EP0334007B1 - Verfahren zur Verringerung des Abbrands von Graphitelektroden - Google Patents
Verfahren zur Verringerung des Abbrands von Graphitelektroden Download PDFInfo
- Publication number
- EP0334007B1 EP0334007B1 EP89102063A EP89102063A EP0334007B1 EP 0334007 B1 EP0334007 B1 EP 0334007B1 EP 89102063 A EP89102063 A EP 89102063A EP 89102063 A EP89102063 A EP 89102063A EP 0334007 B1 EP0334007 B1 EP 0334007B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrode
- electrodes
- graphite
- coating
- contact jaws
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 22
- 229910002804 graphite Inorganic materials 0.000 title claims description 18
- 239000010439 graphite Substances 0.000 title claims description 18
- 238000000034 method Methods 0.000 title claims description 12
- 239000011248 coating agent Substances 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 17
- 230000003647 oxidation Effects 0.000 claims description 13
- 238000007254 oxidation reaction Methods 0.000 claims description 13
- 239000010410 layer Substances 0.000 claims description 12
- 239000011241 protective layer Substances 0.000 claims description 12
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 claims description 9
- 230000009467 reduction Effects 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 229940001007 aluminium phosphate Drugs 0.000 claims 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 238000001816 cooling Methods 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000010891 electric arc Methods 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- RAOSIAYCXKBGFE-UHFFFAOYSA-K [Cu+3].[O-]P([O-])([O-])=O Chemical compound [Cu+3].[O-]P([O-])([O-])=O RAOSIAYCXKBGFE-UHFFFAOYSA-K 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B7/00—Heating by electric discharge
- H05B7/02—Details
- H05B7/06—Electrodes
- H05B7/08—Electrodes non-consumable
- H05B7/085—Electrodes non-consumable mainly consisting of carbon
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B7/00—Heating by electric discharge
- H05B7/02—Details
- H05B7/12—Arrangements for cooling, sealing or protecting electrodes
Definitions
- the invention relates to a method for reducing the erosion of graphite electrodes when they are used in an electric arc furnace by coating the lateral surfaces located below the contact jaws by means of nozzle arrangements surrounding the electrodes with an oxidation-resistant protective layer.
- the graphite electrodes used in electric arc furnaces are heated to temperatures by the thermal energy generated in the electric arc and the development of Joule heat within the electrodes, at which carbon with the oxygen increases to the surrounding air Carbon oxides react.
- the reactions briefly referred to as erosion, are not limited to the outer surface of the cylindrical electrode, but extend below approximately 1000 ° C. almost over the entire volume of the electrode accessible through the pore system.
- the erosion of the lateral surface causes a reduction in the electrode diameter, the erosion inside the electrode also largely disrupts the structure, as a result of which smaller structural elements are loosened and chipped.
- Metallic protective layers have therefore been proposed for these electrodes which conduct the electrical current well, but whose temperature resistance is often not sufficient. Better thermal resistance is achieved by incorporating ceramic fillers into a metallic matrix (DE-PS 12 71 007) or also by using silicon as a coating material which is applied by plasma spraying in a vacuum (DE-OS 34 46 286).
- Metallic protective layers have the disadvantage that they easily weld or fry with the cooled contact jaws made of copper and the contacts are damaged or destroyed. To avoid the damage, special graphite-containing layers have been proposed, which are applied to the contact jaws or the metallized outer surface of the electrode (DE-OS 30 28 348, DE-OS 32 15 831).
- Electrode consumption could be reduced by up to 15% in some furnaces thanks to the cooling process; in other furnaces, the reduction in consumption was significantly lower, and in some cases the jacket burn-up even increased.
- the reasons for the different results are probably instabilities of the water film and steam jacket, triggered for example by thermal convection currents, and the adsorption of water in the pore system of the graphite electrode. The adsorbed water reacts with the carbon at higher temperatures and the sponge-like soft zones typical of wet electrodes are created.
- This process has essentially the same disadvantages as described above for direct cooling with water, such as the formation of spongy zones caused by in-pore oxidation of the water vapor.
- Another disadvantage of this method is that the film-forming substances are not deposited uniformly on the surface of the electrode piece located between the electrode holder and the furnace cover, since the electrode strand is added in batches. Little or nothing is deposited in the well-cooled areas near the electrode holders, because there the evaporation is low and the washing-out effect of the cooling liquid is great, while in the very hot areas near the furnace cover, a lot because of the strong evaporation there crystallized out more.
- the electrodes are operated below the furnace cover, there are insufficiently protected zones and zones which the coating can tear due to excessive layer thickness. The result is a zone-by-zone oxidative weakening of the electrode strand below the furnace cover. The effect of the coating produced in this way is low and also uneven.
- the invention has for its object to produce an oxidation-resistant protective layer on the outer surface of graphite electrodes with simple technical means, which effectively protects the electrode against the attack of atmospheric oxygen under all loads in the electric arc furnace.
- the object is achieved with a method of the type mentioned in the introduction that the outer surfaces of the graphite electrodes after each lowering and renewed locking of the electrodes in the contact jaws and after reaching an average jacket temperature of at least 400 ° C with a 15 to 20% aqueous solution of primary aluminum phosphate (Al (H2pO4) three times) is sprayed until a layer is formed which contains 300 to 500 g / m2.
- Al primary aluminum phosphate
- Graphite electrodes are placed in the solution at room temperature one or more salts are immersed or the solution is applied to the outer surface by brushing or spraying. The electrodes are then dried and heated to approximately 500 to 600 ° C., the heating rate being approximately 60 to 600 K / h. This forms a water-insoluble, oxidation-resistant film firmly anchored in the pores.
- one or more nozzle rings are expediently attached to the electrode holder below the contact jaws and enclose the electrode string. After each of the above-described displacement of the electrode string in the axial direction, the free section of the electrode between the contact jaw and the furnace cover is sprayed with the coating solution, the duration of the coating depending on the growth of the protective layer.
- the aqueous coating solution should contain about 15 to 25% monoaluminum phosphate, and 300 to 500 g / m2 of monoaluminum phosphate is expediently required to form a closed layer which protects the graphite electrode, which corresponds to about 1 to 3 l / m2 of coating solution.
- the method enables the coating of graphite electrodes with simple means, such as are used for water cooling of the electrode jacket, and the production of layers which have a much better protective effect than the "water layers".
- the application of the method is not limited to graphite electrodes, but also extends to carbon electrodes, which are mainly used in thermal reduction furnaces.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Discharge Heating (AREA)
- Coating By Spraying Or Casting (AREA)
Description
- Die Erfindung betrifft ein Verfahren zur Verringerung des Abbrands von Graphitelektroden bei ihrer Verwendung in einem Lichtbogenofen durch Beschichten der unterhalb der Kontaktbacken befindlichen Mantelflächen mittels die Elektroden umgebenden Düsenanordnungen mit einer oxidationsbeständigen Schutzschicht.
- Die in Lichtbogenöfen, besonders zur Erzeugung von Stahl, eingesetzten, oberhalb des Ofendeckels an einer Tragevorrichtung aufgehängten Graphitelektroden, werden durch die im Lichtbogen erzeugte Wärmeenergie und die Entwicklung Joulscher Wärme innerhalb der Elektroden auf Temperaturen erhitzt, bei denen Kohlenstoff mit dem Sauerstoff der umgebenden Luft zu Kohlenoxiden reagiert. Die kurz als Abbrand bezeichneten Reaktionen sind nicht auf die Mantelfläche der zylindrischen Elektrode beschränkt, sondern erstrecken sich unterhalb etwa 1000°C fast über das ganze, durch das Porensystem zugängliche Volumen der Elektrode. Der Abbrand der Mantelfläche bewirkt eine Verringerung des Elektrodendurchmessers, der Abbrand im Inneren der Elektrode auch eine weitgehende Zerrüttung des Gefüges, wodurch kleinere Gefügeelemente gelockert und abgesplittert werden. Insgesamt beträgt der unmittelbare und mittelbare Abbrandverlust rund 50% des auf den erzeugten Stahl bezogenen spezifischen Elektrodenverbrauchs von etwa 3 bis 6 kg/t Stahl. Bereits kurze Zeit nach Aufnahme der Elektrostahlerzeugung versuchte man den Mantelabbrand durch überziehen des Elektrodenmantels mit oxidationsbeständigen Schutzschichten wenigstens zu verringern. Durch die US-PS 1 000 761 ist es beispielsweise bekannt, die Mantelfläche mit Substanzen zu beschichten, die beim Erhitzen der Elektrode einen dichten glasartigen Film bilden. Zur Herstellung des Films wurden Alkali- und Erdalkalisalze in Verbindung mit Flußmitteln, wie Borax, verwendet. Ein wesentlicher Nachteil dieser Filme ist ihr großer elektrischer Widerstand. Sie eignen sich daher nicht für Elektroden, z.B. für Lichtbogen-, Schmelz- oder Reduktionsöfen, bei denen der elektrische Strom über Kontaktbacken zugeführt wird, die am Elektrodenmantel anliegen. Für diese Elektroden sind deshalb metallische Schutzschichten vorgeschlagen worden, die den elektrischen Strom gut leiten, deren Temperaturbeständigkeit aber häufig nicht ausreicht. Eine bessere thermische Beständigkeit erreicht man durch Einarbeiten keramischer Füllstoffe in eine metallische Matrix (DE-PS 12 71 007) oder auch durch Verwendung von Silicium als Beschichtungsmaterial, das durch Plasmaspritzen im Vakuum aufgebracht wird (DE-OS 34 46 286). Metallische Schutzschichten haben den Nachteil, daß sie leicht mit den aus Kupfer bestehenden gekühlten Kontaktbacken verschweißen oder fritten und die Kontakte beschädigt oder zerstört werden. Zur Vermeidung der Schäden sind besondere graphithaltige Schichten vorgeschlagen worden, die man auf die Kontaktbacken oder die metallisierte Mantelfläche der Elektrode aufträgt (DE-OS 30 28 348, DE-OS 32 15 831).
- Es ist schließlich auch bekannt, glasartige, keramische Schichten ausschließlich unterhalb der Kontaktbacken auf den Elektrodenmantel aufzutragen. Die aus mehreren miteinander verschraubten Abschnitten bestehende Graphitelektrode wird beim Betrieb des Lichtbogenofens verbraucht, außer durch Mantelabbrand vor allem durch Spitzenverluste, die eine Verkürzung des Elektrodenstrangs bewirken. Zum Ausgleich der Verkürzung werden periodisch neue Elektrodenabschnitte auf den Elektrodenstrang aufgeschraubt und die Tragvorrichtungen mit den Kontaktbacken um diesen Betrag in axialer Richtung versetzt. Auf die unbeschichtete Mantelfläche der Elektrode unterhalb der Kontaktbacken kann dann eine feuerfeste, oxidationsbeständige Beschichtung aufgetragen werden, die ein elektrischer Isolator sein kann (DE-PS 576 938, EP-OS 0 070 100). Diese Art der Beschichtung wird durch die hohen Temperaturen am Ofen erheblich erschwert, so daß es zur Erzeugung einer geschlossenen Schicht mit ausreichender Haftfestigkeit eines großen technischen Aufwands bedarf (EP-OS 0 200 983). Es ist schließlich vorgeschlagen worden, die Oberfläche der Elektrode zwischen Kontaktbacke und Ofendeckel direkt mit Wasser zu kühlen (Metal Bulletin Monthly, Nr. 204, Dez. 1987, S. 56). Bei diesem Verfahren wird der Elektrodenmantel mit Wasser berieselt, das über einen am Elektrodenhalter befestigten Düsenring zugeführt wird. Die Schutzwirkung beruht auf Kühlung der Elektrodenoberfläche unter der kritischen Reaktionstemperatur und der Bildung eines den Luftzutritt behindernden Dampfmantels. Der Elektrodenverbrauch konnte durch das Kühlverfahren in einigen Öfen um bis zu 15% vermindert werden, in anderen Öfen war die Verbrauchsminderung wesentlich geringer, z.T. nahm der Mantelabbrand sogar zu. Ursachen der unterschiedlichen Ergebnisse sind vermutlich Instabilitäten des Wasserfilms und Dampfmantels, ausgelöst etwa durch thermische Konvektionsströmungen, und die Adsorption von Wasser im Porensystem der Graphitelektrode. Das adsorbierte Wasser reagiert bei höheren Temperaturen mit dem Kohlenstoff und es entstehen die für feuchte Elektroden typischen schwammartigen weichen Zonen.
- Ein Verfahren zur direkten Kühlung der zwischen den Kontaktbacken und dem Ofendeckel befindlichen Elektrodenoberfläche ist auch in EP-OS 0 309 583 (international publication Nr. WO 88/07315) beschrieben. Durch dieses Verfahren wird eine bessere Ausnützung des der Elektrode über ringförmig unterhalb der Kontaktbacken angeordnete Düsen zugeführten Wassers für die Kühlung bewirkt. Zur weiteren Senkung der Oxidationsrate können dem Kühlwasser nach Verdampfen des Wassers bei höherer Temperatur oxidationshemmend wirkende, filmbildende, in der Offenlegungsschrift nicht näher charakterisierte Substanzen, wie z.B. Calciumphosphat in einer Größenordnung von 10 Gew.-% zugesetzt werden. Die Aufbringung einer solchen filmartigen Schutzschicht führt zu einer nur geringen Verbesserung des Oxidationsschutzes von 1 bis 2%. Dieses Verfahren ist im wesentlichen mit den gleichen Nachteilen behaftet wie sie im Vorstehenden für die Direktkühlung mit Wasser beschrieben sind, wie z.B. die Ausbildung von durch In-Poren-Oxidation des Wasserdampfes verursachten schwammigen Zonen. Ein weiterer Nachteil dieses Verfahrens ist, daß die filmbildenden Substanzen nicht gleichmäßig auf der Oberfläche des zwischen Elektrodenhalter und Ofendeckel befindlichen Elektrodenstückes abgeschieden werden, da das Nachsetzen des Elektrodenstranges absatzweise geschieht. An den gut gekühlten Stellen in der Nähe der Elektrodenhalter wird wenig oder nichts abgeschieden, weil dort die Verdampfung gering und die auswaschende Wirkung der Kühlflüssigkeit groß ist, während an den sehr heißen, in der Nähe des Ofendeckels befindlichen Stellen wegen der dort starken Verdampfung sehr viel mehr auskristallisiert. Beim Betrieb der Elektroden unterhalb des Ofendeckels existieren dann ungenügend geschützte Zonen und Zonen, an denen die Beschichtung wegen zu großer Schichtdicke aufreißen kann. Die Folge ist eine zonenweise oxidative Schwächung des Elektrodenstranges unterhalb des Ofendeckels. Die Wirkung der auf diese Weise erzeugten Beschichtung ist gering und zudem ungleichmäßig.
- Der Erfindung liegt die Aufgabe zugrunde, auf der Mantelfläche von Graphitelektroden mit einfachen technischen Mitteln eine oxidationsbeständige Schutzschicht herzustellen, die die Elektrode bei allen Belastungen im Lichtbogenofen wirksam gegen den Angriff von Luftsauerstoff schützt.
- Die Aufgabe wird mit einem Verfahren der eingangs genannten Art dadurch gelöst, daß die Mantelflächen der Graphitelektroden nach jedem Absenken und erneutem Arretieren der Elektroden in den Kontaktbacken und nach dem erreichen einer mitlere Manteltemperatur von mindestens 400°C mit einer 15 bis 20%ige wässerige Lösung von primären Aluminiumphosphat (Al(H₂pO₄) dreimal) besprüht wird bis eine Schicht entstanden ist, die 300 bis 500 g/m² enthält.
- Das Beschichten von Kohlenstoff- und Graphitkörpern mit filmbildenden wässerigen Salzlösungen und das Tempern der Schichten zur Entwicklung von oxidationsbeständigen Filmen sind an sich bekannt. Eine gute Schutzwirkung haben beispielsweise aus Aluminiumphosphat-Lösungen hergestellte Schutzschichten oder Filme (US-PS 2 685 539). Auch andere lösliche Phosphate, wie Zinkphosphat, Magnesiumphosphat, Eisenphosphat, Kupferphosphat, Kaliumphosphat und Manganphosphat bilden allein oder in Gemischen auf Kohlenstoff- und Graphitkörpern oxidationsbeständige Schutzschichten (EP-OS 0 223 205). Es ist auch bekannt, Borat- oder Silicat-haltige wässerige Lösungen für diesen Zweck zu verwenden (US-PS 1 000 761). Graphitelektroden werden bei Raumtemperatur in die Lösung eines oder mehrerer Salze getaucht oder die Lösung wird durch Bürsten oder Spritzen auf die Mantelfläche aufgebracht. Die Elektroden werden dann getrocknet und auf etwa 500 bis 600°C erhitzt, wobei die Erhitzungsgeschwindigkeit ca. 60 bis 600 K/h beträgt. Dabei bildet sich ein wasserunlöslicher, fest in den Poren verankerter oxidationsbeständiger Film.
- Als wichtige Voraussetzung für die Bildung eines festhaftenden glasartigen Films galt bisher das sorgfältige Tempern oder "Härten" der aufgetragenen Beschichtungslösung. Es wurde nun überraschend gefunden, daß sich stabile Schutzschichten auch bei sehr großer Erhitzungsgeschwindigkeit bilden und auch dann, wenn die wässerige Beschichtungslösung auf die heiße Mantelfläche der Elektrode aufgebracht wird. Die Manteltemperatur beträgt in Abhängigkeit von den Betriebsbedingungen des Lichtbogenofens unterhalb der Kontaktbacken und oberhalb des Ofendeckels etwa 400 bis 700°C, so daß das Lösemittel der Beschichtungslösung beim Auftreffen auf den Mantel innerhalb einiger Sekunden verdampft. Trotz der schnellen Verdampfung des Lösemittels bildet sich eine geschlossene, auf der Mantelfläche der Elektrode festhaftende Schicht aus.
- Zum Aufbringen der Beschichtungslösung auf die Mantelfläche verwendet man zweckmäßig einen oder mehrere Düsenringe, die unterhalb der Kontaktbacken am Elektrodenhalter befestigt sind und den Elektrodenstrang umschließen. Nach jeder der oben beschriebenen Versetzung des Elektrodenstrangs in axialer Richtung wird der freie Abschnitt der Elektrode zwischen Kontaktbacke und Ofendeckel mit der Beschichtungslösung besprüht, wobei die Dauer der Beschichtung vom Aufwachsen der Schutzschicht abhängt.
- Wichtige Parameter, die man zweckmäßig durch einfache Vorversuche bestimmt, sind Manteltemperatur, Porosität der Elektrode, Salzkonzentration in der Lösung und der Massestrom. Als Beschichtungsmittel sind grundsätzlich alle Salze geeignet, die in Wasser löslich sind und nach Verdampfen des Lösemittels bei höheren Temperaturen geschlossene Filme bilden, die oxidationsbeständig und für Fluide undurchlässig sind. Beispiele geeigneter Salze sind die obengenannten Phosphate, Borate und Silicate. Besonders vorteilhaft ist wegen der einfachen Handhabung und der Qualität der gebildeten Schutzschicht Monoaluminiumphosphat-Al(H₂PO₄)₃. Die wässerige Beschichtungslösung sollte etwa 15 bis 25% Monoaluminiumphosphat enthalten und zur Ausbildung einer geschlossenen, die Graphitelektrode schützende Schicht braucht man zweckmäßig 300 bis 500 g/m² Monoaluminiumphosphat, was etwa 1 bis 3 l/m² Beschichtungslösung entspricht.
- Das Verfahren ermöglicht die Beschichtung von Graphitelektroden mit einfachen Mitteln, wie sie bei der Wasserkühlung des Elektrodenmantels gebraucht werden, und die Erzeugung von Schichten, die eine sehr viel bessere Schutzwirkung als die "Wasserschichten" haben. Die Anwendung des Verfahrens ist nicht auf Graphitelektroden beschränkt, sondern erstreckt sich auch auf Kohlenstoffelektroden, die vor allem in thermischen Reduktionsöfen verwendet werden.
- Die Erfindung wird im folgenden anhand eines Beipiels und einer Zeichnung erläutert.
- Ein Graphitzylinder, Durchmesser 40 mm, Höhe 100 mm, wurde auf 700°C erhitzt und auf die heiße Mantelflache eine 20%ige wässerige Lösung von Monoaluminiumphosphat aufgesprüht. Es bildete sich sofort eine dünne weißliche Schicht, die fest auf der Mantelfläche haftete. Die aufgesprühte Menge Monoaluminiumphosphat betrug etwa 400 g/m².
- Unter Beibehaltung der Temperatur von 700°C wurde der Zylinder und zum Vergleich ein nichtbeschichteter Graphitzylinder in einem Laborofen oxidiert, die Beaufschlagung betrug 100 l-Luft/h. Die Ergebnisse des Abbrandtestes sind in der Fig. 1 dargestellt. Nach 2 h hat die beschichtete Probe (ausgefüllte Kreise) etwa 5% des Ausgangsgewichts von ca. 200 g durch Abbrand verloren, die Vergleichsprobe fast 30% (leere Kreise).
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3809361A DE3809361A1 (de) | 1988-03-19 | 1988-03-19 | Verfahren zur verringerung des abbrands von graphitelektroden |
DE3809361 | 1988-03-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0334007A1 EP0334007A1 (de) | 1989-09-27 |
EP0334007B1 true EP0334007B1 (de) | 1991-04-10 |
Family
ID=6350232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89102063A Expired - Lifetime EP0334007B1 (de) | 1988-03-19 | 1989-02-07 | Verfahren zur Verringerung des Abbrands von Graphitelektroden |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0334007B1 (de) |
DE (2) | DE3809361A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2692748B1 (fr) * | 1992-06-18 | 1998-07-17 | Savoie Electrodes Refract | Joint de raccordement d'electrodes de four electrique. |
MX2020013150A (es) | 2018-10-15 | 2021-02-18 | Chemtreat Inc | Electrodos para horno de enfriamiento por pulverizacion con un liquido de enfriamiento que contiene agentes tensioactivos. |
EP3815465B1 (de) | 2018-10-15 | 2023-03-29 | Chemtreat, Inc. | Verfahren zum schützen von ofenelektroden mit additivhaltiger kühlflüssigkeit |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB891273A (en) * | 1960-05-30 | 1962-03-14 | United Steel Companies Ltd | Improvements relating to electric arc furnaces |
DD205428A1 (de) * | 1982-06-07 | 1983-12-28 | Elektrokohle Lichtenberg Veb | Verfahren zur herstellung schutzbeschichteter graphitelektroden |
US4487804A (en) * | 1982-08-02 | 1984-12-11 | Nalco Chemical Company | Coating to prevent the oxidation of electrodes during electric furnace steel making |
JPS5951496A (ja) * | 1982-09-18 | 1984-03-24 | 松下電器産業株式会社 | カ−トリツジヒ−タの製造方法 |
US4726995A (en) * | 1985-11-13 | 1988-02-23 | Union Carbide Corporation | Oxidation retarded graphite or carbon electrode and method for producing the electrode |
JPH0795474B2 (ja) * | 1987-03-17 | 1995-10-11 | 日本カ−ボン株式会社 | 電気ア−ク製鋼等金属の溶解および精錬法ならびにそれに供する電極冷却装置 |
-
1988
- 1988-03-19 DE DE3809361A patent/DE3809361A1/de not_active Withdrawn
-
1989
- 1989-02-07 EP EP89102063A patent/EP0334007B1/de not_active Expired - Lifetime
- 1989-02-07 DE DE8989102063T patent/DE58900079D1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE3809361A1 (de) | 1989-09-28 |
DE58900079D1 (de) | 1991-05-16 |
EP0334007A1 (de) | 1989-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3235841C2 (de) | ||
DE60106291T2 (de) | Durch kohlenstoffbarriere gesteuerte metallinfiltrationsschicht zum oxidationsschutz | |
DE3120582C2 (de) | Kokille mit wärmeisolierender Schutzschicht | |
DE1266201B (de) | Kohle- oder Graphitkoerper mit einer darauf aufgebrachten oxydationshemmenden Schutzschicht, sowie Verfahren zu dessen Herstellung | |
DE3327251A1 (de) | Beschichtungsmassen zum verhindern der oxidation von elektroden waehrend der herstellung von eisenmetallen insbesondere stahl, in elektrischen oefen | |
WO2010086151A1 (de) | Zinkdiffusionsbeschichtungsverfahren | |
EP0334007B1 (de) | Verfahren zur Verringerung des Abbrands von Graphitelektroden | |
WO1998045498A1 (de) | Trägerkörper mit einer schutzbeschichtung | |
DE1646679C3 (de) | Verfahren zur Herstellung von aluminiumhaltigen Schutzüberzügen auf Kohlenstofferzeugnissen | |
EP1298230A1 (de) | Verfahren zur Entfernung von Schichtbereichen eines Bauteils aus Metall | |
DE69602519T2 (de) | Zusammensetzung für eine beschichtung von kohlenstoffenthaltenden produkten und solche beschichtung | |
DE2257863A1 (de) | Ueberzugsmasse zum schutz von graphitelektroden | |
CH672318A5 (de) | ||
AT219166B (de) | Verfahren zur Herstellung einer imprägnierten Kathode für elektrische Entladungsröhren | |
EP0960956B1 (de) | Verfahren zur Herstellung von keramischen Verdampferschiffchen | |
DE2722438C2 (de) | Schutzschicht für Kohlenstoff- und Graphitlichtbogenelektroden und Verfahren zu deren Herstellung | |
DE69735585T2 (de) | Start-up von elektrozellen zur gewinnung von aluminium | |
DE3147755A1 (de) | Verfahren zum beschichten eines metalls mit einem davon verschiedenen metall | |
DE1521556B2 (de) | Mit einer CoSi und/oder CoSi tief 2 enthaltenden Oberflächenschicht überzogenes Metall aus Niob oder einer Nioblegierung und Verfahren zu seiner Herstellung | |
DE3806178A1 (de) | Verfahren zum aufbringen von schichten aus hochtemperatur-supraleitendem material auf substrate | |
JPS6131309A (ja) | 製鋼用黒鉛電極の酸化防止剤 | |
DE2152011C3 (de) | Verfahren zum Metallisieren von Oberflächen keramischer Körper | |
DD205428A1 (de) | Verfahren zur herstellung schutzbeschichteter graphitelektroden | |
DE1615429C3 (de) | Induktionsheizspule zum tiegelfreien Zonenschmelzen von Stäben aus Halbleitermaterial | |
AT272929B (de) | Verfahren zur vakuumdichten Verlötung eines Metallkörpers mit einem glasphasenfreien Keramikkörper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19891012 |
|
17Q | First examination report despatched |
Effective date: 19900730 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT SE |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 58900079 Country of ref document: DE Date of ref document: 19910516 |
|
ITF | It: translation for a ep patent filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19920115 Year of fee payment: 4 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19921030 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19930207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19930208 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19930207 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19931224 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19940203 Year of fee payment: 6 |
|
EUG | Se: european patent has lapsed |
Ref document number: 89102063.8 Effective date: 19930912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19950228 |
|
BERE | Be: lapsed |
Owner name: SIGRI G.M.B.H. Effective date: 19950228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19951101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050207 |