EP0336252A1 - Treibkäfig für ein Unterkalibergeschoss - Google Patents

Treibkäfig für ein Unterkalibergeschoss Download PDF

Info

Publication number
EP0336252A1
EP0336252A1 EP89105382A EP89105382A EP0336252A1 EP 0336252 A1 EP0336252 A1 EP 0336252A1 EP 89105382 A EP89105382 A EP 89105382A EP 89105382 A EP89105382 A EP 89105382A EP 0336252 A1 EP0336252 A1 EP 0336252A1
Authority
EP
European Patent Office
Prior art keywords
sabot
plate
segments
caliber floor
cavities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89105382A
Other languages
English (en)
French (fr)
Other versions
EP0336252B1 (de
Inventor
Johann Dipl.-Ing. Von Gerlach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynamit Nobel AG
Original Assignee
Dynamit Nobel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamit Nobel AG filed Critical Dynamit Nobel AG
Publication of EP0336252A1 publication Critical patent/EP0336252A1/de
Application granted granted Critical
Publication of EP0336252B1 publication Critical patent/EP0336252B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B14/00Projectiles or missiles characterised by arrangements for guiding or sealing them inside barrels, or for lubricating or cleaning barrels
    • F42B14/06Sub-calibre projectiles having sabots; Sabots therefor

Definitions

  • the invention is directed to a drive cage that can be dismantled into segments with a positive fit to a lower-caliber floor, having a front guide area and a drive area with a drive surface, the profile of the drive surface gradually decreasing from the guide area approaching the peripheral area of the lower-caliber floor.
  • a sabot To fire a sub-caliber floor, a sabot is used, via which the pressure of the propellant gases is transmitted to the sub-caliber floor for acceleration and through which the sub-caliber floor is guided in the pipe.
  • the sabot for a sub-caliber floor is a rotationally symmetrical body, which is divided into (usually three) segments by separating cuts so that it disassembles after leaving the gun barrel and falls off the sub-caliber floor.
  • a known sabot (DE 3 033 041-A) has a guide area, e.g. in the form of a front guide plate, and a drive area, usually also in the form of a rear drive plate, and thus has an approximately dog-bone-like appearance.
  • the kinetic energy that can be transferred to a sub-caliber floor is limited by the material properties of the sub-caliber floor.
  • the stresses that occur must be influenced in terms of design, and the higher the energy transfer possible, the smaller the maximum compressive and tensile stresses caused by the propellant gases in the area of the transmission surface to the lower-caliber floor.
  • the tensile stress on the lower-caliber floor has the highest value; it turns back towards the tail unit into a compressive stress area; a compressive stress range also occurs towards the top of the lower-caliber floor, which is due to the mass distribution in the front area of the lower-caliber floor.
  • a sabot is modified in such a way that instead of a drive plate, the drive surface is pulled apart axially and the drive surface has a sagging profile that approximates the outer edge of the peripheral region of the projectile.
  • the propellant charge cage covers about half of the floor. This shape of the drive surface improves the form fit between the projectile and sabot and reduces the mass fraction of the sabot. With such a shape of the sabot, the part of the projectile that is no longer surrounded by the drive surface can tear off; this limits the maximum LPG pressure.
  • the invention has for its object to construct the lightest possible sabot for a sub-caliber floor so that the highest possible propellant gas pressure can be used to accelerate the sub-caliber floor.
  • a sabot is proposed according to the invention, which is characterized in that the drive surface extends from the front guide area to the end area of the lower-caliber floor.
  • the rear sealed drive plate also has a guiding function in the tube.
  • stabilizers of the same caliber and / or radially projecting projections are usually required.
  • the plane of the center of gravity of the drive surfaces is already very close to the center of gravity of the lower-caliber floor and sabot, so that guide elements that are not used at all, such as e.g. Guide ribs, sufficient at the rear end of the sabot, generally a sufficiently stable acceleration in the tube is possible even without such additional guide elements.
  • guide elements that are not used at all such as e.g. Guide ribs
  • the compressive stress occurring in the rear area of the lower-caliber floor is essentially identical to the static compressive stress which can no longer be reduced due to the gas pressure of the propellant charge.
  • the tension course is generally low and smooth.
  • the sabot according to the invention permits very high propellant pressures, it is possible to manufacture it entirely from plastic, preferably from reinforced plastic, very particularly preferably from a carbon fiber reinforced plastic; Epoxy resin is preferred as the plastic. It turns out surprisingly that because of the quite uniform contact pressure over the entire surface of the lower-caliber floor, a flawlessly high power transmission from the sabot to the floor can be achieved without having to provide any additional aids on the sabot.
  • Such known aids are, for example, a (divisible) metallic sleeve within a plastic sabot or between the projectile and propellant charge corresponding bumps such as a thread cut into the projectile for a longitudinally axial positive engagement.
  • a plastic drive cage according to the invention it may be advantageous, particularly for manufacturing and / or technological reasons, not to design it solid but in a ribbed structure that is open towards the front.
  • the cavities formed must be filled with cores made of the same or different materials because of the high compressive strength required. It is therefore advantageous if the cavities are wedge-like. In the acceleration phase of the lower-caliber floor, such cores are held in their position due to the inertia. Such thinner wall segments have higher strength values, and potential heat dissipation and shrinkage problems during manufacture are more likely to be avoided.
  • Another major advantage is that the properties of the sabot as a whole can be further improved by a special choice of material for the cores to be used.
  • the properties of high-strength anisotropic material can be optimally used both for the frame of the segments of the sabot and for the cores to be used.
  • the cavities in the segments of the sabot are filled with wedge-shaped and plate-shaped elements, the axis of the lower-caliber floor being in the plane of the plate-shaped elements.
  • the plate shape preferred for filling the cavities can also be transferred to the segmented sabot in another form, namely if plate-like parts are provided between the individual segments of the sabot, the mechanical properties of which are optimized to transmit the highest possible propellant gas pressure to the lower-caliber floor.
  • the increased manufacturing effort is not so significant since the production of anisotropic plate-shaped parts is relatively simple.
  • Plate-shaped parts are preferably used in the cores or between the segments made of materials with oriented fibers, while fiber-filled molding compounds are used for the wedge-shaped cores or else for the segment skeleton.
  • regions can be formed during production which act as inflow surfaces in the sabot and favor the disintegration of the sabot after leaving the tube.
  • a lower-caliber floor 1 with a diameter d 1 should be fired in a tube 2 with a diameter d 2.
  • the sabot 3 seals the powder gases (indicated here by arrows p), through which the force is transmitted to the lower-caliber floor 1, and it also takes over the leadership in the pipe 2.
  • the sabot is a rotationally symmetrical body made up of three segments. His (seen in the weft direction) front area is formed by a guide plate 4. According to the invention, the drive area has a drive surface 5 which extends practically to the end of the lower-caliber floor. It has the effect that the greatest possible acceleration forces can be introduced into the lower-caliber floor 1 practically distributed over the entire length of the lower-caliber floor 1 with sufficient radial pressure.
  • the guide area and the drive area practically meet; a frustoconical part 7 connects to the guide plate 4.
  • the entire sabot 3 is formed by three segments. Due to a storage area 8 on the end face of the guide plate 4, the sabot 3 is released along the seams 9 from the lower-caliber floor 1 as a result of the high speed (> 1000 m / s) when leaving the pipe.
  • frictional forces alone are generally sufficient. out; If necessary, grooves, threads or shoulders could improve the transmission of power.
  • the sabot 3 can be made entirely of reinforced plastic.
  • the contour of the drive surface 5 of the drive area is that of a truncated cone.
  • the sabot extends to the tail unit 6 of the lower-caliber floor 1.
  • the center of gravity of the drive surface is very far forward due to this shape, so that an additional guide in the rear area, which was previously very important especially with a disk-shaped drive surface, is less important; it can often even be omitted entirely.
  • FIG. 1 two lines 11, 12 are drawn in with dashed lines, which are intended to indicate two other possible configurations of the drive surface, to which reference is made in FIG. 3.
  • the contour 11 indicates that the generatrix 5 of the drive surface does not necessarily have to be a straight line, but can also sag concavely or convexly, with a strictly monotonous, steady increase in the diameter in the weft direction.
  • At the contour 12 extends the drive body 7 to the tail unit 6 of the lower-caliber floor 1. This course does not necessarily have to be straight.
  • a drive body 7 which extends to the end of the lower-caliber floor 1 or beyond, is somewhat more complex to manufacture; It has been shown that a drive body 7 which only extends to the tail unit 6 or into the tail unit also comes very close to the optimal drive.
  • the voltage curve along the lower-caliber floor is shown in a schematically simplified manner in FIG. 3.
  • the propellant gas-induced pressure p at the end of the lower-caliber floor produces a compressive stress (indicated schematically by - p), which decreases to l 1 and then has only a weakly negative or positive value according to contour 5 in FIG. 1.
  • the voltage curve is shown in dashed lines (13) as it would occur if the propellant gas pressure were introduced into the propellant cage at a level of 4 .
  • There would be a very high voltage peak at 4 negative stresses (compressive stresses) would be expected close behind, because the front area of the lower-caliber floor is pressing here.
  • FIG. 1 Due to the high peaks and the high gradients of the stress curve, the material stress on the lower-caliber floor would be very critical.
  • a voltage profile that corresponds to the contour 12 in FIG. 1 is also shown in FIG gur 3 shown. The course is very smooth, tensile stresses can be avoided entirely.
  • FIG. 4 shows the top view from the front of a lower-caliber floor 1, surrounded by a sabot 14, which can be divided into three parts. Each of these segments has a cavity 14 which tapers continuously towards the tail unit 6.
  • each cavity 14 is filled with a usually multi-part core, the material of the frame 15 of a segment need not be identical to the core material.
  • the core itself can also consist of differently shaped elements, including different materials. Two examples are given in FIG. 4: firstly, the core consists of four elements 16, which are very similar to the "large" sabot segments; however, the variant with two different core element types 17, 18 is particularly preferred.
  • Plate-shaped elements 18 are high-strength plastic parts with oriented fibers; the wedge-shaped elements 17 preferably consist of molding compounds filled with short fiber.
  • the fibers in the plate-shaped elements 18 should run in several layers in both the radial and the axial direction. Layers which are inclined at 45 ° or perpendicular to the contour 12 of the sabot can also be provided. It goes without saying that the core elements 16, 17, 18 generally have to be machined, especially in the radial area, so that a sufficiently high, uniform compressive strength of the plastic driving cage is ensured.
  • FIG. 5 shows again only schematically that between the usually three large segments 19, which in turn may not have cavities filled with cores as shown in FIG. 4, plate-like elements 20 can be contained, which from the outer surface of the sabot reach to the lower-caliber floor 1. If the segments 19 contain radial boundaries 21 (shown on the left in FIG. 5), wedges 21 similar to the wedges 17 in FIG. 4 are additionally required. However, the segments can also be machined as by line 23 It is shown on the right in FIG. 5 that no further parts are required between the plate-shaped elements 20 and the segments 19.
  • An embodiment of the sabot according to FIG. 5 enables an even better power transmission to the lower-caliber floor, wherein the grooves or threads already mentioned above can also be attached to the transition area 24 from the plate-shaped elements 20 to the lower-caliber floor 1.
  • FIG. 6 shows a plate-shaped element 20 according to FIG. 5, in which a nose-like extension 25 is formed in the guide area 4.
  • the projections protrude forward from the sabot and form an inflow surface through which the detachment of the sabot from the lower-caliber floor is promoted after leaving the pipe. It is immediately obvious that the additional manufacturing effort for such an embodiment according to the invention is quite small.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Types And Forms Of Lifts (AREA)
  • Elevator Control (AREA)
  • Vending Machines For Individual Products (AREA)
  • Toys (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Wind Motors (AREA)
  • Portable Nailing Machines And Staplers (AREA)
  • Earth Drilling (AREA)

Abstract

Der üblicherweise aus drei Segmenten aufgebaute Treibkäfig (3) für ein Unterkalibergeschoß (1) ist so ausgebildet, daß die Fläche (5), auf die Treibladungsgase wirken, vorzugsweise kegelstumpfförmig mit der Spitze nach hinten bis zum Ende des Unterkalibergeschosses (1) ausgezogen ist. Dadurch kann praktisch über die gesamte Fläche des Unterkalibergeschosses die Kraft gleichmäßig verteilt übertragen werden. Gleichzeitig wird die Übertragung zwischen dem Treibkäfig (3) und dem Unterkalibergeschoß (1) so erhöht, daß der gesamte Treibkäfig (3) aus faserverstärktem Kunststoff gefertigt werden kann, daß nicht unbedingt zusätzliche formschlüssige Übergänge zwischen Treibkäfig (3) und Unterkalibergeschoß vorhanden sein müssen und trotzdem ein sehr hoher Treibgasdruck (p) ausgenutzt werden kann. Bevorzugt weist jedes Segment in Schußrichtung offene keilähnliche Hohlräume (14) auf, die mit Kernen (16, 17, 18) ausgefüllt sind. Vorteilhaft sind auch plattenähnliche Teile (20) zwischen den Segmenten (19).

Description

  • Die Erfindung richtet sich auf einen in Segmente zerlegbaren Treibkäfig mit Formschluß zu einem Unterkalibergeschoß, einen vorderen Führungsbereich und einen Antriebsbereich mit einer Antriebsfläche aufweisend, wobei sich das Profil der Antriebs­fläche vom Führungsbereich her stetig abnehmend dem Umfangsbe­reich des Unterkalibergeschosses annähert.
  • Zum Verschießen eines Unterkalibergeschosses wird ein Treibkä­fig verwendet, über den im wesentlichen der Druck der Treibgase zur Beschleunigung auf das Unterkalibergeschoß übertragen und durch den das Unterkalibergeschoss im Rohr geführt wird. Der Treibkäfig für ein Unterkalibergeschoß ist ein rotationssymme­trischer Körper, der durch Trennschnitte in (üblicherweise drei) Segmente zerteilt ist, damit er sich nach dem Verlassen des Waffenrohres zerlegt und vom Unterkalibergeschoß abfällt.
  • Ein bekannter Treibkäfig (DE 3 033 041-A) hat einen Führungs­bereich, z.B. in Form einer vorderen Führungsplatte, und einen Antriebsbereich, meist auch in Form einer hinteren Antriebs­platte, und hat so näherungsweise ein hundeknochenähnliches Aussehen.
  • Die kinetische Energie, die auf ein Unterkalibergeschoß so übertragen werden kann, wird begrenzt durch die Materialeigen­schaften des Unterkalibergeschosses. Die auftretenden Spannun­gen sind konstruktiv zu beeinflussen, und es ist eine um so hö­here Energieübertragung möglich, je kleiner die durch die Treibladungsgase bedingten maximalen Druck- und Zugspannungen im Bereich der Übertragungsfläche auf das Unterkalibergeschoß sind. In Höhe der Antriebsplatte weist die Zugspannung im Un­terkalibergeschoß den höchsten Wert auf; sie schlägt nach hin­ten zum Leitwerk hin in einen Druckspannungsbereich um; auch zur Spitze des Unterkalibergeschosses hin tritt wiederum ein Druckspannungsbereich auf, der durch die Massenverteilung im vorderen Bereich des Unterkalibergeschosses bedingt ist.
  • In der DE 2 836 963-A und der EP 152 492-A sind ein Treibkäfig dahingehend abgewandelt, daß anstelle einer Antriebsplatte die Antriebsfläche axial auseinandergezogen ist und die Antriebs­fläche ein durchhängendes, sich an die Außenkante des Umfangs­bereichs des Geschosses annäherndes Profil aufweist. Der Treibladungskäfig umfaßt etwa die Hälfte des Geschosses. Durch diese Form der Antriebsfläche wird der Formschluß zwischen Ge­schoß und Treibkäfig verbessert und der Massenanteil des Treib­käfigs verringert. Bei einer solchen Form des Treibkäfigs kann der nicht mehr von der Antriebsfläche umgebene Teil des Ge­schosses abreißen; der maximale Treibgasdruck wird dadurch be­grenzt.
  • Der Erfindung liegt die Aufgabe zugrunde, einen möglichst leichten Treibkäfig für ein Unterkalibergeschoß konstruktiv so zu gestalten, daß ein möglichst hoher Treibladungsgasdruck zur Beschleunigung des Unterkalibergeschosses ausgenutzt werden kann.
  • Zur Lösung der Aufgabe wird gemäß der Erfindung ein Treibkäfig vorgeschlagen, der dadurch gekennzeichnet ist, daß die An­triebsfläche von dem vorderen Führungsbereich bis zum Endbe­reich des Unterkalibergeschosses reicht.
  • Es hat sich überraschend gezeigt, daß ein relativ leichter Treibkäfig aus Kunststoff allen Anforderungen genügen kann.
  • Die Krafteinleitung in das Unterkalibergeschoß wird durch den erfindungsgemäßen Treibkäfig praktisch gleichmäßig auf die ge­samte Mantelfläche des Unterkalibergeschosses verteilt. Dadurch gehen die Maximalwerte zurück, und der Spannungsverlauf in An­triebsrichtung wird wesentlich gleichmäßiger. Es läßt sich er­reichen, daß nur Druckspannungen und kaum Zugspannungen auftre­ten. Bei gleicher Übertragungsfläche kann beispielsweise bei einer kegelförmigen Kontur des Treibkäfigs im Vergleich zu ei­ner zylindrischen Kontur die Kraftübertragung vom Treibkäfig zum Unterkalibergeschoß mehr als verdoppelt werden.
  • Bei bekannten hundeknochenähnlichen Treibkäfigen kommt auch der hinteren abgedichteten Antriebsplatte eine Führungsfunktion im Rohr zu. Bei sehr langen Geschossen sind gemäß EP 192 492-A meist kalibergleiche Leitwerke und/oder radial vorstehende Vor­sprünge erforderlich. Bei dem erfindungsgemäßen Treibkäfig liegt die Ebene der Schwerpunkte der Antriebsflächen schon sehr nahe an dem Schwerpunkt von Unterkalibergeschoß und Treibkäfig zusammen, so daß allenfalls wenig beanspruchte Leitelemente, wie z.B. Führungsrippen, am hinteren Ende des Treibkäfigs aus­reichen, i.a. ist sogar ohne solche zusätzlichen Führungsele­mente eine ausreichend stabile Beschleunigung im Rohr mög­lich. Es kommt zu einer Verbesserung der Geschoßstabilität.
  • Beim Treibkäfig gemäß der Erfindung ist die im hinteren Bereich des Unterkalibergeschosses auftretende Druckspannung im wesent­lichen identisch mit der aufgrund des Gasdrucks der Treibladung nicht weiter zu verkleinernden statischen Druckspannung. Dage­gen lassen sich aufgrund dieser Konstruktion im gesamten Ver­lauf der Unterkalibermunition Zugspannungen weitgehend vermei­den, und der Spannungsverlauf ist allgemein niedrig und glatt.
  • Obwohl der erfindungsgemäße Treibkäfig sehr hohe Treibgasdrücke zuläßt, ist es möglich, ihn voll aus Kunststoff, vorzugsweise aus vertärktem Kunststoff, ganz besonders bevorzugt aus einem kohlefaserverstärkten Kunststoff, zu fertigen; Epoxidharz ist als Kunststoff bevorzugt. Es zeigt sich überraschend, daß wegen der recht gleichförmigen Anpreßkraft über der gesamten Oberflä­che des Unterkalibergeschosses eine einwandfreie hohe Kraft­übertragung von dem Treibkäfig auf das Geschoß geleistet werden kann, ohne weitere Hilfsmittel am Treibkäfig vorseheh zu müs­sen. Solche bekannten Hilfsmittel sind beispielsweise eine (teilbare) metallische Büchse innerhalb eines Treibkäfigs aus Kunststoff oder zwischen Geschoß und Treibladung miteinander korrespondierende Unebenheiten wie z.B. ein in das Geschoß ein­geschnittenes Gewinde zum längsaxial wirkenden Formschluß.
  • Bei einem erfindungsgemäßen Treibkäfig aus Kunststoff kann es vor allem aus fertigungstechnischen und/oder technologischen Gründen günstig sein, ihn nicht massiv sondern in einer ver­rippten, nach vorne offenen Struktur auszuführen. Die dabei ge­bildeten Hohlräume müssen wegen der erforderlichen hohen Druck­festigkeit mit entsprechenden Kernen aus dem gleichen oder an­deren Werkstoffen ausgefüllt werden. Vorteilhaft ist es daher, wenn die Hohlräume keilähnlich ausgebildet sind. In der Be­schleunigungsphase des Unterkalibergeschosses werden solche Kerne aufgrund der Massenträgheit in ihrer Position gehalten. Solche Segmente mit dünneren Wänden haben höhere Festigkeits­werte, und es lassen sich mögliche Probleme bei der Wärmeabfuhr und Schrumpfung während der Herstellung eher vermeiden. Ein we­sentlicher Vorteil ist außerdem, daß man durch eine spezielle Materialwahl für die einzusetzenden Kerne die Eigenschaften des Treibkäfigs als ganzes noch weiter verbessern kann. Sowohl für das Gerippe der Segmente des Treibkäfigs als auch für die ein­zusetzenden Kerne lassen sich die Eigenschaften hochfester an­isotoper Werkstoff optimal nutzen.
  • Besonders vorteilhaft ist es, wenn man die Hohlräume in den Segmenten des Treibkäfigs mit keilförmigen und plattenförmigen Elementen ausfüllt, wobei die Achse des Unterkalibergeschosses in der Ebene der plattenförmigen Elemente liegt.
  • Die zur Ausfüllung der Hohlräume bevorzugte Plattenform ist auch noch in anderer Form auf den segmentierten Treibkäfig zu übertragen, nämlich wenn zwischen den einzelnen Segmenten des Treibkäfigs plattenähnliche Teile vorgesehen sind, deren mecha­nische Eigenschaftswerte dahingehend optimiert sind, einen mög­lichst hohen Treibladungsgasdruck auf das Unterkalibergeschoß zu übertragen. Der erhöhte Fertigungsaufwand fällt nicht so sehr ins Gewicht, da die Fertigung anisotoper plattenförmiger Teile relativ einfach ist. Bevorzugt werden plattenförmige Teile in den Kernen bzw. zwischen den Segmenten aus Werkstoffen mit gerichteten Fasern eingesetzt, während für die keilförmigen Kerne oder auch für das Segmentgerippe fasergefüllte Preßmassen verwendet werden.
  • Insbesondere bei plattenförmigen Elementen für die Kerne oder bei plattenförmigen Teilen zwischen den Segmenten können bei der Herstellung Bereiche angeformt werden, die im Treibkäfig als Anströmflächen wirken und den Zerfall des Treibkäfigs nach Verlassen des Rohres begünstigen.
  • Die Erfindung ist beispielhaft in der Zeichnung dargestellt und weiter beschrieben. Es zeigen:
    • Figur 1 Schnitt durch einen Treibkäfig mit einem Unterkali­bergeschoß;
    • Figur 2 Kräfteverteilung auf der Antriebsfläche des Treibkä­figs (Ausschnitt);
    • Figur 3 Spannungsverlauf in Achsrichtung des Unterkaliberge­schosses.
    • Figur 4 Draufsicht auf die Vorderseite eines Treibkäfigs mit keilähnlichen Hohlräumen und deren Ausfüllung mit zwei verschiedenen Kerntypen;
    • Figur 5 Draufsicht auf die Vorderseite eines Treibkäfigs mit durchgehenden plattenförmigen Teilen zwischen den Segmenten;
    • Figur 6 Seitenansicht eines plattenförmigen Teiles nach Figur 5 mit einer Anströmfläche an seiner Stirnseite.
  • Gemäß Figur 1 soll ein Unterkalibergeschoß 1 mit einem Durch­messer d₁ in einem Rohr 2 mit einem Durchmesser d₂ verschossen werden. Der Treibkäfig 3 nimmt die Abdichtung der Pulvergase (hier angedeutet durch Pfeile p) vor, durch ihn erfolgt der Kraftübertrag auf das Unterkalibergeschoß 1, und er übernimmt auch die Führung im Rohr 2.
  • Der Treibkäfig ist ein aus drei Segmenten aufgebauter, rota­tionssymmetrischer Körper. Sein (in Schußrichtung gesehener) vorderer Bereich wird von einer Führungsplatte 4 gebildet. Ge­mäß der Erfindung hat der Antriebsbereich eine Antriebsfläche 5, die praktisch bis zum Ende des Unterkalibergeschosses reicht. Durch sie wird bewirkt, daß praktisch über die ganze Länge des Unterkalibergeschosses 1 verteilt bei ausreichendem Radialdruck höchstmögliche Beschleunigungskräfte in das Unter­kalibergeschoß 1 eingeleitet werden können.
  • Bei dem Treibkäfig stoßen Führungsbereich und Antriebsbereich praktisch zusammen; an die Führungsplatte 4 schließt sich ein kegelstumpfähnliches Teil 7 an. Der gesamte Treibkäfig 3 wird von drei Segmenten gebildet. Aufgrund einer Staufläche 8 an der Stirnseite der Führungsplatte 4 wird infolge der hohen Ge­schwindigkeit (> 1000 m/s) beim Verlassen des Rohres der Treib­käfig 3 längs der Nähte 9 vom Unterkalibergeschoß 1 gelöst. Zur Ankoppelung des Treibkäfigs 3 an das Unterkalibergeschoß 1 längs der Naht 9 reichen Reibkräfte allein i.a. aus; erforder­lichenfalls könnten Rillen, Gewinde oder Absätze die Kraftüber­tragung noch verbessern.
  • Der Treibkäfig 3 kann vollkommen aus verstärktem Kunststoff be­stehen. Die Kontur der Antriebsfläche 5 des Antriebsbereichs ist in diesem Beispiel die eines Kegelstumpfes. Der Treibkäfig reicht bis zum Leitwerk 6 des Unterkalibergeschosses 1. Der Schwerpunkt der Antriebsfläche ist durch diese Form recht weit vorn, so daß einer zusätzlichen Führung im hinteren Bereich, die bisher vor allem bei einer scheibenförmigen Antriebsfläche sehr wichtig war, eine geringere Bedeutung zukommt; sie kann häufig sogar ganz entfallen. In diesem Beispiel sind einige ra­dial abstehende Rippen 10 vorhanden.
  • In der Figur 1 sind zwei Linien 11, 12 gestrichelt eingezeich­net, die zwei andere mögliche Ausbildungen der Antriebsfläche andeuten sollen, auf die in Figur 3 Bezug genommen ist. Die Kontur 11 deutet an, daß die Erzeugende 5 der Antriebsfläche nicht unbedingt eine Gerade sein muß, sondern auch konkav oder konvex durchhängen kann, wobei ein streng monotones, stetiges Wachsen des Durchmessers in Schußrichtung erfolgen soll. Bei dem Konturverlauf 12 reicht der Antriebskörper 7 bis zum Leit­werk 6 des Unterkalibergeschosses 1. Auch dieser Verlauf muß nicht unbedingt geradlinig sein. Wegen des Leitwerkes 6 am Un­terkalibergeschoß 1 ist ein Antriebskörper 7, der bis an das Ende des Unterkalibergeschosses 1 oder auch noch darüber hinaus reicht, etwas aufwendiger herzustellen; es hat sich gezeigt, daß ein Antriebskörper 7 der nur bis zum Leitwerk 6 oder in das Leitwerk hinein reicht, dem optimalen Antrieb auch noch sehr nahe kommt.
  • In der Figur 2 soll verdeutlicht werden, daß bei einer geraden Kontur 5 wie in Figur 1 weitgehend über die ganze Länge des Un­terkalibergeschosses gleichmäßig die Kraft Pax durch die Treibladungsgase p eingeleitet werden kann. Die Schubkraft auf jedes Ringelement Δ1 wird neben dem Gasdruck p auch durch das Gewicht des Unterkalibergeschosses und des Treibkäfigs beein­flußt. Neben der axialen Komponente tritt hier stets auch eine radiale Komponente prad auf, die praktisch über die gesamte Fläche des Unterkalibergeschosses angreift und somit allein durch Reibung eine sehr große Kraft übertragen werden kann.
  • Der Spannungsverlauf längs des Unterkalibergeschosses ist in Figur 3 schematisch vereinfacht dargestellt. Bei einer kegel­stumpfförmigen Antriebsfläche 5 erzeugt der treibgasbedingte Druck p am Ende des Unterkalibergeschosses eine Druckspannung (schematisch gekennzeichnet durch - p), die sich bis l₁ abbaut und dann gemäß Kontur 5 in Figur 1 nur einen schwach negativen oder positiven Wert aufweist. Zum Vergleich ist gestrichelt (13) der Spannungsverlauf eingezeichnet, wie er auftreten würde, wenn in Höhe von 4 der Treibgasdruck über eine Scheibe in den Treibkäfig eingeleitet werden würde. Dort käme es bei 4 zu einer sehr hohen Spannungsspitze, dicht dahinter wären wie­der negative Spannungen (Druckspannungen) zu erwarten, weil der vordere Bereich des Unterkalibergeschosses hier drückt. Durch die hohen Spitzen und den hohen Gradienten des Spannungsver­laufes wäre hier die Materialbeanspruchung des Unterkaliberge­schosses sehr kritisch. Ein Spannungsverlauf, der der Kontur 12 in Figur 1 entspricht, ist mit dem Bezugszeichen 12 auch in Fi­ gur 3 dargestellt. Der Verlauf ist sehr glatt, Zugspannungen können ganz vermieden werden.
  • Figur 4 zeigt die Draufsicht von vorn auf ein Unterkaliberge­schoß 1, umgeben von einem mit Hohlräumen 14 versehenen Treib­käfig, der sich in drei Teile zerlegen kann. Jedes dieser Seg­mente weist einen sich zum Leitwerk 6 hin stetig verjüngenden Hohlraum 14 auf. Im Treibkäfig ist jeder Hohlraum 14 mit einem üblicherweise mehrteiligen Kern gefüllt, wobei das Material des Gerippes 15 eines Segmentes nicht identisch mit dem Kernmate­rial sein muß. Auch der Kern selbst kann aus unterschiedlich geformten Elementen, auch aus verschiedenen Materialien, beste­hen. In der Figur 4 sind zwei Beispiele gegeben: einmal besteht der Kern aus vier Elementen 16, die sehr ähnlich sind wie die "großen" Treibkäfigsegmente; bevorzugt ist jedoch besonders die Variante mit zwei verschiedenen Kernelementtypen 17, 18. Plat­tenförmige Elemente 18 sind hochfeste Kunststoffteile mit ge­richteten Fasern; die keilförmigen Elemente 17 bestehen bevor­zugt aus mit Kurzfaser gefüllten Preßmassen. Die Fasern in den plattenförmigen Elementen 18 sollten in mehreren Lagen sowohl in radialer als auch in axialer Richtung verlaufen. Es können auch Lagen die um 45° dazu geneigt oder senkrecht zur Kontur 12 des Treibkäfigs verlaufen, vorgesehen sein. Es versteht sich, daß die Kernelemente 16, 17, 18 in der Regel vor allem im ra­dialen Bereich bearbeitet werden müssen, damit eine ausreichend hohe gleichmäßige Druckfestigkeit des Kunststofftreibkäfigs ge­währleistet bleibt.
  • Bei Figur 5 ist wieder nur schematisch dargestellt, daß auch zwischen den üblicherweise drei großen Segmenten 19, die ihrer­seits hier nicht extra dargestellt mit Kernen gefüllte Hohl­räume wie in Figur 4 aufweisen können, plattenförmige Elemente 20 enthalten sein können, die von der äußeren Oberfläche des Treibkäfigs bis zum Unterkalibergeschoß 1 reichen. Wenn die Segmente 19 radial verlaufende Begrenzungen 21 (in Figur 5 links dargestellt) enthalten, sind zusätzlich noch Keile 21 ähnlich den Keilen 17 in Figur 4 erforderlich. Die Segmente können jedoch auch so bearbeitet sein, wie durch die Linie 23 rechts in Figur 5 dargestellt ist, daß keine weiteren Teile zwischen den plattenförmigen Elementen 20 und den Segmenten 19 erforderlich werden.
  • Eine Ausgestaltung des Treibkäfigs gemäß Figur 5 ermöglicht eine noch bessere Kraftübertragung auf das Unterkalibergeschoß, wobei in den Übergangsbereich 24 von den plattenförmigen Ele­menten 20 auf das Unterkalibergeschoß 1 auch noch die schon oben erwähnten Rillen oder Gewinde angebracht sein können.
  • Figur 6 zeigt ein plattenförmiges Element 20 gemäß Figur 5, bei dem im Führungsbereich 4 ein nasenartiger Fortsatz 25 angeformt ist. Die Fortsätze ragen nach vorne aus dem Treibkäfig heraus und bilden eine Anströmfläche, durch die die Ablösung des Treibkäfigs vom Unterkalibergeschoß nach Verlassen des Rohres begünstigt wird. Es leuchtet unmittelbar ein, daß der Ferti­gungsmehraufwand für eine solche erfindungsgemäße Ausführung recht klein ist.

Claims (10)

1. In Segmente zerlegbarer Treibkäfig (3) mit Formschluß zu einem Unterkalibergeschoß (1), einem vorderen Führungsbe­reich (4) und einem Antriebsbereich mit einer Antriebs­fläche (5) aufweisend, wobei sich das Profil der Antriebs­fläche (3) vom Führungsbereich (4) her stetig abnehmend dem Umfangsbereich des Unterkalibergeschosses (1) annä­hert, dadurch gekennzeichnet, daß die Antriebsfläche (5) vom vorderen Führungsbereich (4) bis zum Endbereich des Unterkalibergeschosses (1) reicht.
2. Treibkäfig nach Anspruch 1, dadurch gekennzeichnet, daß der Treibkäfig (3) aus Kunststoff, vorzugsweise einem fa­serverstärkten Kunststoff besteht.
3. Treibkäfig nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Kunststoff ein Epoxidharz und die Fasern Kohlefa­sern sind.
4. Treibkäfig nach Anspruch 1, 2 oder 3, dadurch gekenn­zeichnet, daß die Antriebsfläche (5) näherungsweise die Form eines Kegelstumpfes hat.
5. Treibkäfig nach einem der Ansprüche 1 bis 4, dadurch ge­kennzeichnet, daß im Antriebsbereich Leitelemente, z.B. Rippen (10), an der Antriebsfläche (5) vorhanden sind.
6. Treibkäfig nach einem der Ansprüche 1 bis 5, dadurch ge­kennzeichnet, daß jedes Segment in Schußrichtung offene keilähnliche Hohlräume (14) aufweist und die Hohlräume (14) mit Kernen (16, 17, 18) ausgefüllt sind.
7. Treibkäfig nach Anspruch 6, dadurch gekennzeichnet, daß die Hohlräume mit verschiedenen Kerntypen (16, 17, 18) ausgefüllt sind.
8. Treibkäfig nach einem der Ansprüche 1 bis 7, dadurch ge­ kennzeichnet, daß zwischen den Segmenten (19) des Treibkä­figs (3) plattenförmige Teile (20) vorhanden sind, wobei die Achse des Unterkalibergeschosses (1) in der Ebene der plattenförmigen Teile (20) liegt.
9. Treibkäfig nach einem der Ansprüche 1 bis 8, dadurch ge­kennzeichnet, daß die plattenförmigen Teile (18, 20) zwi­schen den Segmenten und/oder in den Hohlräumen (14) aus einem Werkstoff mit gerichteten Fasern aufgebaut sind und die Keile (17, 22) aus fasergefüllten Preßmassen bestehen.
10. Treibkäfig nach einem der Ansprüche 6 bis 9, dadurch ge­kennzeichnet, daß die zwischen den Segmenten eingescho­benen plattenförmigen Gebilde (20) oder die Kerne (16, 17, 18) in den Hohlräumen (4) Nasen (25) aufweisen, die aus der Führungsplatte (4) als Anströmfläche herausragen.
EP89105382A 1988-04-07 1989-03-25 Treibkäfig für ein Unterkalibergeschoss Expired - Lifetime EP0336252B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3811597 1988-04-07
DE3811597A DE3811597A1 (de) 1988-04-07 1988-04-07 Treibkaefig fuer ein unterkalibergeschoss

Publications (2)

Publication Number Publication Date
EP0336252A1 true EP0336252A1 (de) 1989-10-11
EP0336252B1 EP0336252B1 (de) 1994-06-01

Family

ID=6351516

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89105382A Expired - Lifetime EP0336252B1 (de) 1988-04-07 1989-03-25 Treibkäfig für ein Unterkalibergeschoss

Country Status (4)

Country Link
US (1) US4953466A (de)
EP (1) EP0336252B1 (de)
AT (1) ATE106547T1 (de)
DE (2) DE3811597A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4041716A1 (de) * 1990-12-24 1992-06-25 Rheinmetall Gmbh Treibkaefig und verfahren zur herstellung des treibkaefigs
WO1993002334A1 (de) * 1991-07-17 1993-02-04 Steyr-Daimler-Puch Aktiengesellschaft Unterkalibriges geschoss mit abwerfbarem käfig

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3937665A1 (de) * 1989-11-11 1991-05-16 Rheinmetall Gmbh Geschossanordnung
US7594472B1 (en) * 1990-06-13 2009-09-29 Qinetiq Limited Sabot
DE4128054A1 (de) * 1991-08-23 1993-02-25 Rheinmetall Gmbh Treibkaefig fuer ein unterkalibergeschoss
DE4215304C2 (de) * 1992-05-09 1998-10-29 Rheinmetall Ind Ag Treibkäfig
US5789699A (en) * 1996-12-16 1998-08-04 Primex Technologies, Inc. Composite ply architecture for sabots
US6829997B1 (en) * 2002-05-06 2004-12-14 Terry B. Hilleman Skeletonized sabot
US7334613B2 (en) * 2002-10-15 2008-02-26 Black & Decker Inc. Router base securing mechanism
AT502547B1 (de) 2005-10-13 2009-10-15 Winter Udo Mag Patrone
KR100831309B1 (ko) * 2007-10-31 2008-05-22 국방과학연구소 밴드/후프 적층을 적용한 복합재 이탈피의 보강 제조방법
US8074572B1 (en) 2009-03-30 2011-12-13 The United States Of America As Represented By The Secretary Of The Navy Conical dart sub-munitions for cargo round
US8695507B1 (en) * 2011-06-01 2014-04-15 The United States Of America As Represented By The Secretary Of The Army Composite sabot
US10859357B2 (en) * 2017-06-09 2020-12-08 Simulations, LLC Sabot, bore rider, and methods of making and using same
US20230358518A1 (en) * 2022-05-05 2023-11-09 Raytheon Company Sabot or cover for seekers, sensitive windows and surface elements on gun launched munitions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB585794A (en) * 1942-07-30 1947-02-25 Charles Dennistoun Burney Improvements in or relating to gun fired projectiles
US3033116A (en) * 1958-05-20 1962-05-08 John L Critcher Ammunition
US3834314A (en) * 1972-12-29 1974-09-10 Aai Corp Puller sabot ammunition with slip seal
EP0048644A1 (de) * 1980-09-23 1982-03-31 ETAT-FRANCAIS représenté par le Délégué Général pour l' Armement Geschoss mit Leitflossen in Gestalt eines Pfeiles
US4372217A (en) * 1979-04-12 1983-02-08 The United States Of America As Represented By The Secretary Of The Army Double ramp discarding sabot
EP0143720A1 (de) * 1983-11-29 1985-06-05 Jean-Claude Sauvestre Munition für Jagdgewehr
EP0275685A2 (de) * 1986-12-24 1988-07-27 Royal Ordnance plc Lösbarer Treibkäfig

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE143675C1 (de) * 1949-09-23 1954-01-12
DE2836963A1 (de) * 1978-08-24 1984-03-08 Rheinmetall GmbH, 4000 Düsseldorf Munition-einheit fuer rohrwaffen
DE3033041C2 (de) * 1980-09-03 1986-04-10 L'Etat Français représenté par le Délégué Général pour l'Armement, Paris Treibkäfig aus Metall und Kunststoff
US4469027A (en) * 1983-04-15 1984-09-04 The United States Of America As Represented By The Secretary Of The Army Armor piercing ammunition having interlocking means
DE3332023A1 (de) * 1983-09-06 1985-03-21 Helmut Dipl.-Phys. 5529 Bauler Nußbaum Treibspiegel fuer unterkalibrige geschosse
EP0152492B1 (de) * 1984-01-31 1987-12-23 Rheinmetall GmbH Munition-Einheit für Rohrwaffen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB585794A (en) * 1942-07-30 1947-02-25 Charles Dennistoun Burney Improvements in or relating to gun fired projectiles
US3033116A (en) * 1958-05-20 1962-05-08 John L Critcher Ammunition
US3834314A (en) * 1972-12-29 1974-09-10 Aai Corp Puller sabot ammunition with slip seal
US4372217A (en) * 1979-04-12 1983-02-08 The United States Of America As Represented By The Secretary Of The Army Double ramp discarding sabot
EP0048644A1 (de) * 1980-09-23 1982-03-31 ETAT-FRANCAIS représenté par le Délégué Général pour l' Armement Geschoss mit Leitflossen in Gestalt eines Pfeiles
EP0143720A1 (de) * 1983-11-29 1985-06-05 Jean-Claude Sauvestre Munition für Jagdgewehr
EP0275685A2 (de) * 1986-12-24 1988-07-27 Royal Ordnance plc Lösbarer Treibkäfig

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4041716A1 (de) * 1990-12-24 1992-06-25 Rheinmetall Gmbh Treibkaefig und verfahren zur herstellung des treibkaefigs
FR2670881A1 (fr) * 1990-12-24 1992-06-26 Rheinmetall Gmbh Cage de propulsion et procede de fabrication de cette cage.
WO1993002334A1 (de) * 1991-07-17 1993-02-04 Steyr-Daimler-Puch Aktiengesellschaft Unterkalibriges geschoss mit abwerfbarem käfig
US5493974A (en) * 1991-07-17 1996-02-27 Steyr-Daimler-Puch Ag Saboted projectile with sub-caliber core projectile and discarding cage

Also Published As

Publication number Publication date
DE3811597A1 (de) 1989-10-19
DE58907733D1 (de) 1994-07-07
EP0336252B1 (de) 1994-06-01
US4953466A (en) 1990-09-04
ATE106547T1 (de) 1994-06-15

Similar Documents

Publication Publication Date Title
EP0336252B1 (de) Treibkäfig für ein Unterkalibergeschoss
AT505512B1 (de) Anordnung zum verbinden eines länglichen elements mit einer weiteren komponente
DE3012907C2 (de)
DE3318972A1 (de) Treibelement fuer ein unterkalibriges geschoss
DD215626A5 (de) Geschoss zum verschiessen mit einer feuerwaffe
DE3937665A1 (de) Geschossanordnung
EP0066715B1 (de) Drallstabilisierter Übungsflugkörper
DE3332023A1 (de) Treibspiegel fuer unterkalibrige geschosse
DE2213832C2 (de) Geschoß mit einem ogivalen Geschoßkörper
EP0089000B1 (de) Panzerbrechendes Wuchtgeschoss
EP0300373B1 (de) Flügelstabilisiertes Unterkalibergeschoss
DE1578109A1 (de) Zerfallgeschoss
DE3021914C2 (de)
EP2300774A1 (de) Treibkäfiggeschoss
DE1151451B (de) Granatwerfer
DE2401548A1 (de) Zugglied
EP0855573A1 (de) Treibspiegel für Unterkalibergeschoss
DE3904625A1 (de) Unterkalibriges geschoss
DE3503040A1 (de) Vorrichtung zum rueckstoss- und signaturfreien abschiessen von geschossen
EP1048859B1 (de) Welle für ein angetriebenes Magazin
DE4034062C2 (de) In Längsrichtung segmentierter Treibring für unterkalibrige Geschosse
DE4215304C2 (de) Treibkäfig
DE8304711U1 (de) Geschoss
DE4023220C2 (de) Wuchtgeschoß
DE19608456C2 (de) Treibspiegelgeschoß

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

17P Request for examination filed

Effective date: 19900323

17Q First examination report despatched

Effective date: 19911007

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940601

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940601

Ref country code: GB

Effective date: 19940601

Ref country code: FR

Effective date: 19940601

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940601

Ref country code: BE

Effective date: 19940601

REF Corresponds to:

Ref document number: 106547

Country of ref document: AT

Date of ref document: 19940615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58907733

Country of ref document: DE

Date of ref document: 19940707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940901

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940601

EUG Se: european patent has lapsed

Ref document number: 89105382.9

Effective date: 19940407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950331

Ref country code: CH

Effective date: 19950331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970421

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050325