EP0351514B1 - Hohlleiter-Twist - Google Patents

Hohlleiter-Twist Download PDF

Info

Publication number
EP0351514B1
EP0351514B1 EP89108556A EP89108556A EP0351514B1 EP 0351514 B1 EP0351514 B1 EP 0351514B1 EP 89108556 A EP89108556 A EP 89108556A EP 89108556 A EP89108556 A EP 89108556A EP 0351514 B1 EP0351514 B1 EP 0351514B1
Authority
EP
European Patent Office
Prior art keywords
hollow waveguide
waveguide
coupling
window
polarisation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89108556A
Other languages
English (en)
French (fr)
Other versions
EP0351514A3 (en
EP0351514A2 (de
Inventor
Anton Ilsanker
Norbert Dr. Ephan
Albert Haslböck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP0351514A2 publication Critical patent/EP0351514A2/de
Publication of EP0351514A3 publication Critical patent/EP0351514A3/de
Application granted granted Critical
Publication of EP0351514B1 publication Critical patent/EP0351514B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/02Bends; Corners; Twists

Definitions

  • the invention looks from a waveguide twist, as is known from DE-PS 976 910 or DE-OS 27 48 956.
  • the straight waveguide is the basic element in waveguide technology.
  • pipe elbows and pipe angles are used to change the direction of hollow pipes.
  • the corner is bevelled to reduce the adjustment error.
  • manifolds with a continuous curvature and a constant cross-section are used.
  • the curvature usually 90 °, can be carried out in the direction of the electrical field lines (E-bend), i.e. in the case of the rectangular hollow line over the broad side, or in the direction of the magnetic field lines (H-bend), i.e. in the case of rectangular hollow line in the direction of the narrow side.
  • E-bend electrical field lines
  • H-bend magnetic field lines
  • the waveguide provided with a rectangular cross section can also be twisted helically as a whole about its longitudinal axis in order to change the polarization plane by 90 °, as is described, for example, in DE-PS 976 910.
  • polarizing switches are known for example from DE 33 45 689 A1, DE 30 10 360 C2 and GB-PS 1 591 719.
  • These broadband polarization switches are used to separate orthogonally linearly polarized electromagnetic waves.
  • an input-side waveguide section has a rectangular or square cross-section with two coupling windows that lie opposite one another laterally, from which rectangular waveguide arms branch off and open into a common broadband branch with the inclusion of elbows.
  • polarization switches that are completely implemented in waveguide technology, they are essentially based on the same principle. They consist of a round or square waveguide to which two or more waveguides are connected. Two main wave types with mutually perpendicular polarization planes can be propagated in the square or round waveguide, which are coupled separately from one another in one or more rectangular waveguides assigned only to one polarization.
  • This functional principle can be implemented in a simple embodiment with a polarization switch in such a way that a waveguide with a square cross section is provided for the transmission of two waves with polarization planes oriented perpendicular to one another.
  • a transverse short circuit is arranged in it and on the opposite side of the waveguide section which is square to the cross section, a rectangular coupling window running in the longitudinal direction, that is to say in the direction of propagation, is arranged in which the electromagnetic wave is coupled out with the polarization plane lying in the plane of the coupling window.
  • this electromagnetic wave can only be deflected by 90 ° in such a way that the direction of propagation of the two waves, which are now each separated on a waveguide branch, takes place parallel to one another.
  • a corresponding waveguide polarization switch therefore comprises, on one connection side, the two polarization gates one above the other for the two waveguide branches, in which the two separate electromagnetic waves are transmitted. Even if, by arranging an H-bend after the coupling window, the direction of propagation of the two coupled waves can be brought into line and the connections of the two switch outputs can lie in one plane, it remains to be determined that the orientation of the two connecting waveguides is perpendicular to each other.
  • the two polarizations separate from one another in different waveguides in the same direction due to the way in which they are coupled, but their orientation in space is still perpendicular to one another. If, for example, microwave converters are to be connected downstream, as is required in satellite technology, then these must also be aligned with the polarization lying perpendicular to one another, which is not always desirable from a structural point of view is when the microwave converters are rectangular in cross-section and thus take up more space. In principle, however, it would also be conceivable for a so-called “twist”, that is to say a so-called “waveguide twist”, to be arranged at least in one of the two waveguide branches. However, this would lead to an axial extension of the required installation space, since then, for example, a microwave converter could only be installed offset by the installation length of the so-called "twist”.
  • the object of the present invention is therefore to create a waveguide twist, in particular for a waveguide polarization switch, in order to create the possibility of a polarization plane rotation of 90 ° with the smallest space requirement.
  • the present invention indeed enables the possibility of a rotation of the polarization plane by, for example, 90 ° in an astonishing manner with the smallest installation space. This is made possible by the way in which one waveguide branch is coupled to the other, so that the electromagnetic waves in one polarization plane are coupled into the other waveguide branch by rotating their polarization plane by 90 °.
  • the principle according to the invention can be used not only with the shaft types H10 and H01, that is to say with square or rectangular waveguides in cross section, but also with waveguides with round wave cross section with the shaft types H11 and H11.
  • the waveguides can also be provided with discontinuities.
  • FIG. 4 shows an arrangement on which two waveguides with a rectangular cross section sit one on top of the other.
  • One of the waveguides sits with its narrow long side on the second waveguide on its wide long side, in a symmetrical central longitudinal direction.
  • Two coupling windows are provided between the two waveguides, each deviating at an angle from the longitudinal extent and thus resulting in a coupling window covering that - based on the entire length of both coupling windows - then also extends over the entire width of the narrow longitudinal side of the one waveguide.
  • the graphical representation according to FIG. 8 also shows that the coupling factor can be comparatively low in accordance with the desired partial decoupling.
  • the present invention relates to a waveguide twist in which a practically completely loss-free 100% rotation of the shafts is carried out.
  • Fig. 1 is a rectangular first waveguide 1 for example for transmitting a linearly polarized electromagnetic Shaft type H10 shown.
  • a coupling window 5 is provided, the height of which generally corresponds to the broad side of the waveguide 1. In practice, however, the height of the coupling window 5 will generally be up to approximately 10% less than the broad side of the waveguide 1.
  • the narrow side of the coupling window 5 is only half as long as its length.
  • an example of the magnetic field line 7 is shown in front of the waveguide 1 in FIG. 1.
  • the direction of propagation is changed by 90 ° to the vertical without changing the polarization plane.
  • a second waveguide 13 is arranged above the first waveguide 1.
  • the second waveguide 13 is parallel to the waveguide 1, in such a way that the two coupling windows 5 lie one on top of the other.
  • the coupling window 5 in the second waveguide 13 is also arranged in its longitudinal direction, but off-center to the longitudinal axis.
  • the longitudinal or broad sides of the waveguide 13 to the first waveguide 1 are interchanged by 90 °, so that in the waveguide 13, for example, an electromagnetic wave of the type H 1 can be excited.
  • the electromagnetic field lines 7 shown in FIG. 1 are coupled onto the second waveguide 13 via the coupling window 5 in such a way that magnetic field lines 15 are excited there. This is only achieved by the eccentric arrangement of the coupling window 5 with respect to the second waveguide 13. Because in the coupling window 5, the magnetic field lines are rectified, so that an electromagnetic wave is excited in the second waveguide 13 due to the specific geometry, the polarization plane of which is 90 ° to the incoming electromagnetic wave Wave in the first waveguide 1 is twisted.
  • This basic principle can also be implemented in the case of a waveguide polarization oak as illustrated schematically in FIG. 2.
  • Fig. 2 differs from Fig. 1 in that instead of the first waveguide 1, a waveguide with a square cross-section for transmitting two main electromagnetic waves with mutually perpendicular polarization planes, i.e. for example, transmission of an H10 and H01 wave is used. Below the also in this embodiment running in the longitudinal direction centrally arranged coupling window 5, a short circuit 9 'is arranged instead of an H-angle or H-bend.
  • this short circuit 9 is the same, however, because the electromagnetic wave with the polarization plane extending in the vertical longitudinal direction to the level of the coupling window 5, in the exemplary embodiment shown thus the H01 wave via the coupling window 5 in the upper waveguide section 13 while rotating the Polarization plane can be coupled through 90 ° as explained in FIG. 1.
  • the short circuit 9 ' which is arranged approximately centrally but opposite the coupling window in the first waveguide 1, only the electromagnetic wave with parallel alignment to the short circuit, that is to say in the exemplary embodiment shown, the H10 wave is transmitted into the subsequent waveguide branch 17.
  • the linearly polarized, mutually perpendicular electromagnetic waves transmitted in the first waveguide 1 have now been split onto the two waveguide branches 13 and 17 in such a way that the two polarization planes are parallel to one another.
  • the coupling window is on the same upper side of the waveguide branch 17 usually an upper short-circuit bridge 9 ⁇ to achieve better decoupling.
  • the invention has been explained, inter alia, for a waveguide polarization switch using a square waveguide with two rectangular waveguide connections.
  • the principle of operation also applies in general to a round waveguide to which two or more rectangular waveguides are connected.
  • a square or round waveguide two main wave types with mutually perpendicular polarization planes can be propagated, which can be coupled separately from one another into one or more rectangular waveguides assigned only one polarization.
  • the shaft types H11 and H11 can be transmitted.
  • the waveguides can be provided with discontinuities for the purpose of adaptation, which can also be formed in the side walls transverse to the coupling window.
  • the first waveguide 1 is also square.
  • the one linearly polarized waveguide wave type does not propagate in an extended axial direction to the waveguide 1, but is coupled out via a separate coupling-out window 5 ', which runs centrally in the longitudinal direction on the one in FIG. 4 shown left side wall of the waveguide 1 is introduced. This is followed by an angle 27 for reversing the direction.
  • the coupling-out of the second linearly polarized wave type takes place via the coupling window 5, which is introduced in FIG. 4 on the opposite right side of the waveguide 1 and is attached there eccentrically in the waveguide 1, as can be seen in particular from FIG. 5 is.
  • the second type of waveguide wave is decoupled while rotating the plane of polarization and also reversed in the direction by a subsequent angle 25.
  • a short circuit 9' is attached.
  • a waveguide termination 31 is provided at the end of the direction of propagation to the waveguide 1.
  • the rectangular waveguide emanating from the waveguide 1 to the coupling or decoupling window 5 or 5 ' are aligned with one another with their narrow sides
  • those after the coupling window 5 continuous waveguide branches 13 and 17 are aligned with each other with their broad side.
  • the two polarization gates 19 and 21 belonging to the two waveguide branches 13 and 17 can lie in a common plane.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)
  • Waveguide Connection Structure (AREA)

Description

  • Die Erfindung seht aus von einem Hohlleiter-Twist, wie es aus der DE-PS 976 910 oder der DE-OS 27 48 956 bekannt ist.
  • Der gerade Hohlleiter ist das Grundelement in der Hohlleitertechnik. Zur Richtungsänderung von Hohlleitungen werden beispielsweise Leitungskrümmer und Leitungswinkel verwendet. Bei Winkelstücken wird die Ecke abgeschrägt zur Verringerung des Anpassungsfehlers. Meist werden Krümmer verwendet mit kontinuierlich verlaufender Krümmung und gleichbleibendem Querschnitt. Die Krümmung, meist 90°, läßt sich in Richtung der elektrischen Feldlinien (E-Krümmer), also bei der Rechteckhohlleitung über die Breitseite, oder in Richtung der magnetischen Feldlinien (H-Krümmer), also bei Rechteckhohlleitung in Richtung der Schmalseite vornehmen.
  • Soll beispielsweise in Ausbreitrichtung die Polarisationsebene um einen geringen Winkel verdreht werden, so können, wie z. B. in der DE 27 48 956 A1 beschrieben, zwei zu verbindende Rechteckhohlleitungen bei gering bleibendem Anpassungsfehler um diesen kleinen Winkel gegeneinander verdreht werden, wobei natürlich keine Öffnung entstehen darf. Bei größerem erforderlichen Verdrehungswinkel zur Drehung der Polarisationsrichtung, meist 90°, verwendet man stetig um ihre Achse verwundene Reckeckhohlleitungen, sog. Hohlleiterverdrehungen. Daraus wird aber auch ersichtlich, daß derartige Hohlleiterverdrehungen natürlich eine nicht unwesentliche axiale Baulänge erfordern.
  • Natürlich kann auch der mit einem Reckteckquerschnitt versehene Hohlleiter als ganzes um seine Längsachse schraubenförmig verwunden sein, um die Polarisationsebene um 90° zu ändern, wie dies beispielsweise in der DE-PS 976 910 beschrieben ist.
  • Die eingangs genannten Richtungsänderungen von Hohlleitern haben Bedeutung z. B. bei der Umsetzung einer Polarisationsweiche. Derartige Polarisationsweichen sind beispielsweise aus der DE 33 45 689 A1, der DE 30 10 360 C2 und der GB-PS 1 591 719 bekannt. Diese Breitband-Polarisationsweichen dienen zur Trennung von orthogonal linear polarisierten elektromagnetischen Wellen. So besitzt beispielsweise ein eingangsseitiger Hohlleiterabschnitt rechteckigen oder quadratischen Querschnitt mit zwei seitlich einander gegenüberliegenden Koppelfenstern, von denen rechteckige Hohlleiterarme abzweigen und unter Einschaltung von Krümmern in eine gemeinsame Breitbandverzweigung einmünden.
  • Sofern es sich also um Polarisationsweichen handelt, die vollständig in Hohlleitertechnik ausgeführt sind, liegt ihnen im wesentlichen immer das gleiche Prinzip zugrunde. Sie bestehen aus einem runden oder quadratischen Hohlleiter, an dem zwei oder auch mehrere Hohlleiter angeschaltet sind. In dem quadratischen oder runden Hohlleiter sind zwei Hauptwellentypen mit senkrecht zueinanderliegenden Polarisationsebenen ausbreitungsfähig, die getrennt voneinander in einen oder mehreren nur einer Polarisation zugeordneten Rechteckhohlleiter verkoppelt werden.
  • Dieses Funktionsprinzip kann in einfacher Ausführung bei einer Polarisationsweiche dahingehend umgesetzt werden, daß zur Übertragung zweier Wellen mit senkrecht zueinander ausgerichteten Polarisationsebenen ein im Querschnitt quadratischer Hohlleiter vorgesehen ist. Zur Auskopplung der einen Polarisationsebene ist in ihm ein querverlaufender Kurzschluß und auf der gegenüberliegenden Seite des zum Querschnitt quadratischen Hohlleiterabschnittes ein in Längsrichtung, d.h. in Ausbreitrichtung verlaufendes rechteckförmiges Koppelfenster angeordnet, in welchem die elektromagnetische Welle mit der in der Ebene des Koppelfensters liegenden Polarisationsebene ausgekoppelt wird. Über einen hier angesetzten Krümmer bzw. einen Winkel kann diese elektromagnetische Welle nurmehr um 90° so umgelenkt werden, daß die Ausbreitrichtung der beiden nunmehr auf jeweils einen Hohlleiterzweig getrennten Wellen parallel zueinander erfolgt. Eine entsprechende Hohlleiterpolarisationsweiche umfaßt des halb an einer Anschlußseite die übereinanderliegenden beiden Polarisationstore für die beiden Hohlleiterzweige, in denen die beiden getrennten elektromagnetischen Wellen übertragen werden. Auch wenn also durch Anordnung eines H-Krümmers nach dem Koppelfenster die Ausbreitrichtung der beiden ausgekoppelten Wellen in Übereinstimmung gebracht werden und die Anschlüsse der beiden Weichenausgänge in einer Ebene liegen können, so bleibt gleichwohl festzustellen, daß die Orientierung der beiden Anschlußhohlleiter senkrecht zueinander liegen. Es breiten sich also durch die Art und Weise der Ankopplung die beiden Polarisationen getrennt voneinander in verschiedenen Hohlleitern in derselben Richtung aus, ihre Orientierung aber im Raum ist immer noch senkrecht zueinander. Sollen hier beispielsweise wie in der Satellitentechnik erforderlich Mikrowellenkonverter nachgeschaltet werden, so müssen auch diese in entsprechender Anpassung an die senkrecht zueinander liegende Polarisation ausgerichtet werden, was bautechnisch immer dann nicht erwünscht ist, wenn auch die Mikrowellenkonverter im Querschnitt Rechteckform aufweisen und damit größeren Raum beanspruchen. Es wäre aber auch grundsätzlich denkbar, daß zumindest bei einem der beiden Hohlleiterzweige ein sogenannter "Twist" d.h. also eine sogenannte "Hohlleiterverdrehung" nach geordnet ist. Dies würde aber zu einer axialen Verlängerung des erforderlichen Bauraumes führen, da dann beispielsweise ein Mikrowellenkonverter erst um die Baulänge des sogenannten "Twist" versetzt angebaut werden könnte.
  • Aufgabe der vorliegenden Erfindung ist es von daher, einen Hohlleiter-Twist insbesondere für eine Hohlleiter-Polarisationsweiche zu schaffen, um bei geringstem beanspruchten Bauraum die Möglichkeit einer Polarisationsebenen-Verdrehung um 90° zu schaffen.
  • Die Aufgabe wird mit dem Gegenstand des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen und Verwendungen dieses Gegenstands sind in den Unteransprüchen angegeben.
  • Durch die vorliegende Erfindung wird in der Tat auf verblüffende Art und Weise bei geringstem Bauraum die Möglichkeit einer Polarisationsebenen-Verdrehung um beispielsweise 90° ermöglicht. Dies wird durch die Art und Weise der Ankopplung eines Hohlleiterzweiges an den anderen ermöglicht, so daß die elektromagnetischen Wellen in der einen Polarisationsebene durch Drehung ihrer Polarisationsebene um 90° in den anderen Hohlleiterzweig überkoppelt werden.
  • Bei Verwendung des beanspruchten Gegenstands in einer Hohlleiter-Polarisationsweiche führt dies dazu, daß beispielsweise ein Hohlleiterabschnitt zur Übertragung zweier Hauptwellentypen H₁₀ und H₀₁ mit zwei senkrecht zueinander liegenden Polarisationsebenen mit einem rechteckförmigen Koppelfenster versehen ist, so daß nach Überkopplung der einen Polarisationsebene in einen nachfolgenden Hohlleiterzweig die überkoppelte Polarisationsebene um 90° so gedreht wird, daß die Polarisationsebene in dem dem Koppelfenster nachgeordneten sowie dem Kurzschluß nachgeordneten Hohlleiterzweig parallel zueinanderliegen.
  • Das erfindungsgemäße Prinzip kann nicht nur bei den Wellentypen H₁₀ und H₀₁, also bei im Querschnitt quadratischen bzw. rechteckförmigen Hohlleitern, sondern auch bei im Querschnitt runden Hohlleitern mit den Wellentypen H₁₁ und H₁₁ verwendet werden.
  • Zum Zweck der Anpassung können die Hohlleiter schließlich auch noch mit Diskontinuitäten versehen werden.
  • Im Gegensatz zu den vorstehend beschriebenen Hohlleiter-Twist, der eine Hohlleiteranordnung zur Drehung der Polarisationsrichtung elektromagnetischer Schwingungen darstellt, ist aus der GB-A 795 862 eine Vorrichtung zur Teilverkoppelung von elektromagnetischen Wellen bekannt geworden. Insbesondere in Figur 4 ist eine Anordnung gezeigt, auf welcher zwei im Querschnitt rechteckförmige Hohlleiter aufeinandersitzen. Der eine Hohlleiter sitzt dabei mit seiner schmalen Längsseite auf dem zweiten Hohlleiter auf dessen breiter Längsseite, und zwar in symmetrischer Mittellängsausrichtung. Zwischen beiden Hohlleitern sind zwei Koppelfenster vorgesehen, die jeweils in einem Winkelmaß von der Längserstreckung abweichen und somit eine Koppelfenster-Überdeckung ergeben, die - bezogen auf die gesamte Länge beider Koppelfenster - sich dann auch über die gesamte Breite der schmalen Längsseite des einen Hohlleiters erstreckt.
  • Es handelt sich hierbei um eine Teilverkoppelung nach Art einer 4-Pol-Schaltung, wobei nur ein Bruchteil einer Welle aus dem einen Hohlleiter ausgekoppelt und zum Teil gedreht wird. Insbesondere auch aus der graphischen Darstellung gemäß Figur 8 geht hervor, daß der Kopplungsfaktor entsprechend der gewünschten Teilauskopplung vergleichsweise gering sein kann.
  • Demgegenüber betrifft die vorliegende Erfindung einen Hohlleiter-Twist, bei dem eine praktisch völlig verlustfreie 100%ige Drehung der Wellen durchgeführt wird.
  • Im folgenden werden Ausführungsbeispiele des Erfindung anhand der Zeichnung dargestellt. Dabei zeigen im einzelnen
  • Fig. 1 :
    ein erstes Ausführungsbeispiel eines Hohlleiter-Polarisationsdrehers in schematischer perspektivischer Darstellung; und
    Fig. 2 :
    ein weiteres Ausführungsbeispiel in perspektivischer Darstellung im Falle einer Hohlleiter-Polarisationsweiche .
    Fig. 3 :
    eine rückwärtige Ansicht der Darstellung gem. Fig. 2.
    Fig. 4 und 5 :
    eine Querschnittsdarstellung und eine rückwärtige Ansicht einer abgewandelten Polarisationsweiche.
  • In Fig. 1 ist ein rechteckförmiger erster Hohlleiter 1 beispielsweise zum Übertragen einer linear polarisierten elektromagnetischen Welle vom Typ H₁₀ gezeigt. Am Ende des Hohlleiters 1 mittig in Längsrichtung auf der Schmalseite 3 verlaufend ist ein Koppelfenster 5 vorgesehen, dessen Höhe in der Regel der Breitseite des Hohlleiters 1 entspricht. In der Praxis wird aber die Höhe des Koppelfensters 5 in der Regel bis etwa 10% geringer als die Breitseite des Hohlleiters 1 ausfallen. Die Schmalseite des Koppelfensters 5 ist etwa nur halb so groß wie dessen Länge. Vor dem Hohlleiter 1 ist in Fig. 1 im Prinzip ein Beispiel für die magnetische Feldlinie 7 gezeigt.
  • Über einen am Ende des Hohlleiters 1 angeordneten Hohlleiter-Winkel 9 wird ohne Veränderung der Polarisationsebene die Ausbreitungsrichtung um 90° zur Vertikalen verändert.
  • Über dem ersten Hohlleiter 1 ist ein zweiter Hohlleiter 13 angeordnet. Der zweite Hohlleiter 13 liegt in Parallellage zum Hohlleiter 1, und zwar so, daß die beiden Koppelfenster 5 in Deckung aufeinanderliegen. Allerdings ist das Koppelfenster 5 im zweiten Hohlleiter 13 zwar auch in dessen Längsrichtung, aber zur Längsachse außermittig angeordnet. Zudem sind die Längs- bzw. Breitseiten des Hohlleiters 13 zum ersten Hohlleiter 1 um 90° vertauscht, so daß im Hohlleiter 13 beispielsweise eine elektromagnetische Welle des Typs H₁₀ angeregt werden kann.
  • Durch diese Anordnung werden die in Fig. 1 gezeigten elektromagnetischen Feldlinien 7 so auf den zweiten Hohlleiter 13 über das Koppelfenster 5 überkoppelt, daß dort magnetische Feldlinien 15 angeregt werden. Dies wird nur durch die außermittige Anordnung des Koppelfensters 5 bezüglich des zweiten Hohlleiters 13 realisiert. Denn im Koppelfenster 5 sind die magnetischen Feldlinien gleichgerichtet, so daß hierüber im zweiten Hohlleiter 13 auf Grund der spezifischen Geometrie eine elektromagnetische Welle angeregt wird, deren Polarisationsebene 90° zur einlaufenden elektromagnetischen Welle im ersten Hohlleiter 1 verdreht ist. Dieses Grundprinzip kann auch bei einer Hohlleiter-Polarisationseiche wie schematisch in Fig. 2 erläutert umgesetzt werden.
  • Fig. 2 unterscheidet sich von Fig. 1 dadurch, daß anstelle des ersten Hohlleiters 1 ein Hohlleiter mit quadratischem Querschnitt zur Übertragung zweier elektromagnetischer Hauptwellen mit senkrecht zueinander ausgerichteten Polarisationsebenen, d.h. beispielsweise Übertragung einer H₁₀ und H₀₁-Welle verwandt wird. Unterhalb des auch in diesem Ausführungsbeispiel in Längsrichtung verlaufenden mittig angeordneten Koppelfensters 5 ist anstelle eines H-Winkels oder H-Krümmers ein Kurzschluß 9′ angeordnet. Die Funktion dieses Kurzschlusses 9′ ist aber die gleiche, denn hierüber soll die elektromagnetische Welle mit der in vertikaler Längsrichtung zur Ebene des Koppelfensters 5 verlaufenden Polarisationsebene, im gezeigten Ausführungsbeispiel also die H₀₁-Welle über das Koppelfenster 5 in den oberen Hohlleiterabschnitt 13 unter Drehung der Polarisationsebene um 90° wie in Fig. 1 erläutert überkoppelt werden.
  • Hinter dem Kurzschluß 9′, der im ersten Hohlleiter 1 etwa mittig aber gegenüberliegend zum Koppelfenster angeordnet ist, wird lediglich die elektromagnetische Welle mit Parallelausrichtung zum Kurzschluß, im gezeigten Ausführungsbeispiel also die H₁₀-Welle in den nachfolgenden Hohlleiterzweig 17 übertragen.
  • Auf Grund dieser Anordnung sind nunmehr die in dem ersten Hohlleiter 1 übertragenen linear polarisierten, senkrecht aufeinanderstehenden elektromagnetischen Wellen auf die beiden Hohlleiterzweige 13 und 17 aufgespalten worden, und zwar derart, daß die beiden Polarisationsebenen parallel zueinander liegen. Dem Koppelfenster nachgeordnet ist auf der gleichen oberen Seite des Hohlleiterzweiges 17 meist noch eine obere Kurzschlußbrücke 9˝, um eine bessere Entkopplung zu erzielen.
  • In der Praxis hat dies zur Folge, daß an der Hohlleiter-Polarisationsweiche ausgangsseitig übereinanderliegend zwei Polarisationstore 19 und 21 in einer gemeinsamen Ebene 23 liegend gebildet werden, an denen beispielsweise nunmehr jeweils ein Mikrowellenkonverter mit gleicher Baulänge und gleicher paralleler Ausrichtung zueinander angebaut werden kann. Beide Polarisationstore sind nur leicht seitlich versetzt.
  • Die Erfindung ist unter anderem für eine Hohlleiter-Polarisationsweiche anhand eines quadratischen Hohlleiters mit zwei Rechteckhohlleiteranschlüssen erläutert worden. Das Funktionsprinzip gilt allgemein aber auch bei einem runden Hohlleiter, an den zwei oder auch mehrere Rechteckhohlleiter angeschaltet sind. In einem quadratischen oder runden Hohlleiter sind zwei Hauptwellentypen mit senkrecht zueinanderliegenden Polarisationsebenen ausbreitungsfähig, die getrennt voneinander in einen oder mehrere nur eine Polarisation zugeordneten Rechteckhohlleiter überkoppelt werden können.
  • Durch Ersetzung eines quadratischen Hohlleiters durch einen runden Hohlleiter können die Wellentypen H₁₁ und H₁₁ übertragen werden.
  • Schließlich wird noch angemerkt, daß die Hohlleiter mit Diskontinuitäten zum Zwecke der Anpassung versehen werden können, die auch in den Seitenwänden quer zum Koppelfenster ausgebildet sein können.
  • Nachfolgend wird noch auf ein abgewandeltes Ausführungsbeispiel einer Polarisationsweiche gemäß den Figuren 4 und 5 Bezug genommen.
  • Bei dieser Polarisationsweiche ist der erste Hohlleiter 1 ebenfalls quadratisch ausgebildet. Der eine linear polarisierte Hohlleiter-Wellentyp breitet sich aber im Gegensatz zu dem Ausführungsbeispiel gemäß den Figuren 2 und 3 nicht in verlängerter Axialrichtung zum Hohlleiter 1 aus, sondern wird über ein separates Auskoppelfenster 5′ ausgekoppelt, welches mittig in Längsrichtung verlaufend an der in Fig. 4 gezeigten linken Seitenwand des Hohlleiters 1 eingebracht ist. Daran schließt sich zur Richtungsumkehrung ein Winkel 27 an.
  • Die erfindungsgemäße Auskopplung des zweiten linear polarisierten und senkrecht zum ersten Wellentyp stehenden Wellentyps erfolgt über das in Fig. 4 auf der gegenüberliegenden rechten Seite des Hohlleiters 1 eingebrachte Koppelfenster 5, welches dort außermittig im Hohlleiter 1 angebracht ist, wie dies insbesondere aus Fig. 5 ersichtlich ist. Dort wird unter Verdrehung der Polarisationsebene der zweite Hohlleiterwellentyp ausgekoppelt und ebenfalls durch einen nachfolgenden Winkel 25 in der Richtung umgekehrt. Jeweils gegenüberliegend zum Auskoppelfenster 5′ bzw. zum Koppelfenster 5 ist ein Kurzschluß 9′ angebracht. Am Ende der Ausbreitrichtung zum Hohlleiter 1 ist ein Hohlleiterabschluß 31 vorgesehen.
  • Im Gegensatz zu dem Ausführungsbeispiel gemäß den Figuren 2 und 3 sind die vom Hohlleiter 1 an den Koppel- bzw. Auskoppelfenster 5 bzw. 5′ ausgehenden Rechteckhohlleiter mit ihrer Schmalseite jeweils aufeinanderzuliegend ausgerichtet, wohingegen beim Ausführungsbeispiel nach Fig. 2 und 3 die nach dem Koppelfenster 5 weiterverlaufenden Hohlleiterzweige 13 und 17 mit ihrer Breitseite aufeinander zu ausgerichtet sind. Aber auch beim Ausführungsbeispiel nach Fig. 4 und 5 können die beiden zu den beiden Hohlleiterzweigen 13 und 17 gehörenden Polarisationstore 19 und 21 in einer gemeinsamen Ebene liegen.

Claims (14)

  1. Hohlleiter-Twist, bestehend aus einem ersten und einem zweiten Hohlleiter (1, 13), die sich in einem Koppelbereich überdecken, wo sie ein gemeinsames Koppelfenster (5) aufweisen, das in einer Ebene parallel zu den E-Feldlinien der H₁₀-Welle des ersten Hohlleiters (1) liegt und sich außermittig in der Fläche parallel zur H-Ebene des zweiten Hohlleiters zur Erzielung einer Verkopplung der in ihrer Orientierung um 90° gedrehten Wellen angeordnet ist.
  2. Hohlleiter-Twist nach Anspruch 1, dadurch gekennzeichnet, daß der erste und zweite Hohlleiter (1, 13) zwei Rechteckhohlleiter sind und daß das Koppelfenster (5) am ersten Rechteckhohlleiter mittig an dessen Schmalseite und am zweiten Hohlleiter (13) außermittig an dessen Breitseite angeordnet ist.
  3. Hohlleiter-Twist nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Koppelfenster (5) in dem zweiten Hohlleiter (13) unmittelbar am Rand der Breitseite des Hohlleiters (13) sitzt.
  4. Hohlleiter-Twist nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß am Ende des ersten Hohlleiters (1) nach dem Koppelfenster (5) ein H-Krümmer-, H-Winkelstück oder ein Kurzschluß angeordnet ist.
  5. Verwendung eines Hohlleiter-Twistes nach einem der Ansprüche 1 bis 4 für eine Polarisationsweiche, dadurch gekennzeichnet, daß der erste Hohlleiter (1) zum Übertragen zweier linear polarisierter Hauptwellentypen mit senkrecht zueinander ausgerichteten Polarisationsebenen ausgebildet ist, daß in diesem Hohlleiter (1) zu dem mittig und parallel zur Ausbreitrichtung der Wellen eingebrachten Koppelfenster (5) gegenüberliegend ein Kurzschluß (9′) zum weiteren Übertragen lediglich des einen Hauptwellentyps mit einer zur Ebene des Koppelfensters (5 ) parallelen Polarisationsebene und zum Überkoppeln des weiteren Hauptwellentyps mit senkrecht zum ersten und zur Ebene des Koppelfensters (5) stehenden Polarisationsebene in den zweiten Hohlleiter (13) derart vorgesehen ist, daß die Polarisationsebenen wie auch die Ausbreitrichtungen der beiden linear polarisierten Wellen in den beiden Hohlleiterzweigen (13, 17) jeweils parallel zueinander liegen.
  6. Verwendung nach Anspruch 5, dadurch gekennzeichnet, daß an dem ersten Hohlleiter das Koppelfenster (5) zum Auskoppln des einen linear polarisierten Hauptwellentyps in Ausbreitrichtung außermittig und an der gegenüberliegenden Seite zum ersten Hohlleiter (1) aber in Ausbreitrichtung versetzt liegt und ein zweites Auskoppelfenster (5′) mittig zur weiteren Übertragung lediglich des anderen Hauptwellentyps angebracht ist, welches ebenfalls in Längsrichtung des ersten Hohlleiters (1) derart verläuft, daß die Polarisationsebenen der beiden linear polarisierten Wellen in den beiden am Koppelfenster bzw. Auskoppelfenster (5, 5′) jeweils mittig angekoppelten Hohlleiterzweigen (13, 17) jeweils parallel zueinander liegen.
  7. Verwendung nach Anspruch 6, dadurch gekennzeichnet, daß sich an das Koppel- bzw. Auskoppelfenster (5, 5′) für die beiden Hohlleiterzweige (13, 17) jeweils ein die Ausbreitrichtung der Wellen umgekehrende Krümmer bzw. Winkel (25, 27) anschließen.
  8. Verwendung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß das Koppelfenster (5) zum Verkoppeln der in ihrer Orientierung. um 90° gedrehten Wellen dem gegenüberliegenden Auskoppelfenster (5′) in Ausbreitrichtung des ersten Hohlleiters (1) nachgeordnet ist.
  9. Verwendung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß jeweils gegenüberliegend zum Koppel- bzw. Auskoppelfenster (5, 5′) ein den weiteren quer dazu verlaufenden Querschnitt durch den ersten Hohlleiter (1) verengender Kurzschluß (9′) noch vor einem den ersten Hohlleiter (1) abschließenden Hohlleiterverschluß (31) vorgesehen ist.
  10. Verwendung nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, daß der erste Hohlleiter (1) einen quadratischen Querschnitt zur Übertragung einer H₁₀- und H₀₁-Welle aufweist.
  11. Verwendung nach Ansprüch 10, dadurch daß die beiden Hohlleiterzweige (13, 17), die dem Koppelfenster (5) bzw. dem Kurzschluß (9′) nachgeordnet sind, jeweils aus einem Rechteckhohlleiter bestehen, deren Längs- bzw. Breitseiten gleich ausgerichtet liegen.
  12. Verwendung nach einem der Ansprüche 5 bis 11, dadurch gekennzeichnet, daß die beiden Hohlleiterzweige (13, 17) mit jeweils einem Polarisationstor (19, 21) in Verbindung stehen, welche in einer gemeinsamen Anschlußebene (23) an der Polarisationsweiche liegen.
  13. Verwendung nach einem der Ansprüche 5 bis 12, dadurch gekennzeichnet, daß der erste Hohlleiter (1) einen runden Querschnitt zur Übertragung der Wellentypen H₁₁ und H₁₁ aufweist.
  14. Verwendung nach einem der Ansprüche 5 bis 13, dadurch gekennzeichnet, daß die Hohlleiter (1, 13, 17) zum Zweck der Anpassung mit Diskontinuitäten versehen sind.
EP89108556A 1988-07-16 1989-05-12 Hohlleiter-Twist Expired - Lifetime EP0351514B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3824150 1988-07-16
DE3824150A DE3824150A1 (de) 1988-07-16 1988-07-16 Hohlleiter-twist

Publications (3)

Publication Number Publication Date
EP0351514A2 EP0351514A2 (de) 1990-01-24
EP0351514A3 EP0351514A3 (en) 1990-09-05
EP0351514B1 true EP0351514B1 (de) 1994-11-09

Family

ID=6358813

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89108556A Expired - Lifetime EP0351514B1 (de) 1988-07-16 1989-05-12 Hohlleiter-Twist

Country Status (3)

Country Link
EP (1) EP0351514B1 (de)
AT (1) ATE114077T1 (de)
DE (2) DE3824150A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105071006A (zh) * 2015-08-31 2015-11-18 北京遥测技术研究所 一种新型正交模耦合器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4009288C2 (de) * 1990-03-22 1994-03-03 Siemens Ag Rechteckhohlleiter mit E-H-Doppelversatz
WO2005099026A1 (ja) * 2004-03-30 2005-10-20 Murata Manufacturing Co., Ltd. 導波管コーナおよび無線装置
FR2904478B1 (fr) 2006-07-28 2010-04-23 Cit Alcatel Dispositif de transduction orthomode a compacite optimisee dans le plan de maille, pour une antenne
WO2010056609A2 (en) * 2008-11-11 2010-05-20 Viasat, Inc. Integrated orthomode transducer
DE102009007317A1 (de) * 2009-02-03 2010-08-12 Continental Automotive Gmbh Ventil
JP5780995B2 (ja) * 2012-03-27 2015-09-16 三菱電機株式会社 方形導波管の接続構造
CN105140610B (zh) * 2015-09-08 2018-03-02 安徽四创电子股份有限公司 一种用于脊波导缝隙天线阵的等效180°脊波导弯

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE976910C (de) * 1939-01-24 1964-07-23 Siemens Ag Hohlleiteranordnung zur Drehung der Polarisationsrichtung elektromagnetischer Schwingungen
DE2748956A1 (de) * 1977-11-02 1979-05-03 Licentia Gmbh Hohlleitertwist

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731602A (en) * 1946-01-10 1956-01-17 Julian S Schwinger Directional coupler
NL200546A (de) * 1954-10-29
US2883628A (en) * 1957-06-25 1959-04-21 Whilden G Heinard Reverse direction waveguide coupler
GB1018173A (en) * 1962-11-20 1966-01-26 Microwave Ass A rectangular waveguide section
FR2057237A5 (de) * 1969-08-07 1971-05-21 Thomson Csf
GB1591719A (en) * 1976-12-21 1981-06-24 Arconi Co Ltd Orthogonal mode transducers
DE3010360C2 (de) * 1980-03-18 1985-08-08 Siemens AG, 1000 Berlin und 8000 München Polarisationsweiche
DE3345689A1 (de) * 1983-12-16 1985-07-11 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Breitband-polarisationsweiche

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE976910C (de) * 1939-01-24 1964-07-23 Siemens Ag Hohlleiteranordnung zur Drehung der Polarisationsrichtung elektromagnetischer Schwingungen
DE2748956A1 (de) * 1977-11-02 1979-05-03 Licentia Gmbh Hohlleitertwist

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105071006A (zh) * 2015-08-31 2015-11-18 北京遥测技术研究所 一种新型正交模耦合器
CN105071006B (zh) * 2015-08-31 2017-09-29 北京遥测技术研究所 一种新型正交模耦合器

Also Published As

Publication number Publication date
DE3824150C2 (de) 1989-11-23
EP0351514A3 (en) 1990-09-05
ATE114077T1 (de) 1994-11-15
EP0351514A2 (de) 1990-01-24
DE3824150A1 (de) 1989-07-06
DE58908620D1 (de) 1994-12-15

Similar Documents

Publication Publication Date Title
DE2443166C3 (de) Systemweiche zur Trennung zweier Signale, die aus je zwei doppelt polarisierten Frequenzbändern bestehen
DE3781398T2 (de) Zwei-moden-hohlleiterfilter mit einem koppelelement zum erreichen einer asymmetrischen filterkurve.
DE69827187T2 (de) Akustische Oberflächenwellenanordnung mit Nahfeldkopplung und differentiellen Ein- und Ausgängen
DE3246317A1 (de) Wellenleiter fuer zweifach polarisierte zwei-frequenz-signale und verfahren zur wellenleitung solcher signale
DE3241890C2 (de)
DE102011106590B4 (de) Orthomodenkoppler für ein Antennensystem
DE69121353T2 (de) Doppelseptum-Polarisationsdreher
EP0351514B1 (de) Hohlleiter-Twist
DE60319512T2 (de) Drehgelenk
DE68918426T2 (de) Doppelfrequenz strahlende Vorrichtung.
DE4213800A1 (de) Gewichteter Reflektor für eine Oberflächenwellenanordnung
DE2800266A1 (de) Kompensations-anordnung fuer zwei relativ gegeneinander verdrehte hohlleiter
EP0147693B1 (de) Breitband-Polarisationsweiche
DE68915134T2 (de) Mikrowellen-Bandpassfilter in Kammleitungsform.
EP0419892B1 (de) Mikrowellen-Polarisationsweiche
DE19839889C1 (de) Übergang zwischen zwei um 45 DEG gegeneinander verdrehten Quadrathohlleitern
DE2737125C2 (de) Übertragungssystem
DE2515503B2 (de) Ultraschallverzögerungsleitung zum Betrieb in einem Nichtdispersionsmodus
EP3331089B1 (de) Orthomodenkoppler zur reduzierung einer verkopplung von grundmoden
DE3822981C2 (de)
DE2747632C2 (de) Antennenspeisesystem für Doppelpolarisation
DE10231559A1 (de) R-Schalter
DE69722950T2 (de) Hohlleiter für sondensystem mit zwei polarisationen
EP0280151B1 (de) Mikrowellen-Polarisationsweiche
WO2023222592A1 (de) Einrichtung zum kombinieren oder aufteilen von mikrowellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB LI NL SE

17P Request for examination filed

Effective date: 19910206

17Q First examination report despatched

Effective date: 19930505

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941109

Ref country code: BE

Effective date: 19941109

REF Corresponds to:

Ref document number: 114077

Country of ref document: AT

Date of ref document: 19941115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58908620

Country of ref document: DE

Date of ref document: 19941215

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950209

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950116

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950531

Ref country code: CH

Effective date: 19950531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990305

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990324

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990420

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990520

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000512

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000512

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST