. Cette délétion couvre une région comprise entre les nucléotides 2442 et 4577 de la séquence de "PXL276", cette région n'étant pas essentielle dans l'expression de l'alburnine. Dans cette délétion a été inséré un raccord BamHI (5'-CGCGGATCCGCG-3'). Le plasmide résultant a été appelé "pXL534", représenté sur la figure 5.
A partir du plasmide "pXL534" un fragment de 124 paires de bases EcoRI-Ndel portant la séquence O/Ptrp et le site de fixation des ribosomes du gène eu, ainsi qu'un fragment de 3125 paires de bases EcoRI-Hindiπ portant des régions essentielles à la survie du plasmide et les terminateurs Tl et T2, ont été purifiés.
A partir du plasmide "pXL1697", un fragment d'environ 3 kb Ndel-HindHI portant en particulier la séquence codante de l'apoAIV a également été purifié.
Ces trois fragments ont été ligaturés en présence de T4 DNA ligase. Le plasmide ainsi construit, apellé "pXL1699" est représenté sur la figure 6. Sur ce plasmide, il a été vérifié que la séquence nucléotidique du gène codant pour l'apoAIV est identique à celle attendue.
b - exemple 2 : système clts-O/PR
Le plasmide utilisé pour la construction est le vecteur pXL1029, utilisé par ailleurs pour la production de l'IL-lβ humaine recombinante et dont la construc¬ tion a été décrite (G. Jung, P. Denèfle, J. Becquart and F.F. Mayaux, Ann. Inst. Pasteur/ Microbiol. (1988) 139 : 129-146). Un fragment EcoRI-Ndel de 1226 bp ainsi qu'un fragment EcoRI-Hindiπ de 3125 paires de bases provenant tous deux du plasmide pXL1029 ont été ligaturés avec le fragment d'environ 3 kb Ndel-HindIII portant en particulier la séquence codante de l'apoAIV et provenant de pXL1697. Le vecteur obtenu est appelle pXL1698 (figure 6).
c - exemple 3 : système T7 A partir du vecteur ρET3a (A.H. Rosenberg et al., Gène (1987) 56 :
125-135) trois différents vecteurs d'expression de l'apoAIV mature ont été construits.
- pXL1734 (figure 7) : Le vecteur pXL1697 a été linéarisé par HindHI, puis ses extrémités cohésives ont été remplies par le fragment de Klenow de la DNA polymérase I d'E.coli (PolIK), le fragment obtenu a de nouveau été coupé par Ndel et un fragment de 3 kb a été purifié puis inséré dans pET3a, lui même coupé par BamHI, rempli par PoUK, et recoupé par Ndel. Le vecteur d'expression résultant, pXL1734, contient donc, outre la séquence codante de l'apolipoprotéine AIV, la totalité de l'in- tron 3 provenant de la séquence génomique de l'apolipoprotéine ATV. - pXL1735 (figure 7) : Le vecteur pXL1697 a été linéarisé par Fokl, puis ses extrémités cohésives ont été remplies par le fragment Klenow de la DNA polymérase I d'E.coli (PoIIK), le fragment obtenu a de nouveau été coupé par Ndel et un fragment de 1,3 kb a été purifié puis inséré dans pET3a, lui même coupé par BamHI, rempli par PoIIK, et recoupé par Ndel. Le vecteur d'expression résultant, pXL1735, contient donc, outre la séquence codante de l'apolipoprotéine AIV, les 160 premières paires de bases de intron 3 provenant de la séquence génomique de l'apolipoprotéine AIV.
- pXL1867 (figure 8) : Le vecteur pXL1866 a été coupé par Ndel et BamHI et un fragment de 1,2 kb a été purifié puis inséré dans pET3a, lui même coupé par BamHI et Ndel. le vecteur d'expression résultant, pXL1867, contient donc la séquence codante de l'apolipoprotéine AIV sans aucun fragment résiduel de l'intron 3 provenant de la séquence génomique de l'apolipoprotéine AIV.
C - PRODUCTION PE L'APOLIPOPROTEINE AIV CHEZ E.COLI
1 - Expression de l'apoAIV
a - exemple 1 : système O Ptrp
On utilise par exemple la souche qui dérive de la souche E.coli B 54125 (collection de l'Institut Pasteur) par transformation avec le plasmide "pXL1699".
Ce plamide contient le gène fonctionnel de l'apolipoprotéine ATV sous contrôle du promoteur de l'opéron tryptophane O Ptrp. l'expression de l'apolipopro- téine ATV est donc déréprimée lorsque la bactérie est cultivée en absence de trypto¬ phane ou en présence d'un analogue tel que l'acide 3-β-indolacrylique (Nichols B.P. et
Yanofsky C. (1983) methods in Enzymol. 101 : 155).
On peut procéder de la façon suivante. A partir d'un réisolement récent de la souche E.ColiB (pXL1699) sur milieu solide LB-Ap (Bactotryptone (Difco) : 10 g/1, Extrait de levure (Difco) : 5 g/1, NaCl : 5 g/1, ampicilline : 100 mgΛ), on prépare une préculture en milieu liquide synthétique contenant du tryptophane à la concentration de 100 mg/1. Le milieu synthétique est par exemple du milieu M9 contenant du glucose à 0,4 %, des casaminoacides à 0,4 % et de l'ampicilline à 100 mg/1 selon Miller J.H. (1972) Expérimente in Molecular Genetics, Cold Spring Harbour laboratory, New York. La préculture est agitée pendant 16 heures à 37°C. Cette préculture est ensuite utili_.ee pour inoculer au 1/100 un litre du même milieu synthétique ne contenant cette fois plus de tryptophane. La culture de production est agitée dans un erlenmeyer à 37°C avec un suivi de la multiplication cellulaire durant le temps nécessaire pour atteindre la fin de la phase exponentielle de croissance (environ 6 heures). La turbidité de la culture est alors comprise entre 3 et 4 unités de densité optique à 610 nm.
Une bande de mobilité 46.000 peut être mise en évidence dans les extraits bactériens après électrophorese sur un gel de polyacrylamide-SDS par immunodétection avec un sérum polyclonal de lapin dirigé contre l'apoAIV humaine, après électrotransfert de ce gel sur une membrane de nitrocellulose. Ce résultat indique que le plasmide pXL1699 permet bien d'exprimer spécifiquement rapoAIV humaine.
b - exemple 2 : système clts-O/PR
On utilise par exemple la souche E103S (G. Jung, P. Denèfle, J. Becquart and J.F. Mayaux, Ann. Inst. Pasteur/ Microbiol. (1988) 139 : 129-146) transformée par le plasmide pXL1698.
L'expression de l'apoAIV étant dans ce cas sous contrôle du promoteur O/PR, qui est réprimé par le produit du gène cits qui est thermosensible, on peut donc dans un premier temps faire multiplier les bactéries à une température non permissive pour l'expression de la protéine d'intérêt et ensuite provoquer la dérépression de la production de cette protéine en élevant la température.
En pratique, les bactéries sont cultivées en milieu LB contenant un antibiotique, l'ampicilline, qui permet de sélectionner celles qui contiennent le plas¬ mide d'expression. La culture est maintenue à 30°C juqu'à ce que la densité optique atteigne la valeur de 0,5 unités à 610 nm. Les bactéries sont ensuite cultivées à 42°C pendant 90 min. La turbidité de la culture est alors comprise entre 3 et 4 unités de densité optique à 610 nm. Une bande de mobilité 46.000 peut être mise en évidence dans les extraits bactériens après électrophorese sur un gel de polyacrylamide-SDS par immu¬ nodétection avec un sérum polyclonal de lapin dirigé conte l'apoAIV humaine, après électrotransfert de ce gel sur une membrane de nitrocellulose. Ce résultat indique que le plasmide pXL1698 permet bien d'exprimer spécifiquement l'apoAIV humaine.
c - exemple 3 : système T7
On utilise par exemple la souche BL21 DE3 (pLysS) contenant un plasmide d'expression de l'apolipoprotéine ATV sous contrôle du promoteur du gène 10 du bactériophage T7. Une préculture de nuit en milieu LB contenant de l'ampicilline (100 μg/ml) et du chloramphénicol (50 μg/ml), LBApCm, à 37°C, sert à inoculer au 1/lOOème la culture de production (même milieu). La culture est agitée à 37°C jusqu'à une densité optique (mesurée à 610 nm) de 0,5. On ajoute alors de l'IPTG à la concentration finale de 1 mM et les cellules induites pour l'expression de la RNA polymérase de T7 sont incubées pendant 90 ou 180 min. L'analyse des extraits bacté¬ riens par gel d'électrophorèse coloré au bleu de coomassie révèle une accumulation très significative (10-20 % des protéines totales) dans les extraits des cultures de 90 min, d'un polypeptide de 46.000 daltons correspondant à l'apolipoprotéine ATV. En revanche cette protéine est très difficilement mise en évidence dans les échantillons correspondant à 180 min de culture ce qui semble indiquer que la protéine est effecti¬ vement produite dans ce système, qu'elle peut s'accumuler pendant la première phase de production mais que cette accumulation induit une activité protéolytique dans la bactérie, capable alors de dégrader la protéine d'intérêt durant la seconde phase de production.
Pour remédier à ce problème il a été trouvé et c'est également l'objet de cette invention que l'on peut stabiliser la protéine par ajout de rifampicine durant la phase de production. Les seuls ARNm pouvant alors être néosynthétisés sont ceux qui ne dépendent pas de l'ARN polymérase d'E.coli. On peut ajouter par exemple 20 min après l'ajout de l'IPTG de la rifampicine à des concentrations qui peuvent être com¬ prises entre 50 et 200 μg/ml. Les cellules qui ne produisent alors plus que le seul ARNm de l'apoAIV à l'exception de tous les autres sont incubées entre 90 et 180 min à 37°C.
Dans ce cas, l'anoAIV humaine recombinante produite représente de 20 à 30 % des protéines totales produites par la bactérie. De plus la protéine est ainsi accumulée sans dégradation dans la bactérie sous forme soluble.
La production d'apoAIV a été extrapolée en fermenteur, par culture haute densité de E.coli en mode Fed-Batch. Cette production a été réalisée dans un fermenteur de 2 litres (Setric) en 2 phases : une phase de croissance du micrc rganisme jusqu'à une DO600 de 30 à 40 (durée : 5 h environ). Cette phase est réalisée dans le milieu de fermentation défini par Jung et al. (Ann._nst.Paste_r Microbiol. 1988, 139, 129-146); puis une phase d'induction de la production, par addition d'IPTG et de rifampicine, et augmentation du débit d'alimentation en substrats carboné et azoté (durée : 1 h 30 environ). 2 - Lyse des cellules et récupération de l'apoAIV humaine recombinante
Après la culture de production, les cellules sont collectées puis lysées, par exemple par sonication. A l'échelle du laboratoire, il a été utilisé un sonicateur Branson (modèle B30, Proscience, France) après avoir concentré 30 fois les cellules dans le tampon PBS (KC1 0,2 g/1, KH2PO4 0,2 g/1, NaCl 8 gA, Na2HPO4 1,25 g/1). Le cassage des cellules est effectué à 4°C en mode continu (2 impulsions de 5 minutes). On peut également prétraiter la suspension cellulaire concentrée en présence de Triton X-100 à la température ambiante avant la sonication.
Les protéines hétérologues exprimées à haut niveau chez E.coli se retrouvent très souvent sous la forme d'aggrégats insolubles dans le cytoplasme (R.G. Schoner et Coll. (1985) Biotechnology, 3 : 151-154). Dans les conditions d'expression utilisées, ce n'est pas le cas pour l'apoAIV humaine recombinante.
D - PURIFICATION DE L'APOLIPOPROTEINE AIV RECOMBINANTE
Dans ce qui suit est décrit un procédé entièrement original qui permet de purifier l'apoAIV humaine recombinante en conditions natives, sans avoir à dénaturer la protéine en présence d'urée (procédé généralement utilisé pour purifier l'apoAIV humaine plasmatique). Ce procédé ne requiert pas non plus d'étape faisant appel à l'affinité de cette protéine pour les lipides.
La culture bactérienne est centrifugée à 6.000 tr/min pendant 30 minutes et le culot est repris à raison de 3 ml par gramme de cellules humides dans le tampon A (Na2HPO4 81 mM, NaH2PO4 19 mM ; EDTA, 2 mM ; PMSF, 1 mM ; pH 7,5 ; β-mercaptoéthanol 10 mM). La suspension est traitée par 8 cycles de 3 minutes d'ul¬ trasons (modèle BRANSON réglé à 250W) à 4°C. Les extraits sont centrifugés pen¬ dant 30 minutes à 15.000 tr/min à 4°C. Le surnageant SI est conservé et le culot est lavé dans le même volume de tampon A et recentrifugé dans les mêmes conditions. Le surnageant correspondant SI' est ajouté au surnageant SI.
Après un dosage des protéines de la fraction (SI + SI') est ajoutée une solution aqueuse de sulfate de streptomycine à 10 % à raison de 10 ml de solution par gramme de protéine. Après 15 minutes d'incubation à 4°C sous agitation douce, la suspension est centrifugée pendant 30 minutes à 15.000 tr/min à 4°C. Le surnageant (S2) est récupéré. A cette fraction S2 est ajouté du sulfate d'ammonium (concentration finale : 25 % de saturation). Après 15 minutes d'incubation à 4°C sous agitation, la suspension est centrifugée pendant 30 minutes à 15.000 tr/min à 4°C. Au surnageant S25 est ajouté du sulfate d'ammonium (concentration finale : 50 % de saturation). Après 15 minutes d'incubation à 4°C sous agitation, la suspension est centrifugée pendant 30 min à 15.000 tr/min à 4°C. Le culot (C50) est récupéré et repris dans le tampon B (Tris-HCl, 10 mM ; EDTA, 2 mM ; ρH8.8) et dialyse contre 21 de tampon B que l'on change 5 fois durant 48 heures.
Le dialysat est injecté sur une colonne échangeuse d'ions de type QFF (Pharmacia) et élue avec un gradient de NaCl. La détermination des fractions conte¬ nant l'apolipoprotéine ATV est effectuée selon un test en Elisa décrit dans le para¬ graphe E. Les fractions intéressantes sont rassemblées et concentrées par précipitation en sulfate d'ammonium (concentration finale : 80 % de saturation). Après 15 minutes d'incubation à 4°C sous agitation, la suspension est centrifugée pendant 30 minutes à 15.000 tr/min à 4°C. Le culot (C80) est récupéré et repris dans le tampon B et dialyse contre 21 de tampon B.
Le dialysat est injecté sur une colonne échangeuse d'ions de type Mono Q (Pharmacia) et élue avec un gradient de NaCl. Les fractions intéressantes, identi¬ fiées par le test Elisa (paragraphe E) et gel SDS 15 % sont rassemblées et concentrées par précipitation en sulfate d'ammonium (concentration finale : 80 % de saturation).
Après 15 minutes d'incubation à 4°C sous agitation, la suspension est centrifugée et reprise dans le tampon D (sulfate d'ammonium, 1,7 M ; Na2HPO4 8,1 mM, NaH2PO4 1,9 mM ; EDTA, 2 mM ; pH 7.4) et dialyse contre 21 de tampon D.
Le dialysat est injecté sur une colonne de chromatographie d'interactions hydrophobes Phényl-sépharose (Pharmacia) et élue avec le tampon E (Na2HPO4 8,1 mM ; NaH2pO4 1,9 mM ; EDTA, 2 mM ; pH 7.4). Les fractions intéressantes, identifiées par le test Elisa (paragraphe E) et gel de polyacrylamide SDS sont rassem- blées et dialysées contre le tampon F (sulfate d'ammonium, 40 % de saturation ; Na2HPO48,1 mM ; NaH2PO4 1,9 mM ; EDTA, 2 mM ; ρH7.4) et conservées à 4°C.
E - ETUDES ANALYTIQUES ET ACTIVITES BIOLOGIQUES DE L'APOAIV HUMAINE RECOMBINANTE OBTENUE PAR VOIE MTCROBTOLOGTOUE
a - études analytiques La pureté de la solution d'apoATV humaine recombinante est estimée supérieure à 98 % sur gel de polyacrylamide-SDS. Le produit, de haute pureté, a pu être soumis au séquençage et la séquence des 5 premiers acides aminés a été détermi¬ née. Cette séquence correspond à celle de l'apoAIV humaine contenant une méthionine surnuméraire à son extrémité N-terminale, ce qui confirme que le gène synthétique qui fait l'objet de la présente invention exprime correctement l'apoAIV humaine chez E.coli.
La composition en acides aminés du produit obtenu a également été déterminée et confirme l'identité de la protéine purifiée avec l'apo AIV humaine.
La qualité de la protéine obtenue peut encore être appréciée par test ELISA. Brièvement, le test mis au point consiste à adsorber sur une plaque ELISA avec un sérum polyclonal de lapin dirigé contre l'apoAIV humaine (dilué au l/1000éme), saturer cette plaque à la gélatine, incuber l'échantillon à tester et enfin, faire réagir un mélange équimolaire de deux anticorps monoclonaux dirigés contre l'apoAIV (MO3 et MO5, SERLIA, Institut Pasteur de Lille), suivi d'une révélation immunoenzymatique à l'aide d'un sérum polyclonal anti-souris couplé à la peroxydase. Ce test est facilement étalonné avec une gamme de dilutions de l'apoAIV plasmatique.
b - caractérisations biologiques L'apoAIV humaine est connue pour avoir deux activités biologiques.
- C'est tout d'abord un cofacteur capable d'activer la lécithine-cholestérol-acyl- transférase (LCAT).
- C'est également un ligand naturel du récepteur HDL qui est donc capable de se fixer à ce récepteur et de stimuler un efflux du cholestérol intracellulaire.
Essai LCAT :
La protéine recombinante purifiée permet de reconstituer des protéolipo¬ somes avec du DMPC (dimyristoylphosphatidylcholine) dont la structure apparaît identique, au vu du comportement en chromatographie d'exclusion, à celle des protéoliposomes reconstitués avec de l'apolipoprotéine AIV extraite à partir du plasma humain.
Ces protéoliposomes reconstitués sont capables de stimuler l'activation de la __3cithine-Cholestérol-Acyl-Transférase (LCAT), dans un essai effectué sur un extrait purifié de la protéine LCAT humaine. Dans ce même essai, les protéoliposomes reconstitués soit avec la protéine plasmatique soit avec la protéine recombinante ont des activités spécifiques identiques.
Affinité pour le récepteur HDL
Ces protéoliposomes reconstitués sont capables de se fixer à des adipo- cytes murins (lignée obl7) selon un protocole déjà décrit avec des constantes de liaison très voisines : pour les DMPC-apoAIV humaine : Kd ≈ 0,26 μM et Bmax = 143 ng/mg pour les DMPC-apoAIV recombinants : Kd = 0,28 μM et Bmax = 140 ng/mg
Efflux du cholestérol L'efflux du cholestérol à partir de cellules adipocytaires murines (lignée
Obl77) provoqué par les protéoliposomes DMPC-AIV recombinants est, après 4 heures d'incubation, de 46 % du cholestérol initialement chargé avec un maximum atteint dès 2 heures. Cet efflux est donc identique à celui que l'on peut obtenir avec des protéoliposomes DMPC-AIV plasmatique. En conclusion, l'apolipoprotéine produite par voie microbiologique est identique du point de vue de ses activités biologiques à la protéine puri iée à partir de plasma humain.

Claims

REVENDICATIONS
1 - Procédé microbiologique de préparation de l'apolipo- protéine AIV humaine ou de dérivés de celle-ci caractérisé en ce que l'on cultive une bactérie capable d'assurer le maintien d'un plasmide contenant un promoteur, le site de fixation des ribosomes d'un gène traduit avec efficacité, et la séquence codant pour l'apolipo¬ protéine AIV humaine ou un dérivé de celle-ci, précédée d'un codon de démarrage de la traduction.
2 - Procédé selon la revendication 1 caractérisé en ce que le promoteur est un promoteur inductible.
3 - procédé selon la revendication 2 caractérisé en ce que le promoteur est reconnu par une ARN polymérase spécifique, différente de celle de l'hôte utilisé.
4 - Procédé selon les revendications 1 et 3 caractérisé en ce que la bac¬ térie utilisée contient en outre un gène hétérologue codant pour ladite ARN polymé¬ rase spécifique du promoteur.
5 - Procédé selon les revendications 3 et 4 caractérisé en ce que le pro¬ moteur dérive d'un gène du bactériophage T7.
6 - Procédé selon la revendication 5 caractérisé en ce que le promoteur est celui du gène 10 du bactériophage T7.
7 - Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le plasmide contient le promoteur et le site de fixation des ribo¬ somes du gène 10 du bactériophage T7, et la séquence codant pour l'apolipoprotéine AIV ou un dérivé de celle-ci, précédée d'un codon de démarrage de la traduction.
8 - Procédé selon les revendications 3 à 7 caractérisé en ce que l'on ajoute au milieu de culture, après l'induction de l'expression, un inhibiteur spécifique du complexe de démarrage de la transcription de l'hôte utilisé.
9 - Procédé selon la revendication 8 caractérisé en ce que rinhibiteur est un antibiotique, et de préférence, la rifampicine.
10 - Procédé selon la revendication 1 caractérisé en ce que la bactérie est choisie parmi les souches d'E. coli. 11 - Plasmide caractérisé en ce qu'il contient un promoteur, le site de fixation des ribosomes d'un gène traduit avec efficacité, et la séquence codant pour l'apolipoprotéine AIV ou un dérivé de celle-ci, précédée d'un codon de démarrage de la traduction.
12 - Bactérie contenant un plasmide selon la revendication 11.
13 - Bactérie selon la revendication 12 caractérisée en ce qu'il s'agit d'une souche d'E.coli.
14 - Procédé de préparation d'apolipoprotéine AIV humaine ou de déri¬ vés de celle-ci sous forme soluble, caractérisé en ce que l'on soumet les produits obte- nus par le procédé selon les revendications 1 à 10 à une extraction et une purification dans les conditions natives.
PCT/FR1991/000732 1990-09-18 1991-09-17 Procede microbiologique de preparation de l'apolipoproteine aiv humaine ou de derives de celle-ci WO1992005253A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR90/11490 1990-09-18
FR9011490A FR2666813A1 (fr) 1990-09-18 1990-09-18 Procede microbiologique de preparation de l'apolipoproteine aiv humaine ou de derives de celle-ci.

Publications (1)

Publication Number Publication Date
WO1992005253A1 true WO1992005253A1 (fr) 1992-04-02

Family

ID=9400403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1991/000732 WO1992005253A1 (fr) 1990-09-18 1991-09-17 Procede microbiologique de preparation de l'apolipoproteine aiv humaine ou de derives de celle-ci

Country Status (2)

Country Link
FR (1) FR2666813A1 (fr)
WO (1) WO1992005253A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704556A1 (fr) * 1993-04-30 1994-11-04 Rhone Poulenc Rorer Sa Virus recombinants et leur utilisation en thérapie génique.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178863A1 (fr) * 1984-10-15 1986-04-23 Schering Corporation Systèmes d'expression utilisant des promoteurs de bactériophage T7 et des séquences de gènes
WO1987002062A1 (fr) * 1985-10-04 1987-04-09 Biotechnology Research Partners, Ltd. Apolipoproteines recombinantes et procedes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178863A1 (fr) * 1984-10-15 1986-04-23 Schering Corporation Systèmes d'expression utilisant des promoteurs de bactériophage T7 et des séquences de gènes
WO1987002062A1 (fr) * 1985-10-04 1987-04-09 Biotechnology Research Partners, Ltd. Apolipoproteines recombinantes et procedes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GENE, Volume 56, 1987, Amsterdam, NL, pages 125-135, A.H. ROSENBERG et al., "Vectors for Selective Expression of Cloned DNAs by T7 RNA Polymerase". *
JOURNAL OF BIOLOGICAL CHEMISTRY, Volume 262, No. 17, 1987, Baltimore, US, pages 7973-7981, N.A. ELSHOURBAGY et al., "Structure and Expression of the Human Apolipoprotein A-IV Gene". *
PROC. NATL. ACAD. SCI. U.S.A., Volume 82, 1985, Washington, US, pages 1074-1078, J. TABOR et al., "A Bacteriophage T7 RNA Polymerase/Promoter System for Controlled Exclusive Expression of Specific Genes". *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704556A1 (fr) * 1993-04-30 1994-11-04 Rhone Poulenc Rorer Sa Virus recombinants et leur utilisation en thérapie génique.
WO1994025073A1 (fr) * 1993-04-30 1994-11-10 Rhone-Poulenc Rorer S.A. Virus recombinants et leur utilisation en therapie genique

Also Published As

Publication number Publication date
FR2666813A1 (fr) 1992-03-20

Similar Documents

Publication Publication Date Title
RU2103364C1 (ru) Последовательность днк, белок и способ получения белка
EP0236210B1 (fr) Procédé de préparation de la sérum albumine humaine mature
Wang et al. Cyclopropane fatty acid synthase of Escherichia coli: deduced amino acid sequence, purification, and studies of the enzyme active site
EP0625202B1 (fr) Serum-albumine humaine, preparation et utilisation
EP0200590A1 (fr) Procédé de préparation microbiologique de la sérum-albumine humaine
FR2460330A1 (fr) Procede de production d'un vecteur de clonage duplicable comportant un gene quasi-synthetique codant une proteine, vecteur de clonage ainsi obtenu et procede d'obtention de la proteine codee par le gene quasi-synthetique
FR2480781A1 (fr) Expression de polypeptide bacterien dans laquelle on emploie un promoteur/operateur de tryptophanne
FR2655660A1 (fr) Nouveaux polypeptides, sequences d'adn permettant leur expression, procede de preparation et leur utilisation.
LU82757A1 (fr) Genes de la proinsuline humaine et de pre-proinsuline humaine,leur procede de preparation et leurs applications
CA2113925A1 (fr) Promoteur de levure et son utilisation
EP0198745B1 (fr) Procédé de préparation microbiologique de la sérum-albumine humaine
US5047333A (en) Method for the preparation of natural human growth hormone in pure form
EP0252894A2 (fr) Polypeptides hybrides comprenant la somatocrinine et l'alpha1-antitrypsine, méthode pour leur production à partir de clones bactériens et leur utilisation pour la production de somatocrinine
EP0624194A1 (fr) Polypeptides derives de l'apolipoproteine aiv humaine, leur preparation et leur utilisation
EP0548175B1 (fr) Sequence nucleotidique regulatrice de l'initiation de transcription
CA2331150A1 (fr) Procede industriel de production de proteines heterologues chez e. coli et souches utiles pour le procede
FR2528070A1 (fr) Vecteur d'expression porteur d'un codage genetique pour une proteine liant les phosphates, procede pour sa preparation et procede de production d'un polypeptide en l'utilisant
RU2144957C1 (ru) РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pPINS07, КОДИРУЮЩАЯ ГИБРИДНЫЙ ПОЛИПЕПТИД, СОДЕРЖАЩИЙ ПРОИНСУЛИН ЧЕЛОВЕКА, И ШТАММ БАКТЕРИЙ Escherichia coli - ПРОДУЦЕНТ ГИБРИДНОГО ПОЛИПЕПТИДА, СОДЕРЖАЩЕГО ПРОИНСУЛИН ЧЕЛОВЕКА
JPH08510899A (ja) 宿主細胞中でのタンパク質の過剰発現のための方法およびdna発現システム
WO1992005253A1 (fr) Procede microbiologique de preparation de l'apolipoproteine aiv humaine ou de derives de celle-ci
WO1991011518A1 (fr) Polypeptides impliques dans la biosynthese des cobalamines et/ou des cobamides, sequences d'adn codant pour ces polypeptides, procede de preparation, et leur utilisation
EP0146462B1 (fr) Vecteurs de clonage et d'expression de l'interféron-y, bactéries transformées et procédé de préparation de l'interféron-y
FR2550800A1 (fr) Vecteur plasmide ameliore et son utilisation
EP0788549B1 (fr) Sequences d'acides nucleiques regulatrices et utilisations
FR2656531A1 (fr) Promoteur artificiel pour l'expression de proteines dans le levure.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase