EP0320599B1 - Exzentertellerschleifer - Google Patents

Exzentertellerschleifer Download PDF

Info

Publication number
EP0320599B1
EP0320599B1 EP88117288A EP88117288A EP0320599B1 EP 0320599 B1 EP0320599 B1 EP 0320599B1 EP 88117288 A EP88117288 A EP 88117288A EP 88117288 A EP88117288 A EP 88117288A EP 0320599 B1 EP0320599 B1 EP 0320599B1
Authority
EP
European Patent Office
Prior art keywords
coupling
magnetic
grinding disc
eccentric
grinder according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88117288A
Other languages
English (en)
French (fr)
Other versions
EP0320599A1 (de
Inventor
Hartmut Dipl.-Ing. Walter
Gerhard Dipl.-Ing. Fetzer
Walter Dipl.-Ing. Berwarth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Festo SE and Co KG
Original Assignee
Festo SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festo SE and Co KG filed Critical Festo SE and Co KG
Priority to AT88117288T priority Critical patent/ATE64560T1/de
Publication of EP0320599A1 publication Critical patent/EP0320599A1/de
Application granted granted Critical
Publication of EP0320599B1 publication Critical patent/EP0320599B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/02Portable grinding machines, e.g. hand-guided; Accessories therefor with rotating grinding tools; Accessories therefor
    • B24B23/03Portable grinding machines, e.g. hand-guided; Accessories therefor with rotating grinding tools; Accessories therefor the tool being driven in a combined movement

Definitions

  • the invention relates to an eccentric disc grinder, the grinding disc unit of which performs a circular motion around the eccentric shaft driving the grinding disc during workpiece machining.
  • the grinding plate unit begins to rotate due to the bearing friction that occurs between it and the eccentric shaft.
  • the speed of the grinding plate unit increases very quickly from zero to a value determined by the speed of the eccentric shaft and the sluggish mass of the grinding plate unit, so to speak, causing slippage. If you place the grinding plate unit that moves in this way on the workpiece, that is, if you switch from idling to load running, you will receive appropriate grinding marks at the beginning of workpiece processing due to the rapid rotation of the grinding plate around its own axis, which is undesirable for fine machining.
  • the grinding force occurring between the workpiece and the grinding plate unit takes a certain time to brake the rotation of the grinding plate about its own axis, so that the desired perfect fine grinding can only be obtained after this time. If one also takes into account that with a larger workpiece, the grinding plate unit is lifted from the workpiece and put back on relatively frequently, it is readily apparent that this is a serious disadvantage.
  • the present invention is therefore based on the object of creating an eccentric disc grinder with the features mentioned at the outset, which processes the workpiece with only a circular grinding disc unit or can be switched over to this operation without the speed of the grinding disc unit rising undefined up to the speed of the eccentric shaft when idling can.
  • the measures to be provided for this should be as simple as possible in construction and cheap to manufacture.
  • a magnetic or electromagnetic coupling device with a coupling part fixed to the housing and a coupling part fixed to the grinding plate is arranged between the grinding plate unit and the housing, the two coupling parts lying opposite one another in the axial direction and one of the coupling parts being a magnetic part with the other Coupling part reaching magnetic field, which interacts with the other coupling part, such that an effective holding force is exerted in the circumferential direction on the coupling part fixed to the grinding plate and via this on the grinding plate unit.
  • the grinding disc unit When the eccentric disc grinder is lifted from the workpiece, ie when it is idling, the grinding disc unit is held in the circumferential direction in a magnetic or electromagnetic manner.
  • the other coupling part made of a material with high electrical conductivity, For example, copper, so that eddy currents are induced in a relative movement between the two coupling parts, or caused by the fact that the other coupling part consists of magnetizable hysteresis material, so that magnetic movement in it during a relative movement between the two coupling parts Hysteresis losses occur.
  • the present invention has the particular advantage that an axially displaceable mounting of the grinding plate unit or the eccentric shaft carrying it is eliminated. Furthermore, there are no wear parts such as the spring and the rolling surfaces. In the eccentric disc grinder according to the invention, the various parts are arranged so that they cannot move axially, and there is practically no wear, since the holding force is not mechanical, but magnetic or electromagnetic is produced. In addition, by appropriately dimensioning and designing the clutch, in particular lower idling speeds down to the idling speed "zero" can be achieved in the case of two magnetic parts as coupling parts.
  • the head 1 of a motor-driven eccentric disc grinder is shown, which is attached to a motor housing 2 with a motor contained therein.
  • the housing of the head 1, hereinafter referred to as the machine housing 3, which consists of several housing parts which are not individually assigned a reference number, contains a working unit which essentially consists of an eccentric shaft 4 mounted in the machine housing 3 with an eccentrically and axially parallel crank pin 5 at the lower end and consists of a grinding plate unit 7 rotatably mounted on the crank pin 5 by means of a rotary bearing 6.
  • the grinding plate unit 7 has a grinding plate 8 in front of the machine housing 3 for grinding machining of a workpiece and a hub-like drive shaft 9 screwed to the grinding plate 8 in the exemplary embodiment, which is mounted on the crank pin 5 via the rotary bearing 6.
  • the eccentric shaft 4 is driven by means of a gearwheel 10, in the exemplary embodiment a bevel gearwheel, which is arranged coaxially to the eccentric shaft 4 and has a central shaft bore through which the eccentric shaft 4 engages.
  • the gear 10 sits for example with the help of wedges, not shown, on the eccentric shaft 4 and meshes with a motor-side gear 12, in the exemplary embodiment also a bevel gear.
  • the grinding plate unit 7 When the motor is switched on, the grinding plate unit 7 thus executes a circular eccentric movement about the axis 13 of the eccentric shaft 4.
  • the eccentric shaft 4 is mounted axially immovably in the housing 3 with the aid of an upper bearing 14 and a lower bearing 15.
  • the grinding plate unit 7 is also axially immovable.
  • two weights 16 and 17 are arranged on the eccentric shaft 4, which are arranged in opposite directions and are arranged at an axial distance from one another above the gearwheel 10 or at the level of the attachment point of the crank pin 5 and of which the lower weight 17 is opposite the crank pin 5.
  • the eccentric disc grinder shown is used either for fine machining or for rough machining of the workpiece.
  • a first rolling surface 18 present on the grinding plate unit in the exemplary embodiment an external spur gear placed on the circumference of the drive shaft 9 of the grinding plate 8, rolls on a second rolling surface 19, which is rotationally fixed with respect to the housing 3 and in the exemplary embodiment of an internal spur gear is formed.
  • the movement of the grinding plate unit 7 orbiting around the axis 13 of the eccentric shaft 4 is then a rotational movement of the grinding plate unit about its own axis, i.e. around the crank pin 5, superimposed, so that there is an overall hypocycloidal movement.
  • the grinding disc unit 7 begins because of the bearing friction (rotation) occurring between it and the eccentric shaft or its crank pin 5 bearing 6) to rotate, however, no further measures are provided.
  • Such self-rotation of the grinding plate unit 7 in idle is undesirable for workpiece finishing, since when the grinding plate unit is placed on the workpiece again, i.e. when transitioning from idling to load running, at the beginning of workpiece processing due to the rapid rotation of the grinding plate about its own axis, the can reach the speed of the eccentric shaft, receives corresponding grinding tracks until the grinding force occurring between the workpiece and the grinding plate unit 7 has braked the rotation of the grinding plate about its own axis.
  • a coupling device which acts magnetically or electromagnetically, is arranged between the grinding plate unit 7 and the housing 3. It contains a coupling part 20 which is fixed to the housing and a coupling part 21 which is fixed to the grinding plate.
  • the two coupling parts 20, 21 lie opposite one another in the axial direction, preferably in a contactless manner with a gap distance 22.
  • One of the coupling parts, for example the coupling part 21, is a magnetic part with a another coupling part 20 reaching magnetic field, which interacts with the other coupling part 20.
  • the magnetic field acts as a magnetic part Coupling part 21 together with the other coupling part 20 so that an effective holding force is exerted in the circumferential direction on the coupling part 21 which is fixed to the grinding plate and via this on the grinding plate unit 7.
  • the coupling part 20 fixed to the housing could be the magnetic part, in the magnetic field of which the other coupling part, in this case the coupling part 21, is located.
  • the effect would be the same, there is always a holding force exerted on the grinding plate unit 7 via the coupling part 21 on the grinding plate side. This counteracts the bearing friction force exerted by the bearing 6 on the grinding plate unit 7.
  • the other coupling part 20 consists of a material with high electrical conductivity, for example copper.
  • the arrangement then acts like an eddy current brake. If a relative movement generally takes place between a body consisting of electrically conductive material and a magnetic field, eddy currents are induced in the conductive material, which are directed in such a way that they counteract their cause, ie the relative movement. Through the eddy currents a braking force is generated.
  • the grinding plate unit 7 begins to rotate about its axis, with the magnetic part 21 also rotating, induction eddy currents immediately arise in the other coupling part 20, as a result of which the grinding plate unit is braked.
  • the coupling part 20 could also be the magnetic part, so that in this case the coupling part 21 would consist of the highly conductive material.
  • the other coupling part 20 consists of magnetizable hysteresis material, so that in a relative movement between the two coupling parts 20, 21 a magnetic reversal occurs according to a hysteresis curve.
  • hysteresis material is commercially available. If you place a magnet of this type against a magnet, it is magnetized at this point corresponding to the opposite magnetic pole. In the case of, for example, a positive pole of the magnet, a negative pole opposite this positive pole thus results on the hysteresis material. These two poles attract each other so that the magnetic force opposes a relative movement at right angles to the connecting line between the two poles.
  • both coupling parts 20, 21 are magnetic parts. Since opposite magnetic poles now attract, the magnetic part on the grinding plate side and with this the grinding plate unit stands still when the magnetic force is so great that the bearing friction force cannot move the grinding plate unit out of this rest position. With the magnets available today, this can easily be achieved. When this option is used, there is not even a slip speed.
  • At least one of the coupling parts is expediently 20, 21 formed by an annular body.
  • the two coupling parts are such an annular body, while the other coupling part extends only a little in the circumferential direction.
  • the holding force mentioned would result in each of the options mentioned, regardless of the rotational position which the grinding plate unit currently occupies.
  • the two coupling parts would face each other in any rotational position.
  • the holding force is greater if both coupling parts 20, 21, as in the exemplary embodiment, are formed by an annular body. This is also more favorable with regard to the occurrence of unbalance forces that occur during operation of the eccentric disc grinder.
  • the grinding plate-side ring body 21 is arranged concentrically to the crank pin 5, while the housing-fixed ring body 20 is concentric to the axis 13 of the eccentric shaft 4.
  • the two ring bodies 20, 21 are then not arranged concentrically to one another, but the dimensions are such that they always overlap when viewed in the radial direction.
  • Each ring body that is to say both coupling parts 20, 21 in the exemplary embodiment, is expediently formed by an annular disk.
  • annular disk With the materials available today, the desired effect can easily be achieved, even if these ring disks are very flat, ie thin-walled. This represents a material saving and is also not very space-consuming.
  • the coupling part 21 which is fixed to the grinding plate is arranged on the end of the hub-like drive shaft 9 of the grinding plate unit 7 which is mounted on the crank pin 5 and is opposite the grinding plate 8.
  • the housing-fixed coupling part 20 is located above, i.e. on the side of the coupling part 21 fixed to the grinding plate facing away from the grinding plate 8.
  • the magnetic part that always forms a coupling part and / or possibly the magnetic part that forms the other coupling part could in principle be designed as an electromagnet, but this would be complex.
  • the one coupling part that is to say the coupling part 21 in the exemplary embodiment, and possibly the other coupling part 22 is a permanent magnet part.
  • the permanent magnet part forming a coupling part 21 has successive magnetic poles in the circumferential direction with changing polarity. This can be seen in FIG. 2, which shows a top view of the annular coupling part 21 fixed to the grinding plate.
  • the permanent magnet part which possibly forms the other coupling part 20
  • the number of magnetic poles should be the same for both coupling parts.
  • the exemplary embodiment shown is a magnetic pole arrangement consisting of six positive poles, each with six negative poles arranged between them. The number could, however, also be different, for example only a total of ten poles could be provided.
  • the two coupling parts 20, 21 have a magnetic field closing part 23 or 24 made of ferro-magnetic material, in particular iron, on the opposite side of the coupling part. This avoids magnetic field scattering towards the outside and thus concentrates the magnetic field on the coupling device.
  • the grinding plate-fixed magnetic field closing part 24 is underlaid on the coupling part 21 and, like this, expediently in the form of an annular disk. Both parts are firmly connected to one another and, in the exemplary embodiment, are fastened on a likewise annular end plate 25 of the drive shaft 9. They protrude radially outward from the drive shaft 9.
  • the magnetic field closing part 23 of the coupling part 20 fixed to the housing is expediently formed by a carrier plate 26 fastened to the housing 3 with its outer circumference.
  • the carrier plate 26 is thus fixed with its outer peripheral region to the housing 3, for example screwed on, while its radially further inner region forms the magnetic field closing part 23 and is thereby firmly connected to the coupling part 20 fixed to the housing.
  • the carrier plate 26 and the housing-fixed coupling part 20 have a central bore 27 for the passage of the crank pin 5, the diameter of the axis 13th the eccentric shaft 4 coaxial bore 27 is so large that the crank pin 5 can execute its eccentric movement in it.
  • the crank pin 5 also passes through a central bore 28 of the coupling part 21 on the grinding plate side, the magnetic field closing part 24 and the end plate 25.
  • the carrier plate 26 can be provided with a ring-shaped bent portion 29.
  • the coupling device described is only important for the "fine grinding operation" of the eccentric disc grinder.
  • the eccentric disc grinder shown can also be switched to "rough grinding operation".
  • the second rolling surface 19 is arranged on an adjusting ring 30 which is located in the interior of the housing, so that the second rolling surface 19 can be brought into or out of engagement with the first rolling surface 18 by axially adjusting the adjusting ring 30 located on the outer circumference of the hub-like drive shaft 9 for the grinding plate 8.
  • the adjustment is carried out from the outside by means of a pivot 32 which is mounted in a radial bore in the housing section 31 and penetrates the housing.
  • the pivot 32 is provided on the outside of the housing with a turning handle 33.
  • the pivot pin 32 is connected to the adjusting ring 30 via an eccentric pin 34 arranged eccentrically to it. If you turn the pivot 32 by means of the rotary handle 33, takes the eccentric pin 34 with the adjusting ring 30 so that it performs an axial movement with superimposed movement in the circumferential direction.
  • the adjusting ring 30 is in its upper position, not shown, the two gears forming the rolling surfaces 18 and 19 are in engagement with one another, so that the grinding plate unit 7 rotates around its own axis during its circular movement about the eccentric shaft axis 13 by rotating the Rolls the first rolling surface 18 on the larger rolling diameter 19 and concentric to the eccentric shaft axis 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Magnetic Record Carriers (AREA)

Description

  • Die Erfindung betrifft einen Exzentertellerschleifer, dessen Schleiftellereinheit bei der Werkstückbearbeitung eine um die den Schleifteller antreibende Exzenterwelle kreisende Bewegung ausführt.
  • Bei herkömmlichen Exzentertellerschleifern, wie sie beispielsweise aus der US-PS 32 87 859 bekannt sind, wälzt sich während der Werkstückbearbeitung eine zur Schleiftellereinheit koaxial an dieser befestigte Wälzfläche an einer gehäusefesten Wälzfläche ab, so daß die Schleiftellereinheit nicht nur um die Exzenterwelle kreist, sondern sich dabei auch um ihre eigene Achse dreht, so daß sich insgesamt eine hypozykloidische Bewegung ergibt. Diese zusätzliche Rotation hat einen erhöhten Materialabtrag am Werkstück zur Folge.
  • Im Falle einer Werkstück-Feinbearbeitung ist die Schleifteller-Rotation jedoch unerwünscht. In einen anderen bekannten Exzentertellerschleifer, der in der Zeitschrift INDUSTRIE-ANZEIGER Nr. 75 vom 17. September 1982, 104. Jahrgang, S. 29, erwähnt ist, ist daher eine Verstelleinrichtung integriert, mit deren Hilfe die Wälzflächen außer Eingriff gebracht werden können, so daß die Schleiftellereinheit beim Feinschliffbetrieb nur noch ihre kreisende Bewegung ohne Eigenrotation ausführt. Hierbei tritt jedoch folgendes Problem auf:
  • Hebt man den Schleifteller vom Werkstück ab, beginnt die Schleiftellereinheit wegen der zwischen ihr und der Exzenterwelle auftretenden Lagerreibung zu rotieren. Dabei nimmt die Drehzahl der Schleiftellereinheit sehr schnell von Null bis zu einem von der Drehzahl der Exzenterwelle und der sozusagen einen Schlupf bewirkenden trägen Masse der Schleiftellereinheit bestimmten Wert zu. Setzt man die sich so bewegende Schleiftellereinheit auf das Werkstück auf, das heißt, geht man vom Leerlauf zum Lastlauf über, erhält man zu Beginn der Werkstückbearbeitung infolge der schnellen Rotation des Schleiftellers um seine eigene Achse entsprechende Schleifspuren, was bei einer Feinbearbeitung aber unerwünscht ist. Die zwischen dem Werkstück und der Schleiftellereinheit auftretende Schleifkraft benötigt nämlich eine gewisse Zeit, um die Rotation des Schleiftellers um seine eigene Achse abzubremsen, so daß man auch erst nach dieser Zeit den gewünschten einwandfreien Feinschliff erhält. Berücksichtigt man ferner, daß bei einem größeren Werkstück die Schleiftellereinheit verhältnismäßig häufig vom Werkstück abgehoben und wieder aufgesetzt wird, so ist ohne weiteres ersichtlich, daß es sich hier um einen gravierenden Nachteil handelt.
  • Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, einen Exzentertellerschleifer mit den eingangs genannten Merkmalen zu schaffen, der das Werkstück mit nur kreisender Schleiftellereinheit bearbeitet bzw. auf diesen Betrieb umschaltbar ist, ohne daß im Leerlauf die Drehzahl der Schleiftellereinheit undefiniert bis zur Drehzahl der Exzenterwelle ansteigen kann. Die hierfür vorzusehenden Maßnahmen sollen möglichst einfach im Aufbau und billig in der Herstellung sein.
  • Diese Aufgabe ist erfindungsgemäß dadurch gelöst, daß zwischen der Schleiftellereinheit und dem Gehäuse eine magnetische oder elektromagnetische Kupplungseinrichtung mit einem gehäusefesten Kupplungsteil und einem schleiftellerfesten Kupplungsteil angeordnet ist, wobei sich die beiden Kupplungsteile in axialer Richtung gegenüberliegen und das eine der Kupplungsteile ein Magnetteil mit einem zum anderen Kupplungsteil reichenden Magnetfeld ist, das mit dem anderen Kupplungsteil zusammenwirkt, derart, daß auf das schleiftellerfeste Kupplungsteil und über dieses auf die Schleiftellereinheit eine in deren Umfangsrichtung wirksame Haltekraft ausgeübt wird.
  • Bei vom Werkstück abgehobenem Exzentertellerschleifer, d.h. im Leerlauf, wird somit die Schleiftellereinheit auf magnetische oder elektromagnetische Weise in Umfangsrichtung festgehalten. Dies kann beispielsweise nach dem Wirbelstrom-Brems-Prinzip erfolgen, indem das andere Kupplungsteil aus einem Material mit großer elektrischer Leitfähigkeit, beispielsweise Kupfer, besteht, so daß in ihm bei einer Relativbewegung zwischen den beiden Kupplungsteilen Wirbelströme induziert werden, oder dadurch bewirkt werden, daß das andere Kupplungsteil aus magnetisierbaren Hysteresematerial besteht, so daß in ihm bei einer Relativ-bewegung zwischen den beiden Kupplungsteilen durch Ummagnetisierung magnetische Hystereseverluste auftreten. Bei diesen beiden Möglichkeiten tritt zwar ein Schlupf zwischen den beiden Kupplungsteilen auf, diese Schlupf-Drehzahl ist jedoch sehr klein und dabei wesentlich niedriger als die Drehzahl der Exzenterwelle, so daß die für die Feinbearbeitung allein erwünschte Kreisbewegung schon nach wesentlich kürzerer Zeit als bei den bekannten Maschinen erreicht wird, wenn der Schleifteller auf das Werkstück aufgesetzt wird. Eine Schlupf-Drehzahl der Schleiftellereinheit läßt sich sogar ganz verhindern, wenn das andere Kupplungsteil ebenfalls ein Magnetteil ist, so daß sich eine stabile magnetische Kopplung zwischen den beiden Kupplungsteilen ergibt.
  • Zur Lösung der gleichen Aufgabe ist bei einem Exzentertellerschleifer, dessen Schleiftellereinheit bei der Werkstückbearbeitung eine um die den Schleifteller antreibende Exzenterwelle kreisende Bewegung ausführt und der einerseits eine erste, gehäusefeste Wälzfläche und andererseits eine zweite, zur Schleiftellereinheit koaxial an dieser befestigte Wälzfläche aufweist, die mit der ersten Wälzfläche zusammenwirkt, gemäß der älteren Patentanmeldung P 36 25 655.2 bereits vorgeschlagen worden, daß die Schleiftellereinheit zum Maschinengehäuse hin gegen die Kraft einer Feder axial verschieblich ist und daß die beiden Wälzflächen derart angeordnet sind, daß sie in der zum Maschinengehäuse hin verschobenen Stellung der Schleiftellereinheit außer Eingriff sind.
  • In diesem Falle hält bei vom Werkstück abgehobenem Exzentertellerschleifer, d.h. im Leerlauf, die Federkraft die zweite Wälzfläche gegen die erste Wälzfläche, so daß sich die Schleiftellereinheit nur mit einer gegenüber der Drehzahl der Exzenterwelle kleinen, definierten Drehzahl dreht. Setzt man den Schleifteller auf das Werkstück auf, erhält man auf Grund des Gewichts des Exzentertellerschleifers und des von der arbeitenden Person auf diesen ausgeübten Druckes eine Relativverschiebung zwischen der Schleiftellereinheit und dem Maschinengehäuse, so daß die beiden Wälzflächen außer Eingriff gelangen und die Schleiftellereinheit ohne Eigenrotation nur noch um die Exzenterwelle kreist.
  • Die vorliegende Erfindung weist demgegenüber vor allem den Vorteil auf, daß eine axial verschiebliche Lagerung der Schleiftellereinheit bzw. der diese tragenden Exzenterwelle entfällt. Ferner sind keine solchen Verschleißteile wie die Feder und die Wälzflächen vorhanden. Bei dem erfindungsgemäßen Exzentertellerschleifer sind die verschiedenen Teile axial unverschieblich angeordnet, und es tritt praktisch kein Verschleiß auf, da die Haltekraft ja nicht mechanisch, sondern magnetisch bzw. elektromagnetisch erzeugt wird. Außerdem lassen sich durch entsprechende Dimensionierung und Ausbildung der Kupplung im einzelnen geringere Leerlauf-Drehzahlen bis hin zu der Leerlauf-Drehzahl "Null" im Falle von zwei Magnetteilen als Kupplungsteile erzielen.
  • Ein Ausführungsbeispiel der Erfindung einschließlich der in den Unteransprüchen angegebenen zweckmäßigen Ausgestaltungen werden nun anhand der Zeichnung im einzelnen beschrieben. Es zeigen:
    • Fig. 1 einen erfindungsgemäßen Exzentertellerschleifer im Längsschnitt in schematischer Darstellung und
    • Fig. 2 das schleiftellerseitige Kupplungsteil in Einzeldarstellung in axialer Richtung gesehen.
  • In Fig. 1 ist der Kopf 1 eines motorgetriebenen Exzentertellerschleifers dargestellt, der an ein Motorgehäuse 2 mit darin enthaltenem Motor angesetzt ist. Das nachfolgend als Maschinengehäuse 3 bezeichnete Gehäuse des Kopfes 1, das aus mehreren, nicht einzeln mit einer Bezugsziffer belegten Gehäuseteilen besteht, enthält eine Arbeitseinheit, die im wesentlichen aus einer im Maschinengehäuse 3 gelagerten Exzenterwelle 4 mit einem exzentrisch und achsparallel angesetzten Kurbelzapfen 5 am unteren Ende sowie aus einer am Kurbelzapfen 5 mittels eines Drehlagers 6 drehbar gelagerten Schleiftellereinheit 7 besteht.
  • Die Schleiftellereinheit 7 weist einen dem Maschinengehäuse 3 vorgelagerten Schleifteller 8 zum schleifenden Bearbeiten eines Werkstückes und eine beim Ausführungsbeispiel mit dem Schleifteller 8 verschraubte nabenartige Antriebswelle 9 auf, die über das Drehlager 6 am Kurbelzapfen 5 gelagert ist.
  • Die Exzenterwelle 4 wird mittels eines Zahnrads 10, beim Ausführungsbeispiel ein Kegelzahnrad, angetrieben, das koaxial zur Exzenterwelle 4 angeordnet ist und eine zentrale Wellenbohrung aufweist, durch die die Exzenterwelle 4 greift. Das Zahnrad 10 sitzt beispielsweise mit Hilfe von nicht dargestellten Keilen drehfest auf der Exzenterwelle 4 und kämmt mit einem motorseitigen Zahnrad 12, beim Ausführungsbeispiel ebenfalls ein Kegelzahnrad.
  • Bei eingeschaltetem Motor führt die Schleiftellereinheit 7 somit eine kreisende Exzenterbewegung um die Achse 13 der Exzenterwelle 4 aus.
  • Die Exzenterwelle 4 ist mit Hilfe eines oberen Lagers 14 und eines unteren Lagers 15 axial unverschieblich im Gehäuse 3 gelagert. Die Schleiftellereinheit 7 ist ebenfalls axial unverschieblich angeordnet. Zum Ausgleich der beim Betrieb auftretenden Unwuchtkräfte der Schleiftellereinheit 7 sitzen an der Exzenterwelle 4 zwei nach entgegengesetzten Richtungen weisende Gewichte 16 und 17, die mit axialem Abstand zueinander oberhalb des Zahnrads 10 bzw. in Höhe der Ansetzstelle des Kurbelzapfens 5 angeordnet sind und von denen das untere Gewicht 17 dem Kurbelzapfen 5 entgegengesetzt ist.
  • Der dargestellte Exzentertellerschleifer dient wahlweise zur Feinbearbeitung oder zur Grobbearbeitung des Werkstücks. Hierzu ist eine noch zu beschreibende Verstelleinrichtung vorhanden. Beim "Grobschliffbetrieb" wälzt sich eine an der Schleiftellereinheit vorhandene erste Wälzfläche 18, beim Ausführungsbeispiel ein auf den Umfang der Antriebswelle 9 des Schleiftellers 8 aufgesetztes Außenstirnzahnrad, an einer zweiten Wälzfläche 19 ab, die mit Bezug auf das Gehäuse 3 drehfest ist und beim Ausführungsbeispiel von einem Innenstirnzahnrad gebildet wird. Der um die Achse 13 der Exzenterwelle 4 kreisenden Bewegung der Schleiftellereinheit 7 ist dann eine Rotationsbewegung der Schleiftellereinheit um ihre eigene Achse, d.h. um den Kurbelzapfen 5, überlagert, so daß sich insgesamt eine hypozykoidische Bewegung ergibt. Im "Feinschliffbetrieb" ist die erste Wälzfläche 18 dagegen von der zweiten Wälzfläche 19 frei. Bei der Werkstückbearbeitung (Lastlauf) kreist die Schleiftellereinheit 7 dann nur um die Achse 13 der Exzenterwelle 4 ohne gleichzeitige Rotation um die eigene Achse. In Fig. 1 ist der Exzentertellerschleifer auf diesen "Feinschliffbetrieb" umgestellt.
  • Hebt man bei auf "Feinschliffbetrieb" gestelltem Exzentertellerschleifer diesen vom Werkstück ab, beginnt die Schleiftellereinheit 7 wegen der zwischen ihr und der Exzenterwelle bzw. deren Kurbelzapfen 5 auftretenden Lagerreibung (Dreh lager 6) jedoch zu rotieren, sieht man keine weiteren Maßnahmen vor. Eine solche Eigenrotation der Schleiftellereinheit 7 im Leerlauf ist für eine Werkstück-Feinbearbeitung unerwünscht, da man beim Wiederaufsetzen der Schleiftellereinheit auf das Werkstück, d.h. beim Übergang vom Leerlauf zum Lastlauf, zu Beginn der Werkstückbearbeitung infolge der schnellen Rotation des Schleiftellers um seine eigene Achse, die die Drehzahl der Exzenterwelle erreichen kann, entsprechende Schleifspuren erhält, bis die zwischen dem Werkstück und der Schleiftellereinheit 7 auftretende Schleifkraft die Rotation des Schleiftellers um seine eigene Achse abgebremst hat.
  • Um dies zu vermeiden, d.h. um zu erreichen, daß im Leerlauf die Drehzahl der Schleiftellereinheit 7 nicht undefiniert bis zur Drehzahl der Exzenterwelle 4 ansteigen kann, ist nun folgendes vorgesehen:
  • Zwischen der Schleiftellereinheit 7 und dem Gehäuse 3 ist eine Kupplungseinrichtung angeordnet, die magnetisch oder elektromagnetisch wirkt. Sie enthält ein gehäusefestes Kupplungsteil 20 und ein schleiftellerfestes Kupplungsteil 21. Dabei liegen sich die beiden Kupplungsteile 20, 21 in axialer Richtung gegenüber, und zwar bevorzugt berührungslos mit einem Spaltabstand 22. Eines der Kupplungsteile, beispielsweise das Kupplungsteil 21, ist ein Magnetteil mit einem zum anderen Kupplungsteil 20 reichenden Magnetfeld, das mit dem anderen Kupplungsteil 20 zusammenwirkt. Dabei wirkt das Magnetfeld des als Magnetteil ausgebildeten Kupplungsteils 21 mit dem anderen Kupplungsteil 20 so zusammen, daß auf das schleiftellerfeste Kupplungsteil 21 und über dieses auf die Schleiftellereinheit 7 eine in deren Umfangsrichtung wirksame Haltekraft ausgeübt wird.
  • Die Anordnung könnte auch umgekehrt getroffen werden, d.h. das gehäusefeste Kupplungsteil 20 könnte das Magnetteil sein, in dessen Magnetfeld sich das andere Kupplungsteil, in diesem Falle das Kupplungsteil 21, befindet. Die Wirkung wäre die gleiche, stets ergibt sich eine über das schleiftellerseitige Kupplungsteil 21 auf die Schleiftellereinheit 7 ausgeübte Haltekraft. Diese wirkt der vom Lager 6 auf die Schleiftellereinheit 7 ausgeübten Lagerreibungskraft entgegen.
  • Bezüglich der Ausbildung des anderen Kupplungsteils, beim Ausführungsbeispiel des Kupplungsteils 20, gibt es verschiedene Möglichkeiten:
  • Die erste Möglichkeit ist die, daß das andere Kupplungsteil 20 aus einem Material mit großer elektrischer Leitfähigkeit, beispielsweise aus Kupfer, besteht. Die Anordnung wirkt dann wie eine Wirbelstrombremse. Findet ganz allgemein eine Relativbewegung zwischen einem aus elektrisch leitendem Material bestehenden Körper und einem Magnetfeld statt, werden in dem leitenden Material Wirbelströme induziert, die so gerichtet sind, daß sie ihrer Ursache, d.h. der Relativbewegung, entgegenwirken. Durch die Wirbelströme wird also eine Bremskraft erzeugt. Beginnt also auf Grund der Lagerreibung die Schleiftellereinheit 7 sich um ihre Achse zu drehen, wobei sich das Magnetteil 21 mitdreht, ergeben sich sofort Induktionswirbelströme im anderen Kupplungsteil 20, wodurch die Schleiftellereinheit gebremst wird. Ist die Lagerreibung groß, kann sich dabei eine Schlupf-Drehzahl des schleiftellerseitigen Kupplungsteils 21 ergeben, die jedoch klein ist. Wie schon erwähnt, könnte auch das Kupplungsteil 20 das Magnetteil sein, so daß in diesem Falle das Kupplungsteil 21 aus dem gut leitenden Material bestehen würde.
  • Eine andere Möglichkeit besteht darin, daß das andere Kupplungsteil 20 aus magnetisierbarem Hysteresematerial besteht, so daß in ihm bei einer Relativbewegung zwischen den beiden Kupplungsteilen 20, 21 eine Ummagnetisierung gemäß einer Hysteresekurve auftritt. Ein solches Hysteresematerial ist handelsüblich. Stellt man einem solchen Material einen Magneten gegenüber, wird er an dieser Stelle dem gegenüberliegenden Magnetpol entsprechend magnetisiert. Im Falle beispielsweise eines Pluspols des Magneten ergibt sich also am Hysteresematerial ein diesem Pluspol gegenüberliegender Minuspol. Diese beiden Pole ziehen sich an, so daß sich die Magnetkraft einer Relativbewegung rechtwinkelig zur Verbindungslinie zwischen den beiden Polen entgegenstellt. Ist die von außen her einwirkende Kraft größer als diese Haltekraft, findet zwar eine Relativbewegung statt. In dem aus Hysteresematerial bestehenden Körper erfolgt dann jedoch dauernd ein Ummagnetisieren, und zwar so, daß jeweils der gerade einem Magnetpol des Magnetteils gegenüberliegende Bereich des Hysteresematerials entsprechend magnetisiert wird, so daß die Magnetpolanordnung im Hysteresematerial sozusagen mitgezogen wird. Bei diesem andauernden Ummagnetisieren treten Hystereseverluste auf, die als Wärme abgegeben werden. Somit kann sich im vorliegenden Falle, wenn die Lagerreibung die Schleiftellereinheit 7 mitnimmt, diese sich zwar um ihre Achse drehen. Auf Grund der geschilderten, im anderen Kupplungsteil, beim Ausführungsteil das Kupplungsteil 20, ablaufenden Vorgänge wird diese Schleiftellerrotation jedoch stark gebremst, so daß sich dementsprechend nur eine sehr kleine Schlupf-Drehzahl ergibt. Die Schleiftellereinheit 7 wird wieder in Umfangsrichtung festgehalten.
  • Bei einer weiteren Möglichkeit ist vorgesehen, daß das andere Kupplungsteil 20 ebenfalls ein Magnetteil ist. Beide Kupplungsteile 20, 21 sind in diesem Falle also Magnetteile. Da sich nun entgegengesetzte Magnetpole anziehen, steht das schleiftellerseitige Magnetteil und mit diesem die Schleiftellereinheit still, wenn die Magnetkraft so groß ist, daß die Lagerreibungskraft die Schleiftellereinheit nicht aus dieser Ruhestellung herausbewegen kann. Mit den heute zur Verfügung stehenden Magneten läßt sich dies ohne weiteres erreichen. Bei Anwendung dieser Möglichkeit tritt also nicht einmal eine Schlupf-Drehzahl auf.
  • Zweckmäßigerweise wird mindestens eines der Kupplungsteile 20, 21 von einem Ringkörper gebildet. Prinzipiell ist es möglich, daß nur eines der beiden Kupplungsteile ein solcher Ringkörper ist, während sich das jeweils andere Kupplungsteil nur ein Stück weit in Umfangsrichtung erstreckt. Auch in diesem Falle würde sich bei jeder der genannten Möglichkeiten die erwähnte Haltekraft ergeben, und zwar unabhängig davon, welche Drehlage die Schleiftellereinheit momentan einnimmt. In jeder Drehlage würden sich die beiden Kupplungsteile ja gegenüberliegen. Die Haltekraft ist jedoch größer, wenn beide Kupplungsteile 20, 21, wie beim Ausführungsbeispiel, von einem Ringkörper gebildet werden. Dies ist auch hinsichtlich des Auftretens von beim Betrieb des Exzentertellerschleifers auftretenden Unwuchtkräften günstiger. Der schleiftellerseitige Ringkörper 21 ist konzentrisch zum Kurbelzapfen 5 angeordnet, während der gehäusefeste Ringkörper 20 konzentrisch zur Achse 13 der Exzenterwelle 4 ist. Die beiden Ringkörper 20, 21 sind dann zwar nicht konzentrisch zueinander angeordnet, die Abmessungen sind jedoch so getroffen, daß sie sich in radialer Richtung gesehen stets überlappen.
  • Jeder Ringkörper, beim Ausführungsbeispiel also beide Kupplungsteile 20, 21, wird zweckmäßigerweise von einer Ringscheibe gebildet. Mit den heute zur Verfügung stehenden Materialien läßt sich die gewollte Wirkung ohne weiteres erzielen, auch wenn diese Ringscheiben sehr flach, d.h. dünnwandig, sind. Dies stellt eine Materialersparnis dar und ist außerdem wenig platzaufwendig.
  • Beim zweckmäßigen Ausführungsbeispiel ist das schleiftellerfeste Kupplungsteil 21 an der dem Schleifteller 8 entgegengesetzten Stirnseite der am Kurbelzapfen 5 gelagerten nabenartigen Antriebswelle 9 der Schleiftellereinheit 7 angeordnet. Das gehäusefeste Kupplungsteil 20 befindet sich darüber, d.h. an der dem Schleifteller 8 abgewandten Seite des schleiftellerfesten Kupplungsteils 21.
  • Das stets das eine Kupplungsteil bildende Magnetteil und/oder gegebenenfalls das das andere Kupplungsteil bildende Magnetteil könnte man prinzipiell als Elektromagnet ausbilden, was jedoch aufwendig wäre. Wesentlich einfacher, platzsparender und dabei verschleißfrei ist es demgegenüber, daß das eine Kupplungsteil, beim Ausführungsbeispiel also das Kupplungsteil 21, und gegebenenfalls das andere Kupplungsteil 22 ein Permanentmagnetteil ist. Dabei ist es zweckmäßig, daß das das eine Kupplungsteil 21 bildende Permanentmagnetteil in Umfangsrichtung mit wechselnder Polarität aufeinanderfolgende Magnetpole aufweist. Dies geht aus Fig. 2 hervor, die eine Draufsicht auf das ringförmige schleiftellerfeste Kupplungsteil 21 zeigt. Dementsprechend kann das gegebenenfalls das andere Kupplungsteil 20 bildende Permanentmagnetteil ebenfalls in Umfangsrichtung mit wechselner Polarität aufeinanderfolgende Magnetpole aufweisen. Dabei sollte die Anzahl der Magnetpole bei beiden Kupplungsteilen gleich sein. Beim dargestellten Ausführungsbeispiel handelt es sich um eine sich aus sechs Pluspolen mit jeweils dazwischen angeordneten sechs Minuspolen bestehende Magnetpolanordnung. Die Anzahl könnte jedoch auch anders sein, so könnten beispielsweise auch insgesamt nur zehn Pole vorgesehen werden.
  • Die beiden Kupplungsteile 20, 21 weisen an der dem jeweils gegenüberliegenden Kupplungsteil entgegengesetzten Seite ein Magnetfeld-Schließteil 23 bzw. 24 aus ferro-magnetischem Material, insbesondere aus Eisen, auf. Hierdurch wird eine Magnetfeldstreuung nach außen hin vermieden und somit das Magnetfeld auf die Kupplungseinrichtung konzentriert.
  • Das schleiftellerfeste Magnetfeld-Schließteil 24 ist dem Kupplungsteil 21 unterlegt und wie dieses zweckmäßigerweise ringscheibenförmig. Beide Teile sind fest miteinander verbunden und dabei beim Ausführungsbeispiel auf einer ebenfalls ringförmigen Stirnplatte 25 der Antriebswelle 9 befestigt. Sie stehen nach radial außen von der Antriebswelle 9 ab.
  • Das Magnetfeld-Schließteil 23 des gehäusefesten Kupplungsteils 20 wird zweckmäßigerweise von einer mit ihrem Außenumfang am Gehäuse 3 befestigten Trägerplatte 26 gebildet. Die Trägerplatte 26 ist also mit ihrem Außenumfangsbereich am Gehäuse 3 festgelegt, beispielsweise angeschraubt, während ihr radial weiter innen liegender Bereich das Magnetfeld-Schließteil 23 bildet und dabei mit dem gehäusefesten Kupplungsteil 20 fest verbunden ist. Die Trägerplatte 26 und das gehäusefeste Kupplungsteil 20 weisen eine zentrale Bohrung 27 für den Durchgriff des Kurbel zapfens 5 auf, wobei der Durchmesser der zur Achse 13 der Exzenterwelle 4 koaxialen Bohrung 27 so groß ist, daß der Kurbelzapfen 5 in ihr seine Exzenterbewegung ausführen kann. Der Kurbelzapfen 5 durchsetzt ferner eine zentrale Bohrung 28 des schleiftellerseitigen Kupplungsteils 21, des Magnetfeld-Schließteils 24 und der Stirnplatte 25.
  • Aus Platz- und Stabilitätsgründen kann die Trägerplatte 26 mit einer ringförmig umlaufenden Abkröpfung 29 versehen sein.
  • Die geschilderte Kupplungseinrichtung ist nur für den "Feinschliffbetrieb" des Exzentertellerschleifers wichtig. Wie schon erwähnt, läßt sich der dargestellte Exzentertellerschleifer auch auf "Grobschliffbetrieb" umstellen. Hierzu ist die zweite Wälzfläche 19 an einem im Gehäuse-Inneren befindlichen, in axialer Richtung verstellbaren Verstellring 30 angeordnet, so daß die zweite Wälzfläche 19 durch axiales Verstellen des Verstellrings 30 in bzw. außer Eingriff mit der ersten Wälzfläche 18 gebracht werden kann, die sich am Außenumfang der nabenartigen Antriebswelle 9 für den Schleifteller 8 befindet. Die Verstellung erfolgt von außen her mittels eines in einer Radialbohrung der Gehäusepartie 31 gelagerten und das Gehäuse durchdringenden Drehzapfen 32. An der Gehäuse-Außenseite ist der Drehzapfen 32 mit einer Drehhandhabe 33 versehen. Innen ist der Drehzapfen 32 über einen exzentrisch zu ihm angeordneten Exzenterzapfen 34 mit dem Verstellring 30 verbunden. Dreht man den Drehzapfen 32 mittels der Drehhandhabe 33, nimmt der Exzenterzapfen 34 den Verstellring 30 mit, so daß dieser eine Axialbewegung mit überlagerter Bewegung in Umfangsrichtung ausführt. Befindet sich der Verstellring 30 in seiner nicht dargestellten oberen Stellung, stehen die beiden die Wälzflächen 18 und 19 bildenden Zahnräder miteinander in Eingriff, so daß sich die Schleiftellereinheit 7 während ihrer kreisenden Bewegung um die Exzenterwellenachse 13 gleichzeitig um ihre eigene Achse dreht, indem sich die erste Wälzfläche 18 an der größeren Durchmesser aufweisenden und zur Exzenterwellenachse 13 konzentrischen zweiten Wälzfläche 19 abwälzt.

Claims (14)

1. Exzentertellerschleifer, dessen Schleiftellereinheit bei der Werkstückbearbeitung eine um die den Schleifteller antreibende Exzenterwelle kreisende Bewegung ausführt, dadurch gekennzeichnet, daß zwischen der Schleiftellereinheit (7) und dem Gehäuse (3) eine magnetische oder elektromagnetische Kupplungseinrichtung mit einem gehäusefesten Kupplungsteil (20) und einem schleiftellerfesten Kupplungsteil (21) angeordnet ist, wobei sich die beiden Kupplungsteile (20, 21) in axialer Richtung gegenüberliegen und das eine der Kupplungsteile ein Magnetteil mit einem zum anderen Kupplungsteil reichenden Magnetfeld ist, das mit dem anderen Kupplungsteil zusammenwirkt, derart, daß auf das schleiftellerfeste Kupplungsteil (21) und über dieses auf die Schleiftellereinheit (7) eine in deren Umfangsrichtung wirksame Haltekraft ausgeübt wird.
2. Exzentertellerschleifer nach Anspruch 1, dadurch gekennzeichnet, daß sich die beiden Kupplungsteile (20,21) berührungslos mit Spaltabstand (22) genenüberliegen.
3. Exzentertellerschleifer nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß mindestens eines der Kupplungsteile, zweckmäßigerweise beide Kupplungsteile, von einem Ringkörper gebildet wird.
4. Exzentertellerschleifer nach Anspruch 3, dadurch gekennzeichnet, daß jeder Ringkörper von einer Ringscheibe gebildet wird.
5. Exzentertellerschleifer nach einem der Ansprüche 1 bis 4 mit einer nabenartigen Antriebswelle der Schleiftellereinheit, die am Kurbelzapfen der Exzenterwelle gelagert ist, dadurch gekennzeichnet, daß das schleiftellerfeste Kupplungsteil (21) an der dem Schleifteller (8) entgegengesetzten Stirnseite der Antriebswelle (9) und das gehäusefeste Kupplungsteil (20) darüber angeordnet ist.
6. Exzentertellerschleifer nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das eine Kupplungsteil ein Permanentmagnetteil ist.
7. Exzentertellerschleifer nach Anspruch 6, dadurch gekennzeichnet, daß das das eine Kupplungsteil bildende Permanentmagnetteil in Umfangsrichtung mit wechselnder Polarität aufeinanderfolgende Magnetpole aufweist.
8. Exzentertellerschleifer nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das andere Kupplungsteil aus einem Material mit großer elektrischer Leitfähigkeit, beispielsweise Kupfer, besteht, so daß in ihm bei einer Relativbewegung zwischen den beiden Kupplungsteilen Wirbelströme induziert werden.
9. Exzentertellerschleifer nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das andere Kupplungsteil aus magnetisierbarem Hysteresematerial besteht, so daß in ihm bei einer Relativbewegung zwischen den beiden Kupplungsteilen eine Ummagnetisierung gemäß einer Hysteresekurve auftritt.
10. Exzentertellerschleifer nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das andere Kupplungsteil ebenfalls ein Magnetteil, zweckmäßigerweise ein Permanentmagnetteil, ist.
11. Exzentertellerschleifer nach Anspruch 10, dadurch gekennzeichnet, daß das das andere Kupplungsteil bildende Permanentmagnetteil in Umfangsrichtung mit wechselnder Polarität aufeinanderfolgende Magnetpole aufweist.
12. Exzentertellerschleifer nach Anspruch 7 und 11, dadurch gekennzeichnet, daß die Anzahl der Magnetpole bei beiden Kupplungsteilen (20, 21) gleich ist.
13. Exzentertellerschleifer nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die beiden Kupplungsteile (20, 21) an der dem jeweils gegenüberliegenden Kupplungsteil entgegengesetzten Seite ein Magnetfeld-Schließteil (23 bzw. 24) aus ferro-magnetischem Material, insbesondere aus Eisen, aufweisen.
14. Exzentertellerschleifer nach Anspruch 13, dadurch gekennzeichnet, daß das Magnetfeld-Schließteil (23) des gehäusefesten Kupplungsteils (20) von einer mit ihrem Außenumfang am Gehäuse (3) befestigten Trägerplatte (26) gebildet wird.
EP88117288A 1987-12-16 1988-10-18 Exzentertellerschleifer Expired - Lifetime EP0320599B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88117288T ATE64560T1 (de) 1987-12-16 1988-10-18 Exzentertellerschleifer.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873742531 DE3742531A1 (de) 1987-12-16 1987-12-16 Exzentertellerschleifer
DE3742531 1987-12-16

Publications (2)

Publication Number Publication Date
EP0320599A1 EP0320599A1 (de) 1989-06-21
EP0320599B1 true EP0320599B1 (de) 1991-06-19

Family

ID=6342676

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88117288A Expired - Lifetime EP0320599B1 (de) 1987-12-16 1988-10-18 Exzentertellerschleifer

Country Status (3)

Country Link
EP (1) EP0320599B1 (de)
AT (1) ATE64560T1 (de)
DE (2) DE3742531A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12005542B2 (en) 2019-05-07 2024-06-11 Guido Valentini Hand-held power tool for sending or polishing a workpiece

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4118392B4 (de) * 1991-06-05 2010-03-18 Robert Bosch Gmbh Exzenterschleifer
GB9123502D0 (en) * 1991-11-06 1992-01-02 Black & Decker Inc Sanding apparatus
DE4206753A1 (de) * 1992-03-04 1993-09-09 Bosch Gmbh Robert Exzentertellerschleifer
JP3063872B2 (ja) * 1992-06-08 2000-07-12 株式会社マキタ 研磨機
DE4233729A1 (de) * 1992-10-07 1994-04-14 Bosch Gmbh Robert Exzentertellerschleifer mit Schleiftellerbremse
US5392568A (en) * 1993-12-22 1995-02-28 Black & Decker Inc. Random orbit sander having braking member
US5580302A (en) * 1994-02-28 1996-12-03 Black & Decker Inc. Random orbit sander having air directing baffle
GB9415011D0 (en) * 1994-07-26 1994-09-14 Black & Decker Inc Improved oscillating hand tool
US5595531A (en) * 1995-07-26 1997-01-21 Ryobi North America Random orbit sander having speed limiter
JP3316622B2 (ja) * 1996-03-08 2002-08-19 株式会社マキタ サンダ
DE19617478B4 (de) * 1996-05-02 2006-06-29 Robert Bosch Gmbh Handschleifmaschine
DE19727700C2 (de) * 1997-06-30 2000-04-20 Kress Elektrik Gmbh & Co Exzentertellerschleifer
DE19952108B4 (de) * 1999-10-29 2007-09-20 Robert Bosch Gmbh Exzentertellerschleifmaschine
DE10064664C2 (de) * 2000-12-22 2003-11-06 Hans-Peter Barthelt Vorrichtungen zum Aufreißen von Tapeten oder Tapetenoberflächen
CN201030495Y (zh) 2004-04-13 2008-03-05 布莱克和戴克公司 低外形电动磨光机
DE102014109904A1 (de) * 2014-07-15 2016-01-21 C. & E. Fein Gmbh Exzenterschleifer
EP3693132B1 (de) * 2019-02-08 2023-09-06 Guido Valentini Handhaltbares und handgeführtes elektrowerkzeug zum exzenterpolieren oder -schleifen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287859A (en) * 1965-08-23 1966-11-29 Treffle J Leveque Rotatable grinding and surfacing tool
AT283942B (de) * 1968-09-06 1970-08-25 Deckel Ag Friedrich Schleifmaschine mit einer durch eine Luftturbine angetriebenen, planetenartig umlaufenden Schleifspindel
JPS53146057A (en) * 1977-05-20 1978-12-19 Vibrac Corp Magnetic torque coupling
DE3609441A1 (de) * 1986-03-20 1987-09-24 Bosch Gmbh Robert Exzenterschleifer mit einer vorrichtung zum veraendern der schleifbewegung
DE3625655C1 (de) * 1986-07-29 1988-01-07 Festo Kg Exzentertellerschleifer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12005542B2 (en) 2019-05-07 2024-06-11 Guido Valentini Hand-held power tool for sending or polishing a workpiece

Also Published As

Publication number Publication date
DE3742531A1 (de) 1989-06-29
EP0320599A1 (de) 1989-06-21
ATE64560T1 (de) 1991-07-15
DE3863351D1 (de) 1991-07-25

Similar Documents

Publication Publication Date Title
EP0320599B1 (de) Exzentertellerschleifer
EP2275701B1 (de) Elektromagnetische Reibschaltkupplung
EP0130344A1 (de) Kupplungsmotor
DE3625655C1 (de) Exzentertellerschleifer
DE3323297A1 (de) Induktionsmotor mit geringer traegheit und variabler drehzahl
EP1417744A1 (de) Elektronisch kommutierter innenl ufermotor
DE69800754T2 (de) Doppelseitige schleifmaschine
DE2951407C1 (de) Elektrischer Synchronmotor
DE915921C (de) Magnetscheider
DE2818665C3 (de) Maschine zum Schleifen oder Polieren von rotationssymmetrischen Werkstücken
DE894281C (de) Synchronmotor
DE1202392B (de) Magnetische Zentrier- und Antriebsvorrichtung mit ringfoermig um die Drehachse angeordneten Magnetpolen fuer einen schwimmend gelagerten Laeufer
EP0347462A1 (de) Vorrichtung zum bearbeiten von äusseren oberflächen zylindrischer werkstücke mittels eines magnetischen schleifverfahrens
EP0971160B1 (de) Aktiv gesteuertes Ventil für einen Kolbenkompressor
DE1914395C3 (de) Magnetische Druckwalze als Oberwalze einer Streckwerkswalzenanordnung
DE947491C (de) Dauermagnetische Bremse bzw. Kupplung
EP1335813B1 (de) Verfahren und vorrichtung zur oberflächenbehandlung von gegenständen
EP3843912B1 (de) Verwendung einer vorrichtung zum anstellen eines gegenstandes und walzgerüst
DE1423966A1 (de) Motorisch angetriebene Arbeitsmaschine,insbesondere Poliermaschine
DE3643514C2 (de)
DE3408328A1 (de) Einrichtung zur magnetischen schleifbearbeitung von werkstuecken
DE102004013423B4 (de) Spannungserzeuger
DE3323298A1 (de) Induktionsmotor mit geringer traegheit und variabler drehzahl
DE3242313C2 (de)
DE399028C (de) Mahlvorrichtung mit Anwendung des Magnetismus als Druckkraft fuer die Zerkleinerung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890714

17Q First examination report despatched

Effective date: 19901114

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910619

Ref country code: BE

Effective date: 19910619

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19910619

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19910619

Ref country code: SE

Effective date: 19910619

REF Corresponds to:

Ref document number: 64560

Country of ref document: AT

Date of ref document: 19910715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3863351

Country of ref document: DE

Date of ref document: 19910725

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19911018

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19911031

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960104

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19961031

Ref country code: LI

Effective date: 19961031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010928

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050929

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060923

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080501