EP0331924B1 - Schubzentrifuge - Google Patents

Schubzentrifuge Download PDF

Info

Publication number
EP0331924B1
EP0331924B1 EP89102291A EP89102291A EP0331924B1 EP 0331924 B1 EP0331924 B1 EP 0331924B1 EP 89102291 A EP89102291 A EP 89102291A EP 89102291 A EP89102291 A EP 89102291A EP 0331924 B1 EP0331924 B1 EP 0331924B1
Authority
EP
European Patent Office
Prior art keywords
sieve
drum
drums
sieve drum
surface elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89102291A
Other languages
English (en)
French (fr)
Other versions
EP0331924A2 (de
EP0331924A3 (en
Inventor
Bernd Hoppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer Escher Wyss AG
Original Assignee
Sulzer Escher Wyss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Escher Wyss AG filed Critical Sulzer Escher Wyss AG
Publication of EP0331924A2 publication Critical patent/EP0331924A2/de
Publication of EP0331924A3 publication Critical patent/EP0331924A3/de
Application granted granted Critical
Publication of EP0331924B1 publication Critical patent/EP0331924B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B3/00Centrifuges with rotary bowls in which solid particles or bodies become separated by centrifugal force and simultaneous sifting or filtering
    • B04B3/02Centrifuges with rotary bowls in which solid particles or bodies become separated by centrifugal force and simultaneous sifting or filtering discharging solid particles from the bowl by means coaxial with the bowl axis and moving to and fro, i.e. push-type centrifuges

Definitions

  • the invention relates to a pusher centrifuge with at least one inner and one outer, rotatable in a housing with identical speed, at least approximately cylindrical sieve drum, wherein the sieve drums perform an oscillating movement in the axial direction relative to each other, and one end of the interior of the sieve drums dewatering centrifugal material can be fed, and with at least one co-rotating sliding floor, which is able to execute an oscillating movement in the axial direction of the sieve drums while transporting the at least partially dewatered centrifugal material on the inside of the sieve drums in the direction of a solids outlet provided at the other end of the sieve drums, whereby on the outlet side edge a push ring is provided for at least one inner sieve drum.
  • Such push centrifuges are known, for example, from US-A-4 217 226 and US-A-4 209 405 and are used for the continuous dewatering of a centrifugal material, which is fed to the inner end of a centrifugal space via a feed pipe and is successively dewatered on the inside of the sieve drums .
  • the centrifugal material is gradually transported in the direction of a solid material outlet by the axially oscillating movement of the push floor and one or more push rings, and at the same time non-drained centrifugal material is refilled in the vicinity of the push floor.
  • Such a pusher centrifuge has a plurality of sieve drums, two adjacent sieve drums each oscillating in the axial direction relative to one another and the edge of the inner sieve drum acting as a push ring.
  • the drum can oscillate in a two-stage pusher centrifuge, the second drum in a three-stage centrifuge, and the first and third drums in a four-stage centrifuge.
  • the degree of dewatering or the residual moisture of the discharged solid is, however, not yet optimal in the case of known push centrifuges. Improvement could be achieved by increasing the dewatering time, which, however, reduces the throughput of the centrifuged material, or by increasing the speed of the centrifuge, which is not possible due to the abrasion occurring and for reasons of strength, and in addition the solid cake is even more compact and therefore still more becomes more impermeable.
  • the invention has for its object to increase the degree of dewatering of a pusher centrifuge of the type mentioned and to reduce the residual moisture content of the discharged solid without changing the operating parameters of the centrifuge and without a complicated construction.
  • this object is achieved in that the thrust ring is provided with surface elements which are oriented obliquely to the axis of the sieve drum and, in the oscillating movement of the sieve drum relative to the following sieve drum, impart an additional movement component in the circumferential direction of the sieve drums to the items to be transported in the axial direction.
  • the surface elements can be provided on the edge of an inner sieve drum, which is able to oscillate axially relative to an outer sieve drum, or else on the edge of a non-oscillating drum, the lateral movement or shearing action being provided by the following oscillating drum.
  • the surface elements can be flat surfaces that form an angle with the axis of the screening drum approximately between 30 o and 60 o , or they can be curved surfaces. In this case, adjacent surface elements on the circumference of the thrust ring can have the same orientation of the inclination or can alternately be inclined in opposite directions to one another.
  • the invention makes use of the fact that has apparently not been taken into account and not recognized in the design of pusher centrifuges that with each dewatering in the centrifugal field a capillary layer is formed which is dependent on the granulometry and which can be several millimeters thick and which influences the residual moisture content of the centrifugal material. Because the inclined surface elements give the centrifugal material a transverse component in the circumferential direction in addition to the movement component in the axial direction towards the outlet, the bottom layer of the centrifugal product cake is destroyed by shearing action and released for further dewatering.
  • the degree of dewatering of the centrifuged material on the transport route from the entry to the discharge can thus be increased without changing the operating parameters of the centrifuge, or the amount of the dewatered centrifuged material which has been passed through can be increased or the speed can be reduced and the wear can be reduced will.
  • the pusher centrifuge shown in FIGS. 1 and 2 in perspective and in section has a centrifugal unit consisting of two rotatable, approximately cylindrical sieve drums 1 and 2, a surrounding centrifuge housing 3, a gaseous medium adjacent to the centrifugal unit at the outlet end, e.g. Air containing solids space 4, at the inner end of the centrifugal unit near a co-rotating moving floor 8 with a centrifugal material inlet 9 opening supply line 5 for the centrifuged material to be dewatered, a solids outlet 6, and a liquid space 7 for the ejected liquid.
  • a centrifugal unit consisting of two rotatable, approximately cylindrical sieve drums 1 and 2, a surrounding centrifuge housing 3, a gaseous medium adjacent to the centrifugal unit at the outlet end, e.g. Air containing solids space 4, at the inner end of the centrifugal unit near a co-rotating moving floor 8 with a centrifugal material inlet 9 opening
  • the inner screening drum 1 is mounted on a shaft 10, by means of which it can be set in rotation at a certain speed.
  • the shaft 10 is displaceable in the axial direction and, with the aid of a drive device (not shown), is able to perform an oscillating movement in the axial direction with a certain amplitude in addition to its rotation.
  • the outer screening drum 2 is fastened to a hollow shaft 11 with which it can also be rotated, but without an oscillating movement in the axial direction.
  • the speed of the two drums 1 and 2 is identical.
  • the centrifugal material to be dewatered is introduced into the interior of the innermost sieve drum 1 immediately afterwards through the feed pipe 5 and flows there radially outwards onto the sieve drum 1, where the dewatering process begins.
  • the partially dewatered centrifugal material is transported through the moving floor 8 and via the oscillating sieve drum 1 in the direction of the adjoining outer sieve drum 2 and is further dewatered in the process.
  • Additional centrifugal material to be dewatered is now continuously supplied through the inlet pipe 5.
  • the partially dewatered centrifugal material reaches the end of the inner sieve drum 1, it is transported from its edge, which acts as a thrust ring, to the outer centrifugal drum 2 and is further dewatered there.
  • the completely dewatered centrifuged material is transported through the relative oscillation of the two sieve drums 1 and 2 to the solids space 4, which it leaves via the solids outlet 6.
  • the inclination of the thrust surfaces 12 is advantageously between 30 o and 60 o , for example 45 o .
  • the centrifugal material additionally receives a movement component in the circumferential direction when the sieve drums 1 and 2 oscillate against one another. This apparently tears open and largely eliminates the capillary layer which forms directly on the inner surface of the screen drum 2 under the action of the constant feed impulses and prevents the filtrate from penetrating, so that a larger amount of filtrate can pass through with the same centrifugal force and the dewatering performance is significantly improved .
  • the invention has been described above using a pusher centrifuge with two sieve drums and additional thrust segments on the edge of the inner sieve drum. It goes without saying that the push segments according to the invention can also be provided with an analog advantage in push centrifuges with a different number of drums, for example in push centrifuges with more than two sieve drums, on the outer edges of the respective inner sieve drums.
  • the thrust segments are not as shown in the example described is formed as below about 45 ° inclined relative to the axis of flat surfaces, but in a suitable other shape, as shown for example in Figures 3a - 3d.
  • the push surfaces can be flat surfaces (FIGS. 3a and 3b) or have a curvature (FIGS. 3c and 3d).
  • the thrust surfaces on the thrust ring can all be inclined in the same direction (FIGS. 3a and 3c), or neighboring thrust surfaces may alternately have an opposite inclination (FIGS. 3b and 3d).
  • the surface elements can also be formed by a suitable design of the thrust edge of the corresponding screening drum, for example by designing the edge 1 'with sawtooth-shaped notches 12', as shown in FIG. 3a.
  • the notches can be milled directly into the edge of the sieve drum, or by placing them on the edge, e.g. screwed triangular segments can be formed.
  • the latter has the advantage that when the edge is inevitably worn, the segments can be easily replaced and no reworking of the edge is required, so that the push centrifuge is particularly easy to maintain and can always be operated with optimum performance without great effort.

Landscapes

  • Centrifugal Separators (AREA)

Description

  • Die Erfindung betrifft eine Schubzentrifuge mit wenigstens einer inneren und einer äusseren, in einem Gehäuse mit identischer Drehzahl rotierbaren, wenigstens angenähert zylindrischen Siebtrommel, wobei die Siebtrommeln eine in Achsenrichtung relativ zueinander oszillierende Bewegung ausführen, und wobei in den Innenraum der Siebtrommeln an einem Ende ein zu entwässerndes Schleudergut zuführbar ist, und mit wenigstens einem mitrotierenden Schubboden, welcher eine in Achsenrichtung der Siebtrommeln oszillierende Bewegung unter Transport des zumindest teilweise entwässerten Schleudergutes auf der Innenseite der Siebtrommeln in Richtung zu einem an dem anderen Ende der Siebtrommeln vorgesehenen Feststoffauslass auszuführen vermag, wobei am auslassseitigen Rand wenigstens einer inneren Siebtrommel ein Schubring vorgesehen ist.
  • Solche Schubzentrifugen sind beispielsweise aus US-A-4 217 226 und US-A-4 209 405 vorbekannt und dienen zur kontinuierlichen Entwässerung eines Schleudergutes, wobei dieses über ein Zuführrohr dem inneren Ende eines Schleuderraumes zugeführt wird und auf der Innenseite der Siebtrommeln sukzessive entwässert wird. Während dieses Vorganges wird das Schleudergut durch die in Achsenrichtung oszillierende Bewegung des Schubbodens und eines oder mehrerer Schubringe allmählich in Richtung zu einem Festtoffauslass vortransportiert, und gleichzeitig wird in der Nähe des Schubbodens nicht entwässertes Schleudergut nachgefüllt. Eine solche Schubzentrifuge weist mehrere Siebtrommeln auf, wobei jeweils zwei benachbarte Siebtrommeln relativ zueinander in Achsenrichtung oszillieren und die Kante der jeweils inneren Siebtrommel als Schubring wirkt. Beispielsweise kann bei einer zweistufigen Schubzentrifuge die Trommel oszillieren, bei einer dreistufigen Zentrifuge die zweite Trommel, und bei einer vierstufigen Zentrifuge die erste und dritte Trommel.
  • Mit einer solchen Schubzentrifuge ist eine kontinuierliche Entwässerung eines Schleudergutes möglich, wobei dieses im Laufe des Transportes auf der Innenseite der Siebtrommeln vom Schleuderguteinlass bis zum Feststoffauslass allmählich im Zentrifugalfeld entwässert wird und den Feststoffauslass in weitgehend entwässertem Zustand erreicht, während das Filtrat nach aussen durch die Siebtrommeln dringt und dort abgeführt wird.
  • Der Entwässerungsgrad oder die Restfeuchte des ausgetragenen Feststoffes ist jedoch bei vorbekannten Schubzentrifugen noch nicht optimal. Eine Verbessurg könnte zwar durch Verlängerung der Entwässerungszeit erreicht werden, was jedoch den Durchsatz des Schleudergutes herabsetzt, oder durch Erhöhung der Drehzahl der Zentrifuge, was jedoch wegen der auftretenden Abrasion und aus Festigkeitsgründen nicht beliebig möglich ist, und zusätzlich den Feststoffkuchen noch kompakter und damit noch undurchlässiger werden lässt.
  • Aus DE-B-1 065 333 oder FR-A-1 295 577 sind anderseits Schubzentrifugen bekannt, deren Schubboden schräggestellt ist oder geneigte Flächen aufweist und mit unterschiedlicher Drehzahl rotiert, verglichen mit der Siebtrommel. Hierzu ist eine komplizierte Konstruktion und ein zusätzliches Getriebe erforderlich. Ausserdem wird eine Auflockerung und Umwälzung des Schleudergutes nur unmittelbar am Einlauf erreicht, während der Filterkuchen auf der Siebtrommel als relativ kompakte und zunehmend undurchlässige Masse vorgeschoben wird.
  • Aus der DE-B-1 120 379 ist eine Zentrifuge mit zwei mit unterschiedlicher Drehzahl rotierenden, jedoch in Achsenrichtung unverschieblichen und nicht-oszillierenden konischen Siebtrommeln bekannt, bei der am Aussenrand der inneren Siebtrommel eine Räumschnecke vorgesehen ist, die den über den inneren Konus und den Rand gleitenden Filterkuchen zufolge ihrer unterschiedlichen Drehzahl auf die folgende Siebtrommel fliegen lässt und vermittels ihrer flachen Schraubengänge, jedoch ohne Axialbewegung des Schraubenringes relativ zu den Siebtrommeln über den äusseren Konus schiebt.
  • Die Erfindung setzt sich die Aufgabe, den Entwässerungsgrad einer Schubzentrifuge der eingangs angegebenen Art zu erhöhen und die Restfeuchte des ausgetragenen Feststoffes herabzusetzen, ohne die Betriebsparameter der Zentrifuge zu ändern, und ohne kompliziertere Konstruktion.
  • Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass der Schubring mit Flächenelementen versehen ist, welche schräg zur Achse der Siebtrommel orientiert sind und bei der oszillierenden Bewegung der Siebtrommel relativ zur folgenden Siebtrommel dem in Achsenrichtung transportierten Schleudergut eine zusätzliche Bewegungskomponente in Umfangsrichtung der Siebtrommeln erteilen.
  • Die Flächenelemente können dabei am Rand einer inneren Siebtrommel, welche relativ zu einer äusseren Siebtrommel axial zu oszillieren vermag, vorgesehen sein, oder aber auch am Rand einer nicht-oszillierenden Trommel, wobei die Seitwärtsbewegung oder Scherwirkung durch die folgende oszillierende Trommel erbracht wird.
  • Die Flächenelemente können dabei ebene Flächen sein, welche mit der Achse der Siebtrommel einen Winkel etwa zwischen 30o und 60o bilden, oder sie können gekrümmte Flächen sein. Dabei können am Umfang des Schubringes benachbarte Flächenelemente die gleiche Orientierung der Neigung aufweisen oder aber auch abwechselnd entgegengesetzt zueinander geneigt sein.
  • Die Erfindung macht sich die offenbar bisher bei der Konstruktion von Schubzentrifugen nicht berücksichtigte und nicht erkannte Tatsache zunutze, dass sich bei jeder Entwässerung im Zentrifugalfeld eine von der Granulometrie abhängige Kapillarschicht bildet, welche mehrere Millimeter dick sein kann und welche die Restfeuchte des Schleudergutes beeinflusst. Dadurch dass die schräggestellten Flächenelemente dem Schleudergut zusätzlich zur Bewegungskomponente in Achsenrichtung zum Auslass hin eine Querkomponente in Umfangsrichtung erteilen, wird durch Scherwirkung die unterste Schicht des Schleudergutkuchens zerstört und zur weiteren Entwässerung freigegeben. Der Entwässerungsgrad des Schleudergutes auf dem Transportweg vom Eintrag zum Austrag kann somit ohne Veränderung der Betriebsparameter der Zentrifuge erhöht werden, oder bei einer bestimmten geforderten Endfeuchte kann die Menge des durchgesetzten entwässerten Schleudergutes vergrössert werden, bzw. es kann die Drehzahl gesenkt und damit der Verschleiss herabgesetzt werden.
  • Die Erfindung wird anhand der in den Figuren dargestellten Ausführungsbeispiele näher erläutert. Es zeigen:
  • Fig. 1
    eine teilweise aufgeschnittene Schubzentrifuge in perspektivischer Ansicht,
    Fig. 2
    diese Zentrifuge im Schnitt entlang einer die Rotationsachse enthaltenden Schnittebene, und
    Fig. 3 a - d
    vier verschiedene Ausführungsformen von Schubsegmenten.
  • Die in den Figuren 1 und 2 in Perspektive und im Schnitt dargestellte Schubzentrifuge weist eine aus zwei rotierbaren, angenähert zylindrischen Siebtrommeln 1 und 2 bestehende Schleudereinheit, ein diese umgebendes feststehendes Zentrifugengehäuse 3, einen an die Schleudereinheit am Auslassende angrenzenden, ein gasförmiges Medium, z.B. Luft, enthaltenden Feststoffraum 4, eine am inneren Ende der Schleudereinheit nahe einem mitrotierenden Schubboden 8 mit einem Schleuderguteinlass 9 mündende Zuführleitung 5 für das zu entwässernde Schleudergut, einen Feststoffauslass 6, und einen Flüssigkeitsraum 7 für die ausgeschleuderte Flüssigkeit auf.
  • Die innere Siebtrommel 1 ist auf einer Welle 10 angebracht, mittels der sie in Rotation mit einer bestimmten Drehzahl versetzt werden kann. Gleichzeitig ist die Welle 10 in Achsenrichtung verschiebbar und vermag mit Hilfe einer nicht dargestellten Antriebsvorrichtung zusätzlich zu ihrer Rotation eine oszillierende Bewegung in Achsenrichtung mit einer gewissen Amplitude auszuführen. Die äussere Siebtrommel 2 ist an einer Hohlwelle 11 befestigt mit welcher sie ebenfalls in Rotation versetzt werden kann, jedoch ohne oszillierende Bewegung in Achsenrichtung. Die Drehzahl der beiden Trommeln 1 und 2 ist dabei identisch.
  • Durch das Zuführrohr 5 wird das zu entwässernde Schleudergut in das Innere der innersten Siebtrommel 1 unmittelbar anschliessend an den Schubboden 8 eingebracht und strömt dort radial nach aussen auf die Siebtrommel 1, wo der Entwässerungsprozess beginnt. Durch den Schubboden 8 und über die oszillierende Siebtrommel 1 wird das teilweise entwässerte Schleudergut in Richtung zur anschliessenden äusseren Siebtrommel 2 transportiert und dabei weiter entwässert. Durch das Einlassrohr 5 wird inzwischen weiteres zu entwässerndes Schleudergut kontinuierlich nachgeliefert. Wenn das teilweise entwässerte Schleudergut das Ende der inneren Siebtrommel 1 erreicht, wird es von dessen Rand, welcher als Schubring wirkt, auf die äussere Schleudertrommel 2 transportiert und dort weiter entwässert. Schliesslich wird das fertig entwässerte Schleudergut durch die relative Oszillation der beiden Siebtrommeln 1 und 2 bis zum Feststoffraum 4 transportiert, welchen es über den Feststoffauslass 6 verlässt.
  • Die bisher beschriebenen in Achsenrichtung gegeneinander oszillierenden Elemente 1, 2 und 8 bewirken lediglich eine Bewegungskomponente des Schleudergutes auf den Innenflächen der Siebtrommeln in Achsenrichtung. Es zeigte sich nun überraschenderweise, dass die Entwässerungsleistung deutlich verbessert werden kann, wenn am Schubring zwischen den beiden Siebtrommeln 1 und 2, d.h. an der Aussenkante der inneren Siebtrommel 1 Flächenelemente 12 vorgesehen sind, welche eine gegen die Siebtrommelachsen und damit die Rotationsachse geneigte Schubflächen aufweisen. Solche Schubflächen 12 sind vorteilhafterweise so über den gesamten Schubring verteilt, dass sie die gesamte Innenfläche der äusseren Siebtrommel 2 im wesentlichen überstreichen, sich jedoch möglichst nicht überdecken. Die Neigung der Schubflächen 12 liegt vorteilhafterweise zwischen 30o und 60o, beispielsweise bei 45o. Mit solchen Schubflächen wird erreicht, dass das Schleudergut bei der Oszillation der Siebtrommeln 1 und 2 gegeneinander zusätzlich eine Bewegungskomponente in Umfangsrichtung erhält. Hiermit wird offenbar die sich direkt auf der Innenfläche der Siebtrommel 2 unter Wirkung der ständigen Vorschub-Impulse bildende und den Filtrat-Durchtritt behindernde Kapillarschicht durch Scherwirkung aufgerissen und weitgehend beseitigt, so dass bei gleicher Zentrifugalkraft eine grössere Filtratmenge hindurchtreten kann und die Entwässerungsleistung deutlich verbessert wird.
  • Die Erfindung wurde vorstehend anhand einer Schubzentrifuge mit zwei Siebtrommeln und zusätzlichen Schubsegmenten am Rand der inneren Siebtrommel beschrieben. Es versteht sich, dass die erfindungsgemässen Schubsegmente mit analogem Vorteil auch bei Schubzentrifugen mit einer anderen Trommelanzahl vorgesehen sein können, beispielsweise bei Schubzentrifugen mit mehr als zwei Siebtrommeln, an den Aussenrändern der jeweiligen inneren Siebtrommeln.
  • Ebenso lassen sich analoge Vorteile erreichen, wenn die Schubsegmente nicht, wie im beschriebenen Beispiel dargestellt, als unter ca. 45o gegen die Achse geneigte ebene Flächen ausgebildet sind, sondern in geeigneter anderer Form, wie beispielsweise in den Figuren 3a - 3d dargestellt. Hierbei können die Schubflächen ebene Flächen sein (Fig. 3a und 3b) oder eine Krümmung aufweisen (Fig. 3c und 3d). Andererseits können die Schubflächen am Schubring sämtlich in der gleichen Richtung geneigt sein (Fig. 3a und 3c), oder benachbarte Schubflächen können wechselweise eine entgegengesetzte Neigung aufweisen (Fig. 3b und 3d).
  • Statt als separat auf den Schubring aufgesetzte schräge Flächen können die Flächenelemente auch durch eine geeignete Ausgestaltung des Schubrandes der entsprechenden Siebtrommel gebildet werden, beispielsweise durch Ausführung des Randes 1' mit sägezahnförmigen Kerben 12', wie in Figur 3a dargestellt. Die Kerben können dabei direkt in den Siebtrommel-Rand gefräst sein, oder durch auf den Rand aufgesetzte, z.B. aufgeschraubte dreieckförmige Segmente gebildet sein. Das Letztere hat den Vorteil, dass bei dem unvermeidlichen Verschleiss des Randes die Segmente leicht ausgetauscht werden können und kein Nacharbeiten des Randes erforderlich ist, so dass die Schubzentrifuge besonders wartungsfreundlich ist und ohne grossen Aufwand stets mit optimaler Leistung betrieben werden kann.

Claims (6)

  1. Schubzentrifuge mit wenigstens einer inneren und einer äusseren, in einem Gehäuse (3) mit identischer Drehzahl rotierbaren, wenigstens angenähert zylindrischen Siebtrommel (1, 2), wobei die Siebtrommeln eine in Achsenrichtung relativ zueinander oszillierende Bewegung ausführen, und wobei in den Innenraum der Siebtrommeln an einem Ende ein zu entwässerndes Schleudergut zuführbar ist, und mit wenigstens einem mitrotierenden Schubboden (8), welcher eine in Achsenrichtung der Siebtrommeln (1, 2) oszillierende Bewegung unter Transport des zumindest teilweise entwässerten Schleudergutes auf der Innenseite der Siebtrommeln (1, 2) in Richtung zu einem an dem anderen Ende der Siebtrommel vorgesehenen Feststoffauslass (4, 6) auszuführen vermag, wobei am auslassseitigen Rand wenigstens einer inneren Siebtrommel (1) ein Schubring (1') vorgesehen ist, dadurch gekennzeichnet, dass der Schubring (1') mit Flächenelementen (12, 12') versehen ist, welche schräg zur Achse der Siebtrommel (1) orientiert sind, und welche bei der oszillierenden Bewegung der inneren Siebtrommel (1) relativ zur folgenden Siebtrommel (2) dem in Achsenrichtung transportierten Schleudergut eine zusätzliche Bewegungskomponente in Umfangsrichtung der Siebtrommeln (1, 2) erteilen.
  2. Zentrifuge nach Anspruch 1, dadurch gekennzeichnet, dass die Flächenelemente (12) mit der Rotationsachse der Siebtrommeln (1, 2) einen Winkel zwischen 30o und 60o bilden.
  3. Zentrifuge nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass benachbarte Flächenelemente (12) die gleiche Orientierung der Neigung aufweisen.
  4. Zentrifuge nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass benachbarte Flächenelemente (12) abwechselnd entgegengesetzt zueinander geneigt sind.
  5. Zentrifuge nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass die Flächenelemente (12') durch Flächen von Kerben des Schubringes (1') einer inneren Siebtrommel (1) gebildet sind.
  6. Zentrifuge nach Anspruch 5, dadurch gekennzeichnet, dass die Kerben durch auf den Rand der Siebtrommel (1') aufgesetzte Segmente (12') mit schrägen Flächen gebildet sind.
EP89102291A 1988-03-07 1989-02-10 Schubzentrifuge Expired - Lifetime EP0331924B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH834/88 1988-03-07
CH834/88A CH675374A5 (de) 1988-03-07 1988-03-07

Publications (3)

Publication Number Publication Date
EP0331924A2 EP0331924A2 (de) 1989-09-13
EP0331924A3 EP0331924A3 (en) 1990-03-21
EP0331924B1 true EP0331924B1 (de) 1992-12-23

Family

ID=4196283

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89102291A Expired - Lifetime EP0331924B1 (de) 1988-03-07 1989-02-10 Schubzentrifuge

Country Status (8)

Country Link
US (1) US4889627A (de)
EP (1) EP0331924B1 (de)
JP (1) JPH0624648B2 (de)
CN (1) CN1017407B (de)
BR (1) BR8900818A (de)
CH (1) CH675374A5 (de)
DE (2) DE3810565C1 (de)
ES (1) ES2037888T3 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH679016A5 (de) * 1989-09-29 1991-12-13 Escher Wyss Ag
US5401423A (en) * 1991-11-27 1995-03-28 Baker Hughes Incorporated Feed accelerator system including accelerator disc
AU3228693A (en) * 1991-11-27 1993-06-28 Baker Hughes Incorporated Feed accelerator system including feed slurry accelerating nozzle apparatus
US5380266A (en) * 1991-11-27 1995-01-10 Baker Hughes Incorporated Feed accelerator system including accelerator cone
AU3324793A (en) * 1991-12-31 1993-07-28 Baker Hughes Incorporated Feed accelerator system including accelerating vane apparatus
US5948256A (en) * 1997-08-22 1999-09-07 Baker Hughes Incorporated Centrifuge with cake churning
EP2913112B1 (de) 2014-02-26 2020-06-17 Ferrum AG Zentrifuge, sowie Verfahren zur Beladung einer Zentrifuge
ES2698377T3 (es) * 2014-06-24 2019-02-04 Ferrum Ag Centrífuga de doble empujador así como dispositivo de base de empujador
KR102504657B1 (ko) * 2019-11-18 2023-02-27 주식회사 엘지화학 가압 원심 탈수기

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1065333B (de) * 1959-09-10 Gebr. Heine, Viersen (RhId.) Kontinuierlich arbeitende Siebzentrifuge mit einem gegenüber der Siebtrommel vor- oder nacheilend umlaufenden Boden
DE1089686B (de) * 1958-06-06 1960-09-22 Karl Marx Stadt Maschf Schubzentrifuge mit konischer Schleudertrommel
DE1120379B (de) * 1959-06-13 1961-12-21 Julius Von Roetel Kontinuierlich arbeitende Siebzentrifuge
DE1219407B (de) * 1961-04-28 1966-06-16 Toru Iono Schubzentrifuge
FR1295577A (fr) * 1961-04-28 1962-06-08 Filtres centrifuges
DE2407833A1 (de) * 1974-02-19 1975-08-21 Eberhard Dipl Ing Simon Schub- schaelschleuder zur abtrennung von feststoffen aus suspensionen
CH624858A5 (de) * 1977-11-25 1981-08-31 Escher Wyss Ag
CH627376A5 (de) * 1977-12-07 1982-01-15 Escher Wyss Ag Zentrifuge mit einem ein gasfoermiges medium enthaltenden feststoffraum.

Also Published As

Publication number Publication date
EP0331924A2 (de) 1989-09-13
BR8900818A (pt) 1989-10-17
EP0331924A3 (en) 1990-03-21
CH675374A5 (de) 1990-09-28
JPH01274856A (ja) 1989-11-02
JPH0624648B2 (ja) 1994-04-06
ES2037888T3 (es) 1993-07-01
CN1036714A (zh) 1989-11-01
CN1017407B (zh) 1992-07-15
DE3810565C1 (de) 1989-07-13
DE58903062D1 (de) 1993-02-04
US4889627A (en) 1989-12-26

Similar Documents

Publication Publication Date Title
EP2061575B1 (de) Vorrichtung zum kontinuierlichen filtern von verunreinigungen aus einer kunststoffschmelze
EP1519823B1 (de) Vorrichtung zum kontinuierlichen filtern von materialgemischen
EP1968749B1 (de) Vollmantel-schneckenzentrifuge
EP2155353B1 (de) Pressschneckenseparator
DE69811014T2 (de) Zentrifuge mit heftig bewegtem Feststoffkuchen
DE1815199A1 (de) Zentrifuge
EP1468744B1 (de) Schubzentrifuge mit rotierbarem Trichter zur Vorbeschleunigung des Gemisches
EP0331924B1 (de) Schubzentrifuge
WO2003078070A1 (de) Schneckenzentrifuge
EP1572371B2 (de) Zentrifuge, insbesondere separator, mit feststoff-austrittsdüsen und verschleissschutz
DE3301099C2 (de)
DE4331782C1 (de) Siebeinrichtung
DE3941505C1 (de)
CH660695A5 (de) Doppel-schubzentrifuge.
CH656326A5 (de) Doppel-schubzentrifuge mit einer rotierbaren schubeinrichtung.
EP0448100B1 (de) Rührwerksmühle
DE3210385C2 (de) Sortiertrommel
EP1305098B1 (de) Abscheidevorrichtung zum abscheiden von flüssigkeit aus feststoffen sowie deren verwendung
AT384562B (de) Siebtrommel
DD232844A5 (de) Verfahren und vorrichtung zum trennschleudern von feinkornmineralgemischen
DE10125096A1 (de) Dekantierzentrifuge
DE3839607A1 (de) Verfahren und vorrichtung zum trockensieben
EP1468742B1 (de) Mehrstufige Schubzentrifuge
DE102022112948B3 (de) Zellenradschleuse und Prozessanlage mit einer Zellenradschleuse
DE3622655A1 (de) Dekantierzentrifuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890210

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE ES FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE ES FR GB IT NL SE

17Q First examination report despatched

Effective date: 19910214

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL SE

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REF Corresponds to:

Ref document number: 58903062

Country of ref document: DE

Date of ref document: 19930204

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930326

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2037888

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950116

Year of fee payment: 7

Ref country code: DE

Payment date: 19950116

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950119

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950123

Year of fee payment: 7

EAL Se: european patent in force in sweden

Ref document number: 89102291.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950217

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950228

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960228

BERE Be: lapsed

Owner name: SULZER - ESCHER WYSS A.G.

Effective date: 19960228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050210