EP0320614A1 - Federkraftspeicherantrieb für einen Hochspannungsschalter - Google Patents

Federkraftspeicherantrieb für einen Hochspannungsschalter Download PDF

Info

Publication number
EP0320614A1
EP0320614A1 EP88118503A EP88118503A EP0320614A1 EP 0320614 A1 EP0320614 A1 EP 0320614A1 EP 88118503 A EP88118503 A EP 88118503A EP 88118503 A EP88118503 A EP 88118503A EP 0320614 A1 EP0320614 A1 EP 0320614A1
Authority
EP
European Patent Office
Prior art keywords
spring
spring force
accumulator
storage drive
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88118503A
Other languages
English (en)
French (fr)
Other versions
EP0320614B1 (de
Inventor
Max Kuhn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Sprecher Energie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sprecher Energie AG filed Critical Sprecher Energie AG
Priority to AT88118503T priority Critical patent/ATE80494T1/de
Publication of EP0320614A1 publication Critical patent/EP0320614A1/de
Application granted granted Critical
Publication of EP0320614B1 publication Critical patent/EP0320614B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/30Power arrangements internal to the switch for operating the driving mechanism using spring motor
    • H01H3/3005Charging means
    • H01H3/301Charging means using a fluid actuator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18568Reciprocating or oscillating to or from alternating rotary
    • Y10T74/188Reciprocating or oscillating to or from alternating rotary including spur gear
    • Y10T74/18808Reciprocating or oscillating to or from alternating rotary including spur gear with rack
    • Y10T74/18816Curvilinear rack
    • Y10T74/18824Curvilinear rack with biasing means

Definitions

  • the present invention relates to a spring energy storage drive for a high-voltage switch according to the preamble of claim 1.
  • Such a spring energy storage drive is described, for example, in "Speaker Energy Revue" No. 1/86 on pages 4 and 5.
  • the energy for switching on the high-voltage switch and for simultaneously tensioning a switch-off spring memory can be stored in the spring force accumulator, which can be tensioned by means of an electric motor or by hand.
  • the high-voltage switch can consequently be switched off, switched on and off again without the spring-loaded accumulator being recharged.
  • the storage energy can be stored in the spring force store for a single activation of the high-voltage switch.
  • the energy for further switching operations is stored in a local fluid pressure accumulator, by means of which a fluid motor which can be fed via a controlled valve is driven, by means of which the spring force accumulator can be charged.
  • the electric motor can consequently be replaced by a fluid motor which can be fed by the local fluid pressure accumulator. This can be done without substantial intervention in the spring energy storage drive.
  • a non-return valve is connected in parallel with the fluid motor and is conductive in the direction from the low-pressure connection to the high-pressure connection of the fluid motor and is blocking in the opposite direction.
  • a control device is provided for opening the valve when the spring force accumulator is partially relaxed. This ensures that the spring force accumulator is immediately recharged during or after a switch-on process, so that the high-voltage switch can be switched on in quick succession.
  • the fluid motor can be drivable by means of a hydraulic fluid which can be pumped from a low-pressure container into the fluid pressure accumulator by means of a pump through a check valve.
  • a hydraulic fluid which can be pumped from a low-pressure container into the fluid pressure accumulator by means of a pump through a check valve.
  • the original electrical supply line provided for the electric motor for charging the spring force accumulator can be connected to the pump, which only causes adjustments to the spring force accumulator drive.
  • the same advantages have a spring force storage drive, the fluid motor of which can be driven by means of a gas, in particular compressed air, which is pumped into the fluid pressure accumulator by means of a local compressor. If a central compressed gas supply is installed in the switchgear, the fluid pressure accumulator can be connected directly to this compressed gas supply.
  • a single local fluid pressure accumulator can be provided for all spring force storage drives of this high-voltage switch. From this local fluid pressure accumulator, feed lines can be routed to the tensioning devices in each spring energy accumulator drive with little effort.
  • the spring energy storage drive 10 has a hydraulic motor 12 which acts via a gear 14 on a ring gear 16 of a rotatably mounted spring cage 18.
  • the axis of rotation 20 of the spring cage 18 coincides with the axis of a spring shaft 22.
  • the outer end of a spiral spring 26, the inner end of which is connected to the spring shaft 22, is fastened to a laterally projecting tab 24 of the spring cage 18.
  • An engaging pawl lever 28 is connected in a rotationally fixed manner to the spring shaft 22 and is releasably supported on an engaging pawl 30.
  • the switch pawl 30 can be pivoted clockwise from the position shown in the figure into a release position.
  • a cam 34 rotatably arranged at the Spring shaft 22 .
  • the distance designated by an arrow A between the axis of rotation 20 and the radial running surface 36 of the cam plate 34 increases continuously in the course of an almost complete revolution against the direction of the arrow B. The transition from the largest distance to the smallest distance A takes place with a slightly curved, practically radial edge 37.
  • a two-part roller lever 40 is arranged in a rotationally fixed manner on a pivotably mounted roller lever shaft 38 that runs parallel to the axis of rotation 20.
  • a roller 42 is rotatably mounted, on which the running surface 36 of the cam plate 34 can act.
  • a turn-off pawl lever 44 sits on the roller lever shaft 38 in a rotationally fixed manner and on the other hand a transmission lever 46.
  • the turn-off pawl lever 44 is shown in solid lines and denoted by 0 in an off position. It can be pivoted counterclockwise into a switch-on position shown in dash-dotted lines and designated I.
  • the switch-off pawl lever 44 is releasably supported on a switch-off pawl 48, which can be pivoted from the position shown into a release position by means of an electrically controllable switch-off magnet system 50.
  • the position of the roller lever 40 in the switched-on position I is also indicated by dash-dotted lines.
  • the transmission lever 46 is operatively connected to a movable switch contact 54 of a high-voltage switch 56 and an opening spring 58 via a transmission system 52, which is only indicated.
  • the roller 42 comes to rest on the tread 36, which has the consequence that the roller lever 40 and thus the roller lever shaft 38 are pivoted counterclockwise into the switch-on position I shown in broken lines.
  • the engagement pawl 30 immediately returns to its rest position, so that after a rotation of 360 °, the engagement pawl lever 28 again comes into contact with the engagement pawl 30.
  • the switch-off pawl lever 44 latches in the switch-on position I to the switch-off pawl 48.
  • the pivoting of the transmission lever 46 switches the high-voltage switch 56 on and, at the same time, the switch-off spring 58 is tensioned.
  • the spiral spring 26 can now be tensioned again by rotating the spring cage 18 by means of the hydraulic motor 12.
  • the turn-off magnet system 50 is energized, after which the turn-off pawl 48 releases the ratchet lever 44.
  • the switch-off contact 54 of the high-voltage switch 56 is opened by the switch-off energy stored in the switch-off spring 58 and the roller lever shaft 38 is pivoted into the switch-off position 0, which is shown in solid lines.
  • the approximately radially inward edge 37 of the cam plate 34 leaves enough space for the pivoting movement of the roller lever 40 together with the roller 42.
  • a single pole of a high-voltage switch 56 or a plurality of poles can be driven by means of a single spring energy storage drive 10.
  • a backstop 62 acts on an output shaft 60 of the hydraulic motor 12 in such a way that turning for tensioning the spiral spring 26 is permitted, but turning back in the opposite sense is prevented. This prevents unwanted relaxation of the coil spring 26.
  • the spiral spring 26 can also be tensioned by hand by means of a crank 64 which can be operatively connected to the transmission 14.
  • a hydraulic pump 68 can be driven by means of an electric motor 66, by means of which hydraulic fluid, for example hydraulic oil, can be pumped from a low-pressure container 70 through a check valve 72 into a generally known hydraulic pressure accumulator 74.
  • the check valve 72 prevents the high-pressure hydraulic fluid from flowing back to the hydraulic pump 68 and to the low-pressure container 70.
  • the pressure accumulator 74 is connected in terms of flow to an overpressure valve 76 which opens when the pressure is too high and allows the hydraulic fluid to flow back into the low-pressure container 70 until the pressure in the pressure accumulator 74 drops to the desired value is.
  • a pressure relay 78 is also connected in terms of flow with the pressure accumulator 74, the switch contacts 80 of which close below a lower limit value when the pressure in the pressure accumulator 74 drops and open when an upper limit value is reached.
  • This pressure relay 78 controls the excitation coil 82 of a switch 84, by means of which the electric motor 66 can be switched on or off.
  • An adjustable orifice 88 for regulating the flow rate and a controllable valve 90 are connected in series between the pressure accumulator 74 and the high-pressure connection 86 of the hydraulic motor 12.
  • the low-pressure connection 91 is fluidly connected to the low-pressure container 70.
  • Another non-return valve 92 is connected in parallel with the hydraulic motor 12 in such a way that it is conductive in the direction from the low-pressure connection 91 to the high-pressure connection 84 of the hydraulic motor 12 and blocks in the opposite direction.
  • a control element 94 is provided in the spring force storage drive 10 and is operatively connected to the valve 90. This connection is indicated by dash-dotted lines.
  • the control element 94 has a pivotable control shaft 96 which runs parallel to the axis of rotation 10 and has three one-armed levers 98, 100 and 102. In the with extended The position of the control element 94 shown in lines is blocking the valve 90. In the position indicated by the dash-dotted lines, pivoted counterclockwise by approximately 45 degrees, the valve 90 is conductive.
  • the lever 98 transmits the pivoting position of the control shaft 96 to the valve 90, while the lever 100 in the position shown in solid lines rests on a tongue 104 protruding radially outward from the spring shaft 22. In the position shown in broken lines, the lever 102 is pivoted into the path of a bolt 106 arranged on the spring cage 18.
  • the control element 94 controls the valve 90 and an auxiliary switch 108 depending on the tension state of the coil spring 26.
  • the pressure-relief valve 76 opens around the high-pressure system Preserve damage. Consequently, under normal conditions, hydraulic fluid with sufficient pressure should always be stored in the pressure accumulator 74.
  • the control element 94 When the coil spring 26 is tensioned, the control element 94 is in the position shown with solid lines.
  • the valve 90 is blocking.
  • the spring shaft 22 When the spring shaft 22 is released by the pawl 30, the spring shaft 22 begins to rotate in the direction of arrow A, as a result of which the lever 100 and thus the entire control element 94 is pivoted into the position shown in broken lines as a result of the rotation of the tongue 104.
  • the valve 90 opens and the hydraulic motor 12 begins to rotate, whereby the coil spring 26 is tensioned in the direction of arrow C.
  • the spring shaft 22 After the switching-on process of the high-voltage switch 56 has ended, the spring shaft 22 has rotated through 360 ° and in turn is supported on the switching pawl 30.
  • the check valve is 92 In normal working operation, the check valve is 92 is closed and thus prevents the hydraulic fluid from flowing from the supply line to the high-pressure connection 86 back to the low-pressure container 70. However, it may happen that the spiral spring 26 has to be pulled up manually by means of the crank 64 during revision or assembly work. In this process, the hydraulic motor 12 goes into a pumping operation and pumps hydraulic fluid from the high-pressure connection 84 to the low-pressure connection 86.
  • the check valve 92 opens and allows a hydraulic fluid flow to circulate between the hydraulic motor 12 and the check valve 92.
  • the position of the auxiliary switch 108 provides information about the position of the control element 94 and thus also about the tension state of the spiral spring 26. This auxiliary switch 108 is often required for feedback to a central control room or for other monitoring tasks. It can be readily appreciated that an auxiliary switch 108 can also be used to control an electrically actuated valve 90.
  • Spring force drive 10 with the arrangements according to the invention for tensioning the spring force store can also be used in high-voltage switches in which only the switch contacts 54 are closed with the spring drive 10, on the other hand, the opening of the Switch contacts 54 can be done by a separate drive or by an opening spring 58 which is tensioned with a separate drive.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Valve Device For Special Equipments (AREA)
  • Fluid-Damping Devices (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

In der Spiralfeder (26) des Federkraftspeicherantriebs (10) ist die Energie speicherbar um den Hochspannungsschalter (56) einzuschalten um zugleich die Ausschaltfeder (58) zu spannen. Um die Energie für mehr als eine Einschaltung speichern zu können, ist ein lokaler Druckspeicher (74) vorgesehen, in dem soviel Energie gespeichert ist, um die Spiralfeder (26) mindestens ein weiteres Mal aufzuziehen. Zwischen dem Druckspeicher (74) und dem Hydraulikmotor (12) ist ein steuerbares Ventil (90) angeordnet, welches bei teilweise entspannter Spiralfeder (26) öffnet und somit der Hydraulikmotor (12) den Federkäfig (18) in Pfeilrichtung (C) dreht bis die Spiralfeder (26) wieder gespannt ist.

Description

  • Die vorliegende Erfindung betrifft einen Federkraftspei­cherantrieb für einen Hochspannungsschalter gemäss dem Oberbegriff des Anspruchs 1.
  • Ein solcher Federkraftspeicherantrieb ist beispielsweise in der "Sprecher Energie Revue" Nr. 1/86 auf den S. 4 und 5 beschrieben. Im mittels eines Elektromotors oder von Hand spannbaren Federkraftspeicher ist die Energie zum Einschalten des Hochspannungsschalters sowie zum gleich­zeitigen Spannen eines Ausschaltfederspeichers speicher­bar. Bei eingeschaltetem Hochspannungsschalter und ge­spanntem Federkraftspeicher und Ausschaltfederspeicher kann folglich der Hochspannungsschalter ausgeschaltet, eingeschaltet und wieder ausgeschaltet werden, ohne dass der Federkraftspeicher neu aufgeladen wird. Aus Gründen der Versorgungssicherheit kann verlangt werden, dass die Hochspannungsschalter auch bei Ausfall des Speisenetzes für die Antriebe mehrere solche Schalthandlungen ausfüh­ren können. Um dieses Problem zu lösen, wird beispiels­weise in der DE-OS 35 40 674 vorgeschlagen, die Speicher­energie des Federkraftspeichers so gross zu machen, dass damit der Hochspannungsschalter mehrmals eingeschaltet und gleichzeitig der Ausschaltfederspeicher aufgeladen werden kann. Infolge der Federkennlinien steht, falls der Federkraftspeicher nicht wieder aufgeladen wird, für die erste Schalthandlung wesentlich mehr Energie als für die folgenden Schalthandlungen zur Verfügung. Dies erfordert einerseits zusätzliche Dämpfungselemente für die Vernichtung überschüssigen Energie und anderseits eine entsprechende Dimensionierung des Federkraftspeicheran­triebes für grosse Speicherenergien und die dadurch auf­tretenden grossen Kräfte.
  • Es ist daher Aufgabe der vorliegenden Erfindung, einen Federkraftspeicherantrieb, in dessen Federkraftspeicher die Energie für ein einmaliges Einschalten eines Hoch­spannungsschalters speicherbar ist, zu schaffen, der auch bei Ausfall des Speisenetzes den Hochspannungsschalter mindestens ein weiteres Mal einschalten kann.
  • Diese Aufgabe wird durch den kennzeichnenden Teil des Anspruchs 1 gelöst. Im Federkraftspeicher ist die Spei­cherenergie für eine einzige Einschaltung des Hochspan­nungsschalters speicherbar. Die Energie für weitere Schalthandlungen wird in einem lokalen Fluiddruckspeicher gespeichert, mittels welchem ein über ein gesteuertes Ventil anspeisbarer Fluidmotor angetrieben wird, mittels welchem der Federkraftspeicher aufladbar ist. Beim be­kannten Federkraftspeicherantrieb kann folglich der Elek­tromotor durch einen Fluidmotor ersetzt werden, welcher vom lokalen Fluid-Druckspeicher anspeisbar ist. Dies kann ohne wesentlichen Eingriff in den Federkraftspeicheran­trieb geschehen.
  • In einer bevorzugten Ausführungsform ist zum Fluidmotor ein Rückschlagventil parallel geschaltet, das in Richtung vom Niederdruckanschluss zum Hochdruckanschluss des Fluidmotors leitend und in entgegengesetzter Richtung sperrend ist. Dadurch kann der Federkraftspeicher von Hand, beispielsweise mittels einer Kurbel aufgezogen wer­ den, ohne dass weder in den Fluidkreislauf noch in die mechanischen Wirkverbindungen zwischen dem Fluidmotor und dem Federkraftspeicher eingegriffen werden muss.
  • In einer weiteren bevorzugten Ausführungsform ist eine Steuereinrichtung zum Oeffnen des Ventils bei teilweise entspanntem Federkraftspeicher vorgesehen. Diese sorgt für ein sofortiges Wiederaufladen des Federkraftspeichers noch während oder nach einem Einschaltvorgang, so dass in kurzer Folge Einschaltungen des Hochspannungsschalters durchgeführt werden können.
  • Der Fluidmotor kann mittels einer Hydraulikflüssigkeit antreibbar sein, welche mittels einer Pumpe durch ein Rückschlagventil von einem Niederdruckbehälter in den Fluid-Druckspeicher pumpbar ist. Dies ermöglicht die Nachrüstung von bereits, beispielsweise in einer Schalt­anlage installierten Hochspannungsschaltern, ohne dass an der Infrastruktur etwas geändert werden muss. Die ur­sprüngliche für den Elektromotor für das Aufladen des Federkraftspeichers vorgesehene elektrische Zuleitung kann an die Pumpe angeschlossen werden, was nur Anpas­sungen an Federkraftspeicherantrieb hervorruft. Dieselben Vorteile weist ein Federkraftspeicherantrieb auf, dessen Fluidmotor mittels eines Gases, insbesondere Druckluft, antreibbar ist, welches mittels eines lokalen Kompressors in den Fluid-Druckspeicher gepumpt wird. Falls in der Schaltanlage eine zentrale Druckgasversorgung installiert ist, so kann der Fluid-Druckspeicher direkt an diese Druckgasversorgung angeschlossen sein.
  • Bei einem mehrpoligen Hochspannungsschalter mit einem Federkraftspeicherantrieb pro Pol kann für alle Feder­kraftspeicherantriebe dieses Hochspannungsschalters ein einziger lokaler Fluid-Druckspeicher vorgesehen sein. Von diesem lokalen Fluid-Druckspeicher können ohne grossen Aufwand Speiseleitungen zu den Spannvorrichtungen in je­dem Federkraftspeicherantrieb geführt werden.
  • Weitere bevorzugte Ausführungsformen sind in den weiteren Ansprüchen angegeben.
  • Ein Ausführungsbeispiel der Erfindung wird anhand der einzigen Figur näher beschrieben. Diese zeigt rein sche­matisch einen Federkraftspeicherantrieb mit einer Spann­vorrichtung für das Aufladen des Federkraftspeichers, welche einen von einem lokalen Fluid-Druckspeicher an­speisbaren Fluidmotor aufweist.
  • Der Federkraftspeicherantrieb 10 weist einen Hydraulik­motor 12 auf, welcher über ein Getriebe 14 auf einen Zahnkranz 16 eines drehbar gelagerten Federkäfigs 18 einwirkt. Die Drehachse 20 des Federkäfigs 18 fällt mit der Achse einer Federwelle 22 zusammen. An einem seitlich vorstehenden Lappen 24 des Federkäfigs 18 ist das äussere Ende einer Spiralfeder 26 befestigt, deren inneres Ende mit der Federwelle 22 verbunden ist.
  • Mit der Federwelle 22 ist ein Enschaltklinkenhebel 28 drehfest verbunden, welcher sich freigebbar auf einer Einschaltklinke 30 abstützt. Mittels eines elektrisch betätigbaren Einschaltmagnetsystems 32 ist die Einschalt­klinke 30 von der in der Figur gezeigten Stellung im Uhrzeigersinn in eine Auslösestellung schwenkbar. An der Federwelle 22 ist ebenfalls eine Kurvenscheibe 34 dreh­fest angeordnet. Der mit einem Pfeil A bezeichnete Ab­stand zwischen der Drehachse 20 und der radialen Lauf­fläche 36 der Kurvenscheibe 34 nimmt im Zuge einer fast ganzen Umdrehung entgegen der Pfeilrichtung B stetig zu. Der Uebergang vom grössten Abstand zum kleinsten Abstand A erfolgt mit einer leicht gebogenen praktisch radial verlaufenden Kante 37.
  • An einer parallel zur Drehachse 20 verlaufenden schwenk­bar gelagerten Rollenhebelwelle 38 ist ein zweiteiliger Rollenhebel 40 drehfest angeordnet. Im freien Endbereich der beiden Teile des Rollenhebels 40 ist eine Rolle 42 drehbar gelagert, auf welche die Lauffläche 36 der Kur­venscheibe 34 einwirken kann. Einerends sitzt auf der Rollenhebelwelle 38 drehfest ein Ausschaltklinkenhebel 44 und andernends ein Uebertragungshebel 46. Der Ausschalt­klinkenhebel 44 ist mit ausgezogenen Linien und mit 0 be­zeichnet in einer Ausschaltstellung dargestellt. Er ist im Gegenuhrzeigersinn in eine strichpunktiert dargestell­te und mit I bezeichnete Einschaltstellung schwenkbar. In der Einschaltstellung I stützt sich der Ausschaltklinken­hebel 44 freigebbar auf einer Ausschaltklinke 48 ab, wel­che mittels eines elektrisch ansteuerbaren Ausschaltmag­netsystems 50 von der dargestellten Stellung in eine Freigabestellung schwenkbar ist. Ebenfalls strichpunk­tiert ist die Stellung des Rollenhebels 40 in der Ein­schaltstellung I angegeben.
  • Der Uebertragungshebel 46 ist über ein nur angedeutetes Uebertragungssystem 52 mit einem bewegbaren Schaltkontakt 54 eines Hochspannungsschalters 56 und einer Ausschalt­feder 58 wirkverbunden.
  • Dieser oben beschriebene Teil des Federkraftspeicheran­triebs 10 arbeitet wie folgt: Bei auf der Einschaltklinke 30 abgestütztem Einschaltklinkenhebel 28 wird mittels des Hydraulikmotors 12 der Federkäfig 18 in Pfeilrichtung C um 360° gedreht. Die so in der Spiralfeder 26 gespeicher­te Energie ist genügend gross um den Hochspannungsschal­ter 56 einzuschalten und zugleich die Ausschaltfeder 58 zu spannen, wie dies nun beschrieben wird. Bei Erregung des Einschaltmagnetsystems 32 wird die Einschaltklinke 30 in die Freigabestellung zurückgezogen, so dass die Feder­welle 22 mit samt der Kurvenscheibe 34 in Pfeilrichtung B drehen kann. Dabei kommt die Rolle 42 auf die Lauffläche 36 zur Anlage, was zur Folge hat, dass der Rollenhebel 40 und somit die Rollenhebelwelle 38 im Gegenuhrzeigersinn in die strichpunktiert dargestellte Einschaltstellung I verschwenkt wird. Nach der Freigabe des Einschaltklinken­hebels 28 kehrt die Einschaltklinke 30 sofort wieder in ihre Ruhestellung zurück, so dass nach einer Umdrehung von 360° der Einschaltklinkenhebel 28 wieder auf der Ein­schaltklinke 30 zur Anlage kommt. Infolge der Schwenkbe­wegung der Rollenhebelwelle 38 verklinkt der Ausschalt­klinkenhebel 44 in der Einschaltstellung I an der Aus­schaltklinke 48. Durch das Mitschwenken des Uebertra­gungshebels 46 wird der Hochspannungsschalter 56 ein­geschaltet und zugleich die Ausschaltfeder 58 gespannt.
  • Die Spiralfeder 26 kann nun durch Drehen des Federkäfigs 18 mittels des Hydraulikmotors 12 wieder gespannt werden.
  • Um den Hochspannungsschalter 56 auszuschalten, wird das Ausschaltmagnetsystem 50 erregt, wonach die Ausschalt­ klinke 48 den Ausschaltklinkenhebel 44 freigibt. Durch die in der Ausschaltfeder 58 gespeicherte Ausschaltener­gie wird der Schaltkontakt 54 des Hochspannungsschalters 56 geöffnet und die Rollenhebelwelle 38 in die mit ausge­zogenen Linien dargestellte Ausschaltstellung 0 ver­schwenkt. Der ungefähr radial nach Innen verlaufende Rand 37 der Kurvenscheibe 34 lässt dabei genügend Platz für die Schwenkbewegung des Rollenhebels 40 mit samt der Rol­le 42 frei.
  • In diesem Zusammenhang sei erwähnt, dass mittels eines einzigen Federkraftspeicherantriebs 10 ein einziger Pol eines Hochspannungsschalters 56 oder mehrere Pole ange­trieben werden können.
  • Auf eine Abtriebswelle 60 des Hydraulikmotors 12 wirkt eine Rücklaufsperre 62 derart ein, dass ein Drehen zum Spannen der Spiralfeder 26 zugelassen wird, aber ein Zurückdrehen im umgekehrten Sinne unterbunden wird. Da­durch wird ein ungewolltes Entspannen der Spiralfeder 26 verhindert. Die Spiralfeder 26 kann auch mittels einer mit dem Getriebe 14 in Wirkverbindung bringbaren Kurbel 64 von Hand gespannt werden.
  • Mittels eines Elektromotors 66 ist eine Hydraulikpumpe 68 antreibbar mittels welcher Hydraulikflüssigkeit bei­spielsweise Hydrauliköl von einem Niederdruckbehälter 70 durch ein Rückschlagventil 72 in einen allgemein bekann­ten hydraulischen Druckspeicher 74 gepumpt werden kann. Dabei verhindert das Rückschlagventil 72 ein Zurück­fliessen der unter Hochdruck stehenden Hydraulikflüssig­keit zur Hydraulikpumpe 68 und zum Niederdruckbehälter 70. Um einen zu hohen Druckanstieg im Druckspeicher 74 zu verhindern, ist der Druckspeicher 74 mit einem Ueber­druckventil 76 strömungsmässig verbunden, welches bei zu hohem Druck öffnet und die Hydraulikflüssigkeit in den Niederdruckbehälter 70 zurückfliessen lässt bis der Druck im Druckspeicher 74 auf den gewünschten Wert abgesunken ist. Ebenfalls mit dem Druckspeicher 74 ist ein Druck­relais 78 strömungsmässig verbunden, dessen Schaltkon­takte 80 beim Abfallen des Drucks im Druckspeicher 74 unter einen unteren Grenzwert schliessen und beim Er­reichen eines oberen Grenzwertes öffnen. Dieses Druck­relais 78 steuert die Erregerspule 82 eines Schalters 84 an, mittels welchem der Elektromotor 66 einschaltbar bzw. ausschaltbar ist.
  • Zwischen dem Druckspeicher 74 und dem Hochdruckanschluss 86 des Hydraulikmotores 12 ist eine einstellbare Blende 88 für die Regelung der Durchflussmenge sowie ein steuer­bares Ventil 90 seriegeschaltet. Der Niederdruckanschluss 91 ist mit dem Niederdruckbehälter 70 strömungsverbunden. Parallel zum Hydraulikmotor 12 ist ein weiteres Rück­schlagventil 92 derart geschaltet, dass es in Richtung vom Niederdruckanschluss 91 zum Hochdruckanschluss 84 des Hydraulikmotors 12 leitend und in Gegenrichtung sperrend ist.
  • Im Federkraftspeicherantrieb 10 ist ein Steuerorgan 94 vorgesehen, welches mit dem Ventil 90 in Wirkverbindung steht. Diese Verbindung ist strichpunktiert angedeutet. Das Steuerorgan 94 weist eine parallel zur Drehachse 10 verlaufende schwenkbare Steuerwelle 96 mit drei einarmi­gen Hebeln 98, 100 und 102 auf. In der mit ausgezogenen Linien dargestellten Stellung des Steuerorgans 94 ist das Ventil 90 sperrend. In der strichpunktiert angedeuteten in Gegenuhrzeigersinn um ca. 45 Grad verschwenkten Stel­lung ist das Ventil 90 leitend. Der Hebel 98 überträgt die Schwenklage der Steuerwelle 96 auf das Ventil 90, während der Hebel 100 in der mit ausgezogenen Linien dargestellten Lage an einer von der Federwelle 22 radial nach aussen abstehenden Zunge 104 anliegt. Der Hebel 102 ist in der strichpunktiert dargestellten Lage in den Weg eines am Federkäfig 18 angeordneten Bolzens 106 ver­schwenkt. Wie dies weiter unten angegeben ist, steuert das Steuerorgan 94 in Abhängigkeit des Spannzustandes der Spiralfeder 26 das Ventil 90 sowie eine Hilfsschalter 108.
  • Im folgenden wird die Funktionsweise des Hydraulikkreis­laufes sowie dessen Steuerung näher beschrieben. Sobald der Druck im Druckspeicher 74 unter den unteren Grenzwert gesunken ist, schliessen die Schaltkontakte 80 des Druck­relais 78, wodurch die Erregerspule 82 des Schalters 84 erregt wird. Der Schalter 84 schaltet den Elektromotor 66 ein, wodurch die Hydraulikflüssgkeit vom Niederdruckbe­hälter 70 in den Druckspeicher 74 gepumpt wird. Sobald der Druck im Druckspeicher 74 den oberen Grenzwert er­reicht hat, öffnen die Schaltkontakte 80 des Schalters 78, wodurch der Elektromotor 66 abeschaltet wird. Das Rückschlagventil 72 verhindert ein Zurücklaufen der Hy­draulikflüssigkeit zur Hydraulikpumpe. 68 und in den Nie­derdruckbehälter 70. Sollte aus irgendeinem Grund der Elektromotor 66 nicht abstellen oder aus einem anderen Grund der Druck im Druckspeicher 74 zu hoch werden, öff­net das Ueberdruckventil 76 um das Hochdrucksystem vor Beschädigungen zu bewahren. Unter Normalbedingungen soll­te folglich im Druckspeicher 74 immer Hydraulikflüssig­keit mit genügendem Druck gespeichert sein.
  • Bei gespannter Spiralfeder 26 befindet sich das Steuer­organ 94 in der mit ausgezogenen Linien dargestellten Lage. Das Ventil 90 ist sperrend. Bei der Freigabe der Federwelle 22 durch die Einschaltklinke 30 beginnt die Federwelle 22 in Pfeilrichtung A zu drehen, wodurch der Hebel 100 und somit das ganze Steuerorgan 94 infolge der Drehung der Zunge 104 in die strichpunktiert dargestellte Lage verschwenkt wird. Das Ventil 90 öffnet und der Hy­draulikmotor 12 beginnt zu drehen, wodurch die Spiral­feder 26 in Pfeilrichtung C gespannt wird. Nach dem Been­den des Einschaltvorganges des Hochspannungsschalters 56 hat sich die Federwelle 22 um 360° gedreht und stützt sich wiederum auf der Einschaltklinke 30 ab. Das Drehen des Federkäfigs 18 mittels dem Hydraulikmotor 12 ge­schieht wesentlich langsamer als das Entspannen der Spiralfeder 26 beim Einschalten des Hochspannungsschal­ters 56. Sobald der Federkäfig 18 um nahezu 360° in Pfeilrichtung C gedreht wurde, läuft der Bolzen 106 auf den Hebel 102 auf und schwenkt diesen zurück in die mit ausgezogenen Linien dargestellte Lage, wodurch das Ventil 90 geschlossen und der Hydraulikmotor 12 abgestellt wird. Nun ist die Spiralfeder 26 wieder genügend gespannt, um den Hochspannungsschalter 56 wieder einschalten zu kön­nen. Die von der Spiralfeder 26 auf den Federkäfig 18 ausgeübte Kraft wird von der Rücklaufsperre 62 aufge­nommen.
  • Im normalen Arbeitsbetrieb ist das Rückschlagventil 92 geschlossen und verhindert somit ein Strömen der Hydrau­likflüssigkeit von der Zuleitung zum Hochdruckanschluss 86 zurück zum Niederdruckbehälter 70. Nun kann es aber vorkommen, dass z.B. bei Revisions- oder Montagearbeiten die Spiralfeder 26 mittels der Kurbel 64 von Hand auf­gezogen werden muss. Bei diesem Vorgang geht der Hydrau­likmotor 12 in einem Pumpbetrieb über und pumpt Hydrau­likflüssigkeit vom Hochdruckanschluss 84 zum Niederdruck­anschluss 86. Dabei öffnet das Rückschlagventil 92 und lässt einen Hydraulikflüssigkeitsstrom zwischen dem Hy­draulikmotor 12 und dem Rückschlagventil 92 zirkulieren.
  • Die Stellung des Hilfsschalters 108 gibt Auskunft über die Stellung des Steuerorgans 94 und somit auch über den Spannzustand der Spiralfeder 26. Dieser Hilfsschalter 108 wird vielmals für Rückmeldungen an eine zentrale Schalt­warte oder für andere Ueberwachungsaufgaben benötigt. Es ist ohne weiteres einzusehen, dass ein Hilfsschalter 108 auch für die Ansteuerung eines elektrisch betätigbaren Ventils 90 eingesetzt werden kann.
  • Bei Hochspannungsschaltern 54, bei welchen jeder Pol mittels eines eigenen Federkraftspeicherantriebs 10 an­treibbar ist, ist es empfehlenswert einen einzigen Druck­speicher 74 für das Aufziehen der Spiralfedern 26 aller Pole zu verwenden.
  • Federkraftspeicherantriebe 10 mit der erfindungsgemässen Anordnungen zum Spannen der Federkraftspeicher können auch bei Hochspannungsschaltern Verwendung finden, bei welchen mit dem Federkraftantrieb 10 nur die Schaltkon­takte 54 geschlossen werden, hingegen das Oeffnen der Schaltkontakte 54 durch einen separaten Antrieb oder durch eine Ausschaltfeder 58 erfolgen kann, die mit einem separaten Antrieb gespannt wird.

Claims (13)

1. Federkraftspeicherantrieb für einen Hochspannungs­schalter, mit einem mittels einer Spannvorrichtung auf­ladbaren Federkraftspeicher, mit dessen Speicherenergie der Hochspannungsschalter einmal einschaltbar ist, da­durch gekennzeichnet, dass die Spannvorrichtung einen von einem lokalen Fluid-Druckspeicher (74), dessen speicher­barer Energieinhalt wenigstens der Speicherenergie des Federkraftspeichers (26) entspricht, über ein gesteuertes Ventil (90) anspeisbaren Fluidmotor (12) aufweist.
2. Federkraftspeicherantrieb nach Anspruch 1, dadurch gekennzeichnet, dass zwischen dem Fluid-Druckspeicher (74) und dem Fluidmotor (12) ein Durchflussmengenregler, vorzugsweise eine einstellbare Blende (88), vorgesehen ist.
3. Federkraftspeicherantrieb nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zum Fluidmotor (12) ein Rückschlagventil (92) parallelgeschaltet ist, das in Richtung vom Niederdruckanschluss (91) zum Hochdruckan­schluss (86) des Fluidmotors (12) leitend und in entge­gengesetzter Richtung sperrend ist.
4. Federkraftspeicherantrieb nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Fluidmotor (12) eine Abtriebswelle (60) aufweist, mit welcher eine Rück­laufsperre (62) wirkverbunden ist.
5. Federkraftspeicherantrieb nach Anspruch 4, dadurch gekennzeichnet, dass die Abtriebswelle (60) auf ein Ge­triebe (14) einwirkt, welches mit dem Federkraftspeicher (26) wirkverbunden ist.
6. Federkraftspeicherantrieb nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mit dem Fluid-Druckspeicher (74) ein Ueberdruckventil (76) in Strömungsverbindung steht.
7. Federkraftspeicherantrieb nach Anspruch 1 gekenn­zeichnet durch eine Steuereinrichtung (94) zum Oeffnen des Ventils (90) bei teilweise entspanntem Federkraft­speicher (26).
8. Federkraftspeicherantrieb nach Anspruch 7, dadurch gekennzeichnet, dass die Steuereinrichtung ein mit dem Ventil (90) wirkverbundenes Steuerorgan (94) aufweist, das bei teilweise entspanntem Federkraftspeicher (26) in eine Oeffnungsstellung und bei gespanntem Federkraftspei­cher (26) in eine Schliessstellung bringbar ist.
9. Federkraftspeicherantrieb nach Anspruch 7, dadurch gekennzeichnet, dass ein mittels eines Hilfschalters (108) ansteuerbares, elektrisch betätigbares Ventil (90) vorgesehen ist, wobei der Hilfschalter (108) bei teil­weise entspanntem Federkraftspeicher (26) einschaltbar und bei gespanntem Federkraftspeicher (26) ausschaltbar ist.
10. Federkraftspeicherantrieb nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Fluidmotor (12) mittels einer Hydraulikflüssigkeit antreibbar ist, welche mittels einer Pumpe (68) durch ein Rückschlagventil (72) von einem Niederdruckbehälter (70) in den Fluid-Druck­speicher (74) pumpbar ist, und vorzugsweise die Pumpe (68) von einem mit dem Fluid-Druckspeicher (74) in Strö­mungsverbindung stehendem Druckrelais (78) ansteuerbar ist.
11. Federkraftspeicherantrieb nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Fluidmotor (12) mittels eines Gases, insbesondere Druckluft, antreibbar ist, welches von einer zentralen Druckgasversorgung oder mittels eines lokalen Kompressors durch ein Rückschlag­ventil in den Fluid-Druckspeicher geleitet wird.
12. Federkraftspeicherantrieb mit mindestens einer als Federkraftspeicher vorgesehenen Spiralfeder (26), deren inneres Ende auf eine drehbare und arretierbare Welle (22) einwirkt, auf welcher eine Kurvenscheibe (34) dreh­fest sitzt, und mit einem auf einer zu dieser Welle (22) parallelen Hebelwelle (38), welche mit einem Ausschalt­federspeicher (58) und mit mindestens einem bewegbaren Schaltkontakt (54) des Hochspannungsschalters (56) kraft­schlüssig verbunden ist, drehfest angeordneten Hebel (40), auf welchen die Kurvenscheibe (34) derart einwirkt, dass die Hebelwelle (38) von einer Ausschaltstellung in eine Einschaltstellung schwenkbar ist, wobei die Spiral­feder (26) mit einer Spannvorrichtung nach einem der Ansprüche 1 bis 11 aufladbar ist.
13. Mehrpoliger Hochspannungsschalter (56) mit einem Federkraftspeicherantrieb (10) nach einem der Ansprüche 1 bis 12 pro Pol, dadurch gekennzeichnet, dass für alle Federkraftspeicherantriebe (10) ein einziger lokaler Fluid-Druckspeicher (74) vorgesehen ist.
EP88118503A 1987-12-14 1988-11-07 Federkraftspeicherantrieb für einen Hochspannungsschalter Expired - Lifetime EP0320614B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88118503T ATE80494T1 (de) 1987-12-14 1988-11-07 Federkraftspeicherantrieb fuer einen hochspannungsschalter.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4861/87 1987-12-14
CH486187 1987-12-14

Publications (2)

Publication Number Publication Date
EP0320614A1 true EP0320614A1 (de) 1989-06-21
EP0320614B1 EP0320614B1 (de) 1992-09-09

Family

ID=4283837

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88118503A Expired - Lifetime EP0320614B1 (de) 1987-12-14 1988-11-07 Federkraftspeicherantrieb für einen Hochspannungsschalter

Country Status (7)

Country Link
US (2) US4968861A (de)
EP (1) EP0320614B1 (de)
JP (1) JPH01189824A (de)
AT (1) ATE80494T1 (de)
CA (1) CA1328121C (de)
DE (1) DE3874500D1 (de)
ES (1) ES2034111T3 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449148A2 (de) * 1990-03-28 1991-10-02 Asea Brown Boveri Ab Betätigungsvorrichtung für Schalter
EP0460390A2 (de) * 1990-06-08 1991-12-11 GEC Alsthom T&D AG Federkraftspeicherantrieb für einen Hochspannungsschalter
DE10314142A1 (de) * 2003-03-25 2004-10-14 Siemens Ag Schalterantriebseinrichtung für ein elektrisches Schaltgerät
US7772513B2 (en) 2006-09-29 2010-08-10 Kabushiki Kaisha Toshiba Switchgear and switchgear operating mechanism
CN106206111A (zh) * 2016-10-08 2016-12-07 福州麦辽自动化设备有限公司 一种基于可控同轴离合器的储能转盘
WO2018036739A1 (de) * 2016-08-24 2018-03-01 Siemens Aktiengesellschaft Koppeleinrichtung und verfahren zum koppeln und entkoppeln eines spanngetriebes eines leistungsschalters
CN108726263A (zh) * 2018-06-11 2018-11-02 如皋天安电气科技有限公司 一种电缆绝缘材料高效收卷装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH687051A5 (de) * 1992-02-28 1996-08-30 Gec Alsthom T & D Ag Verfahren zum Spannen einer Speicherfeder eines Antriebes eines Hoch- oder Mittelspannungs-Leistungsschalters und Leistungsschalter zur Durchfuehrung des Verfahrens.
US5280258A (en) * 1992-05-22 1994-01-18 Siemens Energy & Automation, Inc. Spring-powered operator for a power circuit breaker
FR2696866B1 (fr) * 1992-10-13 1994-12-02 Merlin Gerin Mécanisme d'actionnement d'un interrupteur à trois positions.
US5489755A (en) * 1994-03-18 1996-02-06 General Electric Company Handle operator assembly for high ampere-rated circuit breaker
DE4439745C1 (de) * 1994-10-31 1996-03-28 Siemens Ag Anordnung zur gegenseitigen Verriegelung der Betätigung von wenigstens zwei Leistungsschaltern
DE4439751C2 (de) * 1994-10-31 1998-07-09 Siemens Ag Anordnung zur gegenseitigen Verriegelung von Leistungsschaltern
US5660271A (en) * 1996-05-01 1997-08-26 General Electric Company Operating mechanism cradle assembly for high ampere-rated circuit breakers
FR2763740B1 (fr) * 1997-05-26 1999-07-16 Gec Alsthom T & D Ag Mecanisme d'entrainement a ressort pour un appareil de commutation, en particulier un disjoncteur
FR2770929B1 (fr) * 1997-11-13 2000-01-28 Alsthom Gec Mecanisme d'entrainement a ressort pour un appareil de commutation, en particulier un disjoncteur
US6124557A (en) * 1997-12-23 2000-09-26 Lg Industrial Systems Co., Ltd. Multi-position switching actuator for switch gear
BR9710419A (pt) * 1997-12-24 2000-03-14 Lg Ind Systems Co Ltda Atuador de interrupção automático de posição múltipla para interruptor de carga.
DE19904179A1 (de) * 1999-02-03 2000-08-10 Abb Patent Gmbh Federspeicherantrieb für ein elektrisches Schaltgerät
US6158278A (en) * 1999-09-16 2000-12-12 Hunter Industries, Inc. Wind speed detector actuator
DE10061164C1 (de) * 2000-11-30 2002-08-22 Siemens Ag Schalterantrieb
FR2821696B1 (fr) * 2001-03-01 2003-04-25 Alstom Disjoncteur haute tension ayant une commande a ressorts avec un ressort additionnel de recuperation d'energie
JP3861832B2 (ja) * 2003-03-11 2006-12-27 株式会社日立製作所 開閉器
JP4881251B2 (ja) * 2007-07-27 2012-02-22 株式会社東芝 開閉装置および開閉装置操作機構
DE102008035871B4 (de) * 2008-08-01 2011-03-24 Abb Technology Ag Nockenscheibe und Federwegschalter für einen Federspeicherantrieb sowie Federspeicherantrieb
CN101872701A (zh) * 2009-04-22 2010-10-27 伊顿公司 断路器
US8689942B2 (en) 2010-11-24 2014-04-08 Raytheon Company Energy storage and release system
KR101291791B1 (ko) * 2011-09-05 2013-07-31 현대중공업 주식회사 가스절연 개폐기의 드라이버
CN102683058B (zh) * 2012-06-13 2015-08-05 上海亿盟电气自动化技术有限公司 一种有关电器的自动转换开关的齿轮传动机构
US8941961B2 (en) 2013-03-14 2015-01-27 Boulder Wind Power, Inc. Methods and apparatus for protection in a multi-phase machine
DE102019204443A1 (de) * 2019-03-29 2020-10-01 Siemens Aktiengesellschaft Stromunterbrechersystem
DE102019204441A1 (de) * 2019-03-29 2020-10-01 Siemens Aktiengesellschaft Hochspannungs-Leistungsschaltersystem
CA3053044A1 (en) 2019-08-26 2021-02-26 Alpha Technologies Ltd. Bi-stable transfer switch
EP4075465B1 (de) * 2021-04-15 2023-11-08 Eaton Intelligent Power Limited Betätigungsmechanismus für einen schalter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822445A (en) * 1955-04-22 1958-02-04 Mc Graw Edison Co Stored energy device
FR1377843A (fr) * 1963-07-19 1964-11-06 Coq Nv Interrupteur électrique
DE3447132A1 (de) * 1984-12-22 1986-07-03 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Hydraulikeinrichtung
DE3540674A1 (de) * 1985-11-16 1987-05-21 Licentia Gmbh Motor-federkraft antriebssystem fuer einen hochspannungsschalter

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE745277C (de) * 1942-06-03 1944-03-01 Licht Und Kraft Ag Antrieb fuer Hochspannungsschalter
BE534765A (de) * 1954-01-28 Merlin Gerin
US2769874A (en) * 1955-06-02 1956-11-06 Gen Electric Closing mechanism for an electric circuit breaker
US2820119A (en) * 1956-09-25 1958-01-14 Gen Electric Control arrangement for a storedenergy type of circuit breaker operating mechanism
CH379865A (de) * 1958-11-22 1964-07-15 Asea Ab Hydraulische Spannvorrichtung an Federantrieb
NL120020C (de) * 1960-07-20
US3383853A (en) * 1966-05-17 1968-05-21 Fed Pacific Electric Co Energy storage mechanism for actuating circuit breakers and the like
US3867814A (en) * 1973-12-26 1975-02-25 Theodore S Schneider Torque energy converter and storage device
GB1558060A (en) * 1975-07-29 1979-12-19 Medishield Corp Ltd Lung ventilator
US4118613A (en) * 1977-06-27 1978-10-03 General Electric Company Hydraulically-actuated operating system for an electric circuit breaker
US4156803A (en) * 1978-04-26 1979-05-29 General Electric Company Simple device for rapid damping of flywheel oscillations in a stored-energy operating device
US4166937A (en) * 1978-05-18 1979-09-04 General Electric Company Hydraulically-activated operating system for an electric circuit breaker
US4578551A (en) * 1985-04-10 1986-03-25 S&C Electric Company Operating mechanism for electrical switches
US4836198A (en) * 1987-07-27 1989-06-06 Stein-Gates Medical Equipment, Inc. Portable ventilating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822445A (en) * 1955-04-22 1958-02-04 Mc Graw Edison Co Stored energy device
FR1377843A (fr) * 1963-07-19 1964-11-06 Coq Nv Interrupteur électrique
DE3447132A1 (de) * 1984-12-22 1986-07-03 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Hydraulikeinrichtung
DE3540674A1 (de) * 1985-11-16 1987-05-21 Licentia Gmbh Motor-federkraft antriebssystem fuer einen hochspannungsschalter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449148A2 (de) * 1990-03-28 1991-10-02 Asea Brown Boveri Ab Betätigungsvorrichtung für Schalter
EP0449148A3 (en) * 1990-03-28 1992-09-02 Asea Brown Boveri Ab Operating device for circuit breakers
EP0460390A2 (de) * 1990-06-08 1991-12-11 GEC Alsthom T&D AG Federkraftspeicherantrieb für einen Hochspannungsschalter
EP0460390A3 (en) * 1990-06-08 1992-07-22 Sprecher Energie Ag Spring energy accumulator drive for a high voltage switch
DE10314142A1 (de) * 2003-03-25 2004-10-14 Siemens Ag Schalterantriebseinrichtung für ein elektrisches Schaltgerät
US7772513B2 (en) 2006-09-29 2010-08-10 Kabushiki Kaisha Toshiba Switchgear and switchgear operating mechanism
WO2018036739A1 (de) * 2016-08-24 2018-03-01 Siemens Aktiengesellschaft Koppeleinrichtung und verfahren zum koppeln und entkoppeln eines spanngetriebes eines leistungsschalters
CN106206111A (zh) * 2016-10-08 2016-12-07 福州麦辽自动化设备有限公司 一种基于可控同轴离合器的储能转盘
CN108726263A (zh) * 2018-06-11 2018-11-02 如皋天安电气科技有限公司 一种电缆绝缘材料高效收卷装置

Also Published As

Publication number Publication date
US4968861A (en) 1990-11-06
DE3874500D1 (de) 1992-10-15
US5113056A (en) 1992-05-12
EP0320614B1 (de) 1992-09-09
ATE80494T1 (de) 1992-09-15
CA1328121C (en) 1994-03-29
JPH01189824A (ja) 1989-07-31
ES2034111T3 (es) 1993-04-01

Similar Documents

Publication Publication Date Title
EP0320614B1 (de) Federkraftspeicherantrieb für einen Hochspannungsschalter
DE1218080B (de) Regelstabantrieb fuer einen Kernreaktor
EP0113844B1 (de) Steuereinrichtung für elektropneumatische Druckluftbremsen von Schienenfahrzeugen
DE2411525B2 (de)
DE2629829C3 (de) Hydraulische Betätigungsvorrichtung fur Hochspannungs-Leistungsschalter
EP1052215B1 (de) Hydraulische Hubvorrichtung
EP0460390A2 (de) Federkraftspeicherantrieb für einen Hochspannungsschalter
DE930506C (de) Schraemmaschine
DE2414293C3 (de) Last-Kompensationseinrichtung für aufgeladene Brennkraftmaschinen
DE2741628A1 (de) Fahrzeuganlasschaltung mit umgehung von hilfssteuersystemen
DE586523C (de) Kraftspeicherantrieb fuer elektrische Schalter
DE3637741A1 (de) Drucklufterzeugungsanlage
DE1119376B (de) Elektrischer Schnellumschalter fuer hohe Stroeme und Schalthaeufigkeit
DE649042C (de) Empfangsgeraet zur elektrischen Fernsteuerung durch ueberlagerte tonfrequente Stroeme
AT115584B (de) Vorrichtung zur Sicherung von Antriebsmaschinen für Generatoren, insbesondere Dampfturbinen gegen Durchgehen.
DE1515563A1 (de) Vorrichtung zum sprunghaften Einschalten eines elektrischen Schalters
DE1269277B (de) Foerderaggregat fuer Heizoeldruckversorgungsanlagen
DE3139260A1 (de) "vorrichtung zur sicherheits-rueckstellung fuer einen stellantrieb"
DE2824127A1 (de) Ladebordwand fuer lastkraftwagen
AT80757B (de) Überwachungseinrichtung für elektrische FördermascÜberwachungseinrichtung für elektrische Fördermaschinen. hinen.
AT147731B (de) Schalter mit Druckluftlöschung.
DE2518599C2 (de) Motor-Speicherantrieb mit Klinkenrad für Leistungsschalter
DE2743738A1 (de) Elektrischer stellantrieb fuer ventile o.dgl.
DE465007C (de) Verfahren zur Sicherung von Turbinenreglern mit Energiespeichern (Windkessel, Schwungrad) fuer das Druckoel
DE2420492C3 (de) Motorgetriebene Antriebsvorrichtung für elektrische Schaltgeräte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19891127

17Q First examination report despatched

Effective date: 19920114

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 80494

Country of ref document: AT

Date of ref document: 19920915

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILA

REF Corresponds to:

Ref document number: 3874500

Country of ref document: DE

Date of ref document: 19921015

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: GEC ALSTHOM T&D AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: GEC ALSTHOM T&D AG.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941012

Year of fee payment: 7

Ref country code: CH

Payment date: 19941012

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941013

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941014

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19941018

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19941019

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19941021

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19941118

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941130

Year of fee payment: 7

ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIA;GEC ALSSTHOM T & D AG

EAL Se: european patent in force in sweden

Ref document number: 88118503.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: GEC ALSTHOM T&D AG TE OBERENTFELDEN, ZWITSERLAND.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951107

Ref country code: AT

Effective date: 19951107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951108

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951130

Ref country code: CH

Effective date: 19951130

Ref country code: BE

Effective date: 19951130

BERE Be: lapsed

Owner name: GEC ALSTHOM T&D A.G.

Effective date: 19951130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960801

EUG Se: european patent has lapsed

Ref document number: 88118503.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19961213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051107