EP0309797A2 - Magnetventil - Google Patents

Magnetventil Download PDF

Info

Publication number
EP0309797A2
EP0309797A2 EP19880114822 EP88114822A EP0309797A2 EP 0309797 A2 EP0309797 A2 EP 0309797A2 EP 19880114822 EP19880114822 EP 19880114822 EP 88114822 A EP88114822 A EP 88114822A EP 0309797 A2 EP0309797 A2 EP 0309797A2
Authority
EP
European Patent Office
Prior art keywords
bore
solenoid valve
space
piston slide
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19880114822
Other languages
English (en)
French (fr)
Other versions
EP0309797A3 (en
EP0309797B1 (de
Inventor
Ernst Dipl.-Ing. Linder
Helmut Dipl.-Ing. Rembold
Manfred Dipl.-Ing. Ruoff
Walter Schlagmüller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0309797A2 publication Critical patent/EP0309797A2/de
Publication of EP0309797A3 publication Critical patent/EP0309797A3/de
Application granted granted Critical
Publication of EP0309797B1 publication Critical patent/EP0309797B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means

Definitions

  • the invention is based on a solenoid valve according to the preamble of the main claim.
  • the two end sides of the piston slide have surfaces of different sizes and each of these end faces encloses a pressure space.
  • Both pressure chambers are connected to each other via an axial bore in the piston valve and are each connected to the high-pressure side and to the relief side by throttling play of the adjacent piston guide. Due to the uneven volume change of these pressure chambers during the piston slide stroke, a piston slide movement can only take place if pressure medium also flows in or out via the above-mentioned play.
  • both pressure spaces fill up to the high pressure level.
  • the solenoid valve according to the invention with the features of the characterizing part of claim 1 has the advantage over the prior art that the closing element of the solenoid valve, the piston slide, is pressure-balanced not only in the closed state but also in the opening movement.
  • pressure differences at the spool due to the running time differences of pressure waves, which are triggered on the fluid to be controlled during the opening and closing process of the spool, are avoided by the relief and reduced metered at the throttle.
  • FIG. 1 shows the first embodiment of the Invention with coaxial, relieving throttle in the wall enclosed by the second cylindrical part
  • Figure 2 shows a second embodiment of the solenoid valve with a piston valve provided with a longitudinal through-bore, from whose through-bore a relief throttle leads radially to the annular recess
  • Figure 3 shows a third embodiment of the invention Solenoid valve with a piston slide, the second cylindrical part of which forms a throttle gap with the outlet bore
  • FIG. 1 shows the first embodiment of the Invention with coaxial, relieving throttle in the wall enclosed by the second cylindrical part
  • Figure 3 shows a third embodiment of the invention Solenoid valve with a piston slide, the second cylindrical part of which forms a throttle gap with the outlet bore
  • FIG. 1 shows the first embodiment of the Invention with coaxial, relieving throttle in the wall enclosed by the second cylindrical part
  • Figure 3 shows a third embodiment of the invention Solenoid valve with a piston slide, the second cylindrical part of which forms a throttle gap with the outlet bore
  • FIG 4 shows a fourth exemplary embodiment of the solenoid valve according to the invention, in which only part of the guide part is exposed to the fluid pressure and the remaining end face is connected to the ambient air via a throttle and
  • Figure 5 shows a fifth embodiment in which the piston valve is sealed by sealing rings and the two front spaces on the piston valve are connected to the ambient air via a throttle.
  • Figure 1 shows the first embodiment of the solenoid valve according to the invention.
  • This has a valve housing 1, which contains a two-stage axial stepped bore with a first stepped bore part 2, which merges with a shoulder 3 lying in a radial plane into the second, middle stepped bore part 4, which in turn merges into the third stepped bore part 5.
  • the transition has a shoulder tapering with a first tip cone angle 1 to the third stepped bore part, which serves as valve seat 7.
  • the third stepped bore part is closed at the end by a plate 8 and has a passage designed as a throttle 9 coaxially.
  • the second stepped bore part 4 serves as a guide bore of a guide part 11 of a piston slide 12, which is connected to the guide part Adjacent has a transition part in the form of an annular recess 14, which forms a sharp sealing edge 15 with the guide part with a diameter corresponding to the guide part diameter, with which the piston slide comes into contact with the valve seat 7 in the closed position.
  • the annular recess 14 extends into the third stepped bore part 5, which forms an outlet bore, and merges there into a second cylindrical part 16 of the piston slide sliding in the outlet bore.
  • the piston slide has a conical axial delimitation of the recess 14 with a second tip cone angle ⁇ 2, which is larger than the first tip cone angle ⁇ 1.
  • the sealing line 15 thus always determines the narrowest opening cross section of the solenoid valve.
  • An annular space 17 is formed directly adjacent to the valve seat 7 on the guide bore side, in which the shoulder forming the valve seat 7 continues and into which the guide bore 4 opens.
  • a connecting line 18 opens radially into the annular space 17, which leads from a high-pressure space, not shown here, which is at least temporarily brought to a high fluid pressure.
  • a high-pressure chamber is, in particular, a pump work chamber of a fuel injection pump, in which the high-pressure delivery phase to injectors is controlled by not relieving the pressure on the pump work chamber during the delivery stroke of the pump piston of the fuel injection pump. This can be done with the solenoid valve according to the invention.
  • annular groove 19 is also provided, which is constantly in connection with the annular recess 14 and from which the connecting line 18 leads to a relief chamber, which, for example, is the pump suction chamber which is often provided in an injection pump and is located at a low pressure level can.
  • the connecting line can also lead to a fluid reservoir, to a fuel reservoir in the above-mentioned exemplary embodiment, or to the suction side of a pre-feed pump provided in such fuel injection pumps.
  • the piston slide 12 also has on its guide part 11 an axial threaded bore 20 into which an actuating rod 21 is screwed, to the end of which a flat armature 22 is fastened.
  • the magnetic core 23 with winding 24 of the electromagnet 29, which acts on the armature 22, is inserted in the first stepped bore part adjacent to the shoulder 3.
  • the first stepped bore part is finally sealed by a cover 25.
  • the actuating rod is provided with an axial bore 26, through which a transverse bore 27 leads, which opens in the area of the magnetic core and connects the first stepped bore part 2 and the space 28 delimiting on the end face from the adjacent piston slide 12 with a through channel 30 in the piston slide 12.
  • the through channel opens into the space 31 enclosed at the end face by the second cylindrical part 16 in the outlet bore 5 and, together with the axial bore 16 or the transverse bore 27, represents a connecting channel between the spaces 31 and 28.
  • a return spring 32 designed as a compression spring, clamped, which moves the spool in the open position of the solenoid valve when the electromagnet is not energized.
  • the open position of the piston slide is limited by a stop 33 formed on the cover 25, against which the actuating rod 21 or the armature comes to rest.
  • the spool is pressure-balanced in its closed position, since the high pressure supplied by the connecting line 18 does not find any axial contact surface in the annular space 17. Since the two end faces of the piston slide are connected to one another by the connecting channel 26, 27, 30, pressure compensation also prevails here.
  • the excited electromagnet 29 therefore only needs to overcome the force of the return spring 32. Moves the return spring 32 den Piston slide in the opening direction, fuel quantities are displaced by the piston slide, which can flow over the connecting channel 26, 30. Since the spaces 31 and 28 are relieved of pressure, no hindering pressures are built up here, but pressure waves are compensated at the throttle 9 provided, so that the piston slide can move continuously into the open position without uncontrolled adjusting movements taking place.
  • a further advantage is that the mass of the solenoid valve which is moved can be kept small with the aid of the through-channel 30 of the axial bore 26. By using the actuating rod, the mass is further reduced and the magnetic core can overlap radially inward, the piston slide 12, which leads to an elongated, compact shape of the solenoid valve.
  • Figure 2 shows a modified solenoid valve with essentially the same parts.
  • the space 31 is no longer relieved of the throttle lying coaxially to the axis of the piston slide but via a throttle 9 ', which is located in the wall of the piston slide 12' and connects the through-channel 30 with the annular recess 14.
  • the actuating rod 21 ' is also formed as a tube with only a slightly smaller diameter than the diameter of the guide member 11.
  • This actuating rod like that of FIG. 1, is made from non-magnetic material in order to prevent sticking to the stop 33.
  • the actuating rod 21 ' has a transverse bore 27 which defines the space 28 with the through-channel 30 or the wide axial bore 26 'connects.
  • the operation of this valve is otherwise the same as in the embodiment of Figure 1.
  • FIG. 3 A more modified form of the solenoid valve is shown in FIG. 3.
  • a two-stage stepped bore is likewise provided in a valve housing 51, the middle or second stepped bore part 54 being designed analogously to the second stepped bore part 4 of FIG. 1. Only here this second stepped bore part is not also the guide part of the spool.
  • the second stepped bore part 54 in turn merges into a third stepped bore part by means of a conical jacket-shaped shoulder, which is designed as a valve seat 57, which, analogously to FIG. 1, forms the outlet bore 55.
  • this also opens into an adjoining, front-side space 61, which, however, in a departure from the exemplary embodiment according to FIG. 1, is now closed by the housing of an electromagnet 62 with a magnetic core 63 and winding 64.
  • the piston slide 65 in this embodiment has the same diameter throughout, which is interrupted by an annular recess 66 and thereby separates the piston slide into an upper guide part 67 and a lower second cylindrical part 68.
  • the guide part 67 is mounted in a bushing 69 which is inserted into the first stepped bore part 52 and projects far into the second stepped bore part 54 with a reduced diameter.
  • the edge between the guide part 67 and a tapered axial boundary of the recess 66 also works together with the valve seat as a sealing edge 70.
  • the piston slide has a part 71 with a reduced diameter which protrudes from the guide bore 73 provided with the inner bore of the bush 69 and carries a spring plate 74 at its end.
  • a return spring 75 is supported on this, which on the other hand rests on the valve housing, especially one supported on the bush 69 stop plate 76, which in turn is held by a cover cap 60 that encloses the valve housing and encloses the space 28 of FIG.
  • the space 61 is connected to the radial recess 79 provided here again in the outlet bore 55 via a slight reduction in the diameter of the spool to form an annular gap 78. From this an outlet opening 80 of the connecting line 18 leads to the relief space.
  • this connecting line comes from the high-pressure chamber into the second stepped bore part 54, which together with the bush 69 forms the annular space 17 according to the exemplary embodiment according to FIG. 1.
  • the spaces 61 and 72 are still connected to one another by a connecting channel 82, just as the piston slide finally has a through channel 83, which here serves more to reduce the moving mass than the fuel guide and which can be closed, for example, on one side.
  • This configuration has the advantage that the piston slide is of very slim design and that the piston slide can be produced from rod material with a few machining steps.
  • FIG in continuing education from Figure 2 is, only one of the rooms with fuel.
  • a flat recess 86 is provided in the end piece of the guide bore 4 ', in which a round cord ring 87 is mounted, which comes with its inner contour to the actuating rod 21 ⁇ , which is carried out analogously to that of Figure 2.
  • the space 89 enclosed between the round cord ring 87 and the remaining, annular end face 88 between the actuating rod 21stange and the outer circumference of the guide part 11 is relieved via the transverse bore 27 branching off here to the axial bore 26 ⁇ , which merges into the through-channel 30 of the piston slide 12ensch.
  • the space 31 enclosed by the second cylindrical part 16, into which the through hole 30 opens, is relieved via opening 90.
  • the armature-side end of the actuating rod 21 ⁇ is sealed by a likewise non-magnetic disc 92.
  • the space 28 'adjoining the round cord ring 87 on the armature side is relieved of ambient air via a throttle 93 in the cover 33'. If necessary, a filter 94 can be connected upstream.
  • This configuration has the advantage that the large-area armature 22 is no longer moved in a hydraulically damped manner in fluidic medium but in air, so that substantially lower restoring moments act on the piston slide and its actuating speed can be increased.
  • the round cord ring 87 provided for sealing is easily movable in the flat recess 86. Because of its free support, it can perform a flexing movement during the axial stroke of the piston valve, from which only slight counter-forces result, which therefore do not impair the movement of the piston valve. This type of installation is possible because there are practically no high pressures at the installation location.
  • FIG. 4 a further development of the training according to FIG. 4 is shown.
  • the Round cord ring 87 is provided on the guide bore 4 'and the armature-side space relieved thereof via the throttle 93.
  • This measure to make one end-side space 28 ⁇ air-filled and to relieve the atmosphere, is continued in the embodiment according to FIG. 5 at the other end of the piston valve 12 '''.
  • an annular flat recess 96 is also provided at the end of the outlet bore 5 ', into which a second round cord ring 97 is fitted, the inner side of which rests on the end of the second cylindrical part 16 in a sealing manner.
  • the axial bore 26 ⁇ closing disc 92 is omitted here, so that there is a free connection between the space 28 ⁇ and the space 31 delimited by the second cylindrical part 16, both by means of the passage 30 in the piston valve or the axial bore 26 ⁇ in the actuating rod 21 ⁇ are vented via the throttle 93.
  • the spaces 89 enclosed on the pressure side by the round cord rings are also relieved here.
  • the second round cord ring 97 can also compensate for the movement of the piston slide with its relatively small stroke by flexing work without great resistance. It is also conceivable to replace the round cord rings with membranes, which leads to a further reduction in the deflection forces.
  • This exemplary embodiment like that of FIGS.
  • the spool has a very low moving mass and can be brought into its end positions very quickly in conjunction with the low displacement forces.
  • part 71 of the piston slide has a plate-shaped stop 104 which, like the spring plate 74, can be screwed onto part 71 and is adjustably fixed there.
  • the stop 104 is between the Arranged spring plate and the end of part 71 and projects radially beyond spring plate 74.
  • the cover cap 60 has a cylindrical inner circumferential wall 105 which is provided with a thread 106 into which an adjustable annular stop 103 is screwed. At this stop, a second spring plate 101 comes into contact on the guide bore side, between which and the stop plate 76 a second compression spring 100 is clamped.
  • the spool is in the open position when the magnet is not energized. It is held in this by the return spring 75, a shoulder 108 between the guide part 67 and part 71 coming to rest against the stop plate 76.
  • the piston slide is displaced axially against the force of the return spring 75 in the closing direction until it comes to rest against the spring plate 101 with the adjustable stop 104.
  • This position brings about a partial closing position of the solenoid valve, in which, in a throttled manner, fluid can flow away via the connecting line 18 for partial relief. From a second excitation level of the magnet, the biasing force of the second spring 100 is then overcome and the piston slide is brought into the closed position.
  • This embodiment has the advantage that a large relief cross-section of the connecting line 18 during the suction and control phase z. B. a pump workspace is available. This results in quick relief and, when used with fuel injection pumps, also by relieving the pressure on the pump workspace, an exact end to the high-pressure delivery phase. If the connecting line also serves as a filling line for the pump work area, the large connecting cross-section with the solenoid valve fully open provides a large overflow cross-section that ensures good filling of the Pump work space guaranteed. At the beginning of the delivery stroke of the pump piston of an assigned fuel injection pump, the connecting line can initially be partially closed for the start of injection and then closed completely to determine the actual start of the high-pressure delivery phase of the pump piston.
  • the connecting line 18 can be switched very large, since it is not the total stroke of the piston slide that is used to determine the start of the high-pressure delivery phase. Because of the large overflow cross sections, the connecting line can advantageously also be used in principle as a filling line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Zur Steuerung von Hochdruckphasen während des Hubs eines Pumpenkolbens einer Krafstoffeinspritzpumpe werden auch Magnetventile verwendet, die in Entlastungsleitungen des Pumpenarbeitsraumes solcher Kraftstoffeinspritzpumpen eingebaut sind und mit dem Zeitpunkt des Schließens der Entlastungsleitung den Spritzbeginn und mit dem Zeitpunkt des Wiederöffnens der Entlastungsleitung das Spritzende und damit die Einspritzmenge bestimmen. Solche Ventile müssen in Anbetracht hoher Brennkraftmaschinendrehzahlen schnell schalten können bei möglichst geringer aufzuwendender Baugröße und Energie. Durch die Verwendung eines Kolbenschiebers (12), der im Schließzustand hochdruckseitig druckausgeglichen ist und durch Entlastung der stirnseitig von dem Kolbenschieber begrenzten Räume (28, 31) erhält man ein schnell schaltendes rückwirkungsfreies Magnetventil, das bei stromlos geschaltetem Elektromagneten durch eine Rückstellfeder (32) geöffnet ist. Dies macht die Anwendung des Magnetventils in Verbindung mit elektrisch gesteuerten Einspritzpumpen besonders vorteilhaft.

Description

    Stand der Technik
  • Die Erfindung geht von einem Magnetventil nach der Gattung des Hauptanspruchs aus. Bei einem solchen bekannten Magnetventil haben die beiden Endseiten des Kolbenschiebers Flächen unterschiedlicher Größe und es schließt jede dieser Stirnseiten einen Druckraum ein. Beide Druckräume sind über eine Axialbohrung im Kolbenschieber miteinander verbunden und sind über je ein drosselndes Spiel der daran angrenzenden Kolbenführung mit der Hochdruckseite und zugleich mit der Entlastungsseite verbunden. Durch die beim Kolbenschieberhub ungleiche Volumenänderung dieser Druckräume kann eine Kolbenschieberbewegung nur dann erfolgen, wenn zugleich Druckmedium über das obengenannte Spiel zufließt bzw. abfließt. In den Stillstandzeiten des Kolbenschiebers, das heißt in seiner Schließstellung füllen sich beide Druckräume auf das Hochdruckniveau auf. Mit dieser Ausgestaltung soll eine gedämpfte Verstellung des Kolbenschiebers gewährleistet werden, um stabile und kontrollierte Bewegungen des Kolbenschiebers zu erzielen und damit ein genaueres Steuerergebnis zu bekommen. Diese Ausgestaltung hat jedoch den Nachteil, daß die Steuergeschwindigkeit des Kolbenschiebers erheblich dann reduziert wird, wenn nicht das Spiel auf der Hochdruck- und auf der Niederdruckseite in der Kolbenführung groß gemacht wird. Die Vergrößerung des Spiels hat naturgemäß eine Undichtigkeit des Ventils zur Folge und damit eine ungenaue Steuerung bzw. Reduzierung des Hochdruckniveaus, das eingehalten werden soll. Im anderen Fall, bei kleinem Spiel muß zum Schalten des Ventils eine erhebliche Energie aufgewendet werden. Dies erfordert wiederum große Stellwerke, die schon vom Platzbedarf her Schwierigkeiten bereiten. Beim Stand der Technik ist zum Schalten des Kolbenschiebers ein sehr groß bauender Doppelmagnet erforderlich.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Magnetventil mit den Merkmalen des Kennzeichens des Anspruchs 1 hat gegenüber dem Stand der Technik den Vorteil, daß das Schließglied des Magnetventils, der Kolbenschieber, nicht nur im Schließzustand sondern auch in Öffnungsbewegung druckausgeglichen ist. Darüber hinaus werden Druckdifferenzen am Kolbenschieber aufgrund von Laufzeitunterschieden von Druckwellen, die am zu steuernden Fluid beim Öffnungs- und Schließvorgang des Kolbenschiebers ausgelöst werden, durch die Entlastung vermieden und an der Drossel dosiert abgebaut.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Lösung gekennzeichnet.
  • Zeichnung
  • Fünf Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 erstes Ausführungsbeispiel der Erfindung mit koaxialer, entlastenden Drossel in der Wand vom zweiten zylindrischen Teil eingeschlossenen Raum, Figur 2 ein zweites Ausführungsbeispiel des Magnetventils mit einem mit einer Längsdurchgangsbohrung versehenen Kolbenschieber, von dessen Durchgangsbohrung radial eine entlastende Drossel zur ringförmigen Ausnehmung führt, Figur 3 ein drittes Ausführungsbeispiel des erfindungsgemäßen Magnetventils mit einem Kolbenschieber, dessen zweiter zylindrischer Teil mit der Austrittsbohrung einen Drosselspalt bildet, Figur 4 ein viertes Ausführungsbeispiel des erfindungsgemäßen Magnetventils, bei dem nur ein Teil des Führungsteils dem Fluiddruck ausgesetzt ist und die restliche Stirnfläche über eine Drossel mit der Umgebungsluft in Verbindung steht und Figur 5 ein fünftes Ausführungsbeispiel, bei dem der Kolbenschieber durch Dichtringe abgedichtet ist und die beiden stirnseitigen Räume am Kolbenschieber über eine Drossel mit der Umgebungsluft verbunden sind.
  • Beschreibung der Ausführungsbeispiele
  • Figur 1 zeigt das erste Ausführungsbeispiel des erfindungsgemäßen Magnetventils. Dieses weist ein Ventilgehäuse 1 auf, das eine zweistufige axiale Stufenbohrung enthält mit einem ersten Stufenbohrungsteil 2, der mit einer in einer Radialebene liegenden Schulter 3 in den zweiten, mittleren Stufenbohrungsteil 4 übergeht, welcher wiederum in den dritten Stufenbohrungsteil 5 übergeht. Der Übergang weist dabei eine mit einem ersten Sptizenkegelwinkel 1 sich zum dritten Stufenbohrungsteil verjüngende Schulter auf, die als Ventilsitz 7 dient. Der dritte Stufenbohrungsteil ist stirnseitig durch eine Platte 8 verschlossen und weist koaxial einen als Drossel 9 ausgebildeten Durchgang auf.
  • Der zweite Stufenbohrungsteil 4 dient als Führungsbohrung eines Führungsteils 11 eines Kolbenschiebers 12, der an das Führungsteil angrenzend ein Übergangsteil in Form einer ringförmigen Ausnehmung 14 aufweist, die mit dem Führungsteil eine scharfe Dichtkante 15 mit einem Durchmesser entsprechend dem Führungsteildurchmesser bildet, mit der der Kolbenschieber in Schließstellung am Ventilsitz 7 zur Anlage kommt. Die ringförmige Ausnehmung 14 reicht in den eine Austrittsbohrung bildenden dritten Stufenbohrungsteil 5 ein und geht dort über in einen zweiten, in der Austrittsbohrung gleitenden zylindrischen Teil 16 des Kolbenschiebers. Zur Bildung der Dichtkante 15 weist der Kolbenschieber eine kegelförmige axiale Begrenzung der Ausnehmung 14 auf mit einem zweiten Spitzenkegelwinkel α2, der größer ist als der erste Spitzenkegelwinkel α1. Damit bestimmt die Dichtlinie 15 jeweils immer den engsten Öffnungsquerschnitt des Magnetventils. Unmittelbar an den Ventilsitz 7 führungsbohrungsseitig angrenzend ist ein Ringraum 17 gebildet, in dem sich die den Ventilsitz 7 bildende Schulter fortsetzt und in den die Führungsbohrung 4 einmündet. In den Ringraum 17 radial mündet eine Verbindungsleitung 18, die von einem hier nicht weiter dargestellten Hochdruckraum herführt, der zumindestens zeitweise auf einen hohen Fluiddruck gebracht wird. Ein solcher Hochdruckraum ist insbesondere ein Pumpenarbeitsraum einer Kraftstoffeinspritzpumpe, bei der durch Nichtentlasten des Pumpenarbeitsraums während des Förderhubes des Pumpenkolbens der Kraftstoffeinspritzpumpe die Hochdruckförderphase zu Einspritzventilen gesteuert wird. Dies kann mit dem erfindungsgemäßen Magnetventil geschehen. In der Wand der Austrittsbohrung 5 ist ferner eine Ringnut 19 vorgesehen, die ständig in Verbindung mit der ringförmigen Ausnehmung 14 ist und von der die Verbindungsleitung 18 weiterführt zu einem Entlastungsraum, der zum Beispiel der in einer Einspritzpumpe häufig vorgesehene, auf niedrigem Druckniveau befindliche Pumpensaugraum sein kann. Die Verbindungsleitung kann zur Entlastung jedoch auch zu einem Fluidvorratsbehälter, im obenerwähnten Ausführungsbeispiel zu einem Kraftstoffvorratsbehälter, führen oder zur Saugseite einer bei solchen Kraftstoffeinspritzpumpen vorgesehenen Vorförderpumpe.
  • Der Kolbenschieber 12 weist ferner an seinem Führungsteil 11 eine axiale Gewindebohrung 20 auf, in die eine Betätigungsstange 21 eingeschraubt ist, an derem Ende ein Flachanker 22 befestigt ist. In den ersten Stufenbohrungsteil ist dabei angrenzend an die Schulter 3 der Magnetkern 23 mit Wicklung 24 des Elektromagneten 29 eingesetzt, der auf den Anker 22 wirkt. Der erste Stufenbohrungsteil ist schließlich dicht durch einen Deckel 25 verschlossen.
  • Die Betätigungsstange ist mit einer Axialbohrung 26 versehen, durch die eine Querbohrung 27 führt, die im Bereich des Magnetkerns mündet und den ersten Stufenbohrungsteil 2 und den stirnseitig vom daran angrenzenden Kolbenschieber 12 begrenzenden Raum 28 mit einem Durchgangskanal 30 im Kolbenschieber 12 verbindet. Der Durchgangskanal mündet in den stirnseitig von dem zweiten zylindrischen Teil 16 in der Austrittsbohrung 5 eingeschlossenen Raum 31 und stellt zusammen mit der axialen Bohrung 16 bzw. der Querbohrung 27 einen Verbindungskanal zwischen den Räumen 31 und 28 dar. Zwischen der Platte 8 und einem sich verengenden Teil des Durchgangskanals 30 ist schließlich eine Rückstellfeder 32, als Druckfeder ausgeführt, eingespannt, die bei nicht erregtem Elektromagneten den Kolbenschieber in Öffnungsstellung des Magnetventils bewegt. Die Öffnungsstellung des Kolbenschiebers wird begrenzt durch einen am Deckel 25 ausgebildeten Anschlag 33, an dem die Betätigungsstange 21 bzw. der Anker zur Anlage kommt.
  • Bei dem solchermaßen ausgestalteten Magnetventil ist der Kolbenschieber in seiner Schließstellung druckausgeglichen, da der von der Verbindungsleitung 18 zugeführte Hochdruck im Ringraum 17 keine axiale Angriffsfläche findet. Da die beiden Stirnseiten des Kolbenschiebers miteinander durch den Verbindungskanal 26, 27, 30 verbunden sind, herrscht auch hier Druckausgleich. Der erregte Elektromagnet 29 braucht deshalb lediglich die Kraft der Rückstellfeder 32 zu überwinden. Bewegt die Rückstellfeder 32 den Kolbenschieber in Öffnungsrichtung, so werden von dem Kolbenschieber Kraftstoffmengen verdrängt, die über den Verbindungskanal 26, 30 überströmen können. Da die Räume 31 und 28 druckentlastet sind, werden hier keinen behindernden Drücke aufgebaut, Druckwellen werden jedoch an der vorgesehenen Drossel 9 ausgeglichen, so daß der Kolbenschieber sich kontinuierlich in Öffnungsstellung bewegen kann, ohne daß unkrontrollierte Stellbewegungen erfolgen. Durch die Druckentlastung der Stirnseiten erfolgt die Bewegung auch sehr schnell, so daß exakte Entlastungszeitpunkte des angeschlossenen Hochdruckraums erzielt werden. Durch die Druckentlastung werden am Kolbenschieber auch nur geringe Stellkräfte benötigt, um ihn in Schließstellung zu bringen. Weiterhin ist von Vorteil, daß mit Hilfe des Durchgangskanals 30 der Axialbohrung 26 bewegte Masse des Magnetventils kleingehalten werden kann. Durch die Verwendung der Betätigungsstange wird weiterhin die Masse reduziert und es kann der Magnetkern wesentlich nach radial innen, den Kolbenschieber 12 überlappen, was insgesamt zu einer gestreckten, kompakten Form des Magnetventils führt.
  • Figur 2 zeigt ein abgewandeltes Magnetventil mit im wesentlichen gleichen Teilen. Für den Hauptteil der Beschreibung wird demzufolge auf die Ausführung nach Figur 1 verwiesen. Abweichend hiervon ist jedoch, daß der Raum 31 nicht mehr über die koaxial zur Achse des Kolbenschiebers liegenden Drossel entlastet wird sondern über eine Drossel 9′, die sich in der Wand des Kolbenschiebers 12′ befindet und den Durchgangskanal 30 mit der ringförmigen Ausnehmung 14 verbindet. Abweichend vom Ausführungsbeispiel nach Figur 1 ist ferner die Betätigungsstange 21′ als Rohr mit nur geringfügig geringerem Durchmesser als der Durchmesser des Führungsteils 11 ausgebildet. Diese Betätigungsstange ist wie auch die von Figur 1 aus nicht magnetischen Werkstoff gefertigt, um ein Klebenbleiben am Anschlag 33 zu verhindern. Auch hier weist die Betätigungsstange 21′ eine Querbohrung 27 auf, die den Raum 28 mit dem Durchgangskanal 30 bzw. der weiten Axialbohrung 26′ verbindet. Die Arbeitsweise dieses Ventils ist im übrigen gleich wie beim Ausführungsbeispiel nach Figur 1.
  • Eine stärker abgewandelte Form des Magnetventils zeigt Figur 3. Dort ist in einem Ventilgehäuse 51 ebenfalls eine zweistufige Stufenbohrung vorgesehen, wobei der mittlere oder zweite Stufenbohrungsteil 54 analog zum zweiten Stufenbohrungsteil 4 von Figur 1 ausgebildet ist. Nur ist hier dieser zweite Stufenbohrungsteil nicht zugleich Führungsteil des Kolbenschiebers. Der zweite Stufenbohrungsteil 54 geht wiederum mittels einer kegelmantelförmigen Schulter, die als Ventilsitz 57 ausgebildet ist, in einen dritten Stufenbohrungsteil über, der analog zu Figur 1 die Austrittsbohrung 55 bildet. Diese mündet schließlich ebenfalls in einen anschließenden, stirnseitigen Raum 61, der nun jedoch abweichend vom Ausführungsbeispiel nach Figur 1 durch das Gehäuse eines Elektromagneten 62 mit Magnetkern 63 und Wicklung 64 verschlossen wird.
  • Der Kolbenschieber 65 bei diesem Ausführungsbeispiel hat einen durchgehend gleichen Durchmesser, der durch eine ringförmige Ausnehmung 66 unterbrochen ist und dabei den Kolbenschieber in einen oberen Führungsteil 67 und einen unteren zweiten zylindrischen Teil 68 trennt. Der Führungsteil 67 ist in einer Buchse 69 gelagert, die in den ersten Stufenbohrungsteil 52 eingesetzt ist und weit mit reduziertem Durchmesser in den zweiten Stufenbohrungsteil 54 hineinragt. Mit dem Ventilsitz arbeitet auch hier die Kante zwischen Führungsteil 67 und einer kegelfärmig verlaufenden axialen Begrenzung der Ausnehmung 66 als Dichtkante 70 zusammen. Der Kolbenschieber weist einen Teil 71 mit reduziertem Durchmesser auf, der aus der mit der Innenbohrung der Buchse 69 zur Verfügung gestellten Führungsbohrung 73 herausragt und trägt an seinem Ende einen Federteller 74. An diesem stützt sich eine Rückstellfeder 75 ab, die sich andererseits am Ventilgehäuse, insbesondere einer über die Buchse 69 gelegten Anschlagplatte 76 abstützt , die ihrerseits durch eine das Ventilgehäuse abschließenden und eine dem Raum 28 von Figur 1 analogen Raum 72 einschließenden Abdeckkappe 60 gehalten wird.
  • Am anderen Ende des Kolbenschiebers 67 ragt dieser in den Raum 61 und ist dort mit einem Anker 77 verbunden, der bei Erregung der Wicklung 64 den Kolbenschieber entgegen der Kraft der Rückstellfeder 75 mit der Dichtkante 70 auf den Ventilsitz 57 bewegt. Schließlich ist der Raum 61 über eine leichte Durchmesserreduzierung des Kolbenschiebers unter Bildung eines Ringspalts 78 mit der auch hier wieder in der Austrittsbohrung 55 vorgesehen radialen Ausnehmung 79 in Verbindung steht. Von dieser geht eine Austrittsöffnung 80 der Verbindungsleitung 18 zum Entlastungsraum ab. Diese Verbindungsleitung mündet andererseits herkommend vom Hochdruckraum in den zweiten Stufenbohrungsteil 54, der zusammen mit der Buchse 69 den Ringraum 17 gemäß Ausführungsbeispiel nach Figur 1 bildet. Schließlich sind die Räume 61 und 72 noch durch einen Verbindungskanal 82 miteinander verbunden, wie auch schließlich der Kolbenschieber einen Durchgangskanal 83 aufweist, der hier mehr der Reduzierung der bewegten Masse als der Kraftstofführung dient und der zum Beispiel einseitig verschlossen sein kann.
  • Diese Ausgestaltung hat den Vorteil, daß der Kolbenschieber sehr schlank ausgebildet ist und daß der Kolbenschieber aus Stangenmaterial mit wenigen Bearbeitungsgängen hergestellt werden kann.
  • Während bei den vorstehenden Ausführungsbeispielen die sich stirnseitig an den Kolbenschieber anschließenden Räume 31, 28 bzw. 61, 72 mit Kraftstoff gefüllt waren, insbesondere auch jener Raum, in dem sich der Anker 22 des Elektromagneten 29 bewegte, ist nun abweichend nach Figur 4, die im Weiterbildung von Figur 2 ist, nur noch einer der Räume mit Kraftstoff beaufschlagt. Zu diesem Zweck ist im Endstück der Führungsbohrung 4′ eine flache Ausnehmung 86 vorgesehen, in der ein Rundschnurring 87 gelagert ist, der mit seiner Innenkontur an der Betätigungsstange 21˝ zur Anlage kommt, die analog der nach Figur 2 ausgeführt ist. Der zwischen dem Rundschnurring 87 und der verbleibenden, ringförmigen Stirnseite 88 zwischen Betätigungsstange 21˝ und Außenumfang des Führungsteils 11 eingeschlossene Raum 89 wird über die hier abzweigende Querbohrung 27 zur Axialbohrung 26˝, die in den Durchgangskanal 30 des Kolbenschiebers 12˝ übergeht, entlastet. Der vom zweiten zylindrischen Teil 16 eingeschlossene Raum 31, in den die Durchgangssbohrung 30 mündet, ist über Öffnung 90 entlastet.
  • Das ankerseitige Ende der Betätigungsstange 21˝ ist durch eine ebenfalls antimagnetische Scheibe 92 dicht verschlossen. Der sich an den Rundschnurring 87 ankerseitig anschließende Raum 28˝ ist über eine Drossel 93 im Deckel 33′ zur Umgebungsluft entlastet. Gegebenenfalls kann ein Filter 94 vorgeschaltet werden.
  • Diese Ausgestaltung hat den Vorteil, daß der großflächige Anker 22 nicht mehr hydraulisch gedämpft in Fluidikmittel bewegt wird sondern in Luft, so daß hier wesentlich geringere Rückstellmomente auf den Kolbenschieber wirken und dessen Stellgeschwindigkeit erhöht werden kann. Der zur Abdichtung vorgesehene Rundschnurring 87 ist leicht in der flachen Ausnehmung 86 beweglich. Aufgrund seiner freien Lagerung kann er beim Axialhub des Kolbenschiebers eine Walkbewegung ausführen, aus der nur geringe Gegenkräfte resultieren, die also die Bewegung des Kolbenschiebers nicht beeinträchtigen. Diese Einbauart ist deshalb möglich, weil am Einbauort praktisch keine hohen Drücke entstehen.
  • In einem fünften Ausführungsbeispiel wird eine Weiterbildung der Ausbildung nach Figur 4 dargestellt. Dabei ist auch hier der Rundschnurring 87 an der Führungsbohrung 4′ vorgesehen und der ankerseitige Raum davon über die Drossel 93 entlastet. Diese Maßnahme, den einen stirnseitigen Raum 28˝ luftgefüllt zu machen und zur Atmosphäre zu entlasten, wird beim Ausführungsbeispiel nach Figur 5 am anderen Ende des Kolbenschiebers 12′′′ weitergeführt. Hier ist am Ende der Austrittsbohrung 5˝ ebenfalls eine ringförmige flache Ausnehmung 96 vorgesehen, in die ein zweiter Rundschnurring 97 eingepaßt ist, der hier mit seiner Innenseite am Ende das zweiten zylindrischen Teils 16 dichtend anliegt. Die beim Ausführungsbeispiel nach Figur 4 noch vorgesehene, die Axialbohrung 26˝ verschließende Scheibe 92 ist hier weggelassen, so daß eine freie Verbindung zwischen dem Raum 28˝ und dem vom zweiten zylindrischen Teil 16 begrenzten Raum 31 besteht, die beide vermittels dem Durchgangskanal 30 im Kolbenschieber bzw. der Axialbohrung 26˝ in der Betätigungsstange 21˝ über die Drossel 93 belüftet sind. Die druckseitig von den Rundschnurringen eingeschlossenen Räume 89 werden auch hier entlastet. Auch der zweite Rundschnurring 97 kann ohne großen Widerstand die Bewegung des Kolbenschiebers bei dessen relativ geringem Hub durch Walkarbeit ausgleichen. Denkbar ist auch, die Rundschnurringe durch Membranen zu ersetzen, was zu einer weiteren Reduzierung der Auslenkkräfte führt. Dieses Ausführungsbeispiel weist wie jene von Figuren 2 und 4 einen Kolbenschieber mit geringer Masse auf und es hat zusätzlich den Vorteil, daß Fluidverdrängung durch die Stirnseiten sich praktisch nicht auf den Öffnungsvorgang und den Schließvorgang des Magnetventils auswirkt. Der Kolbenschieber hat eine sehr geringe bewegte Masse und kann in Verbindung mit den geringen Verdrängungskräften sehr schnell in seine Endstellungen gebracht werden.
  • In einer Weiterbildung zu Figur 3 weist der Teil 71 des Kolbenschiebers einen tellerförmigen Anschlag 104 auf, der wie der Federteller 74 auf das Teil 71 aufschraubbar ist und dort einstellbar fixiert ist. Der Anschlag 104 ist dabei zwischen dem Federteller und dem Ende des Teils 71 angeordnet und überragt den Federteller 74 radial. Weiterhin weist die Abdeckkappe 60 eine zylindrische innere Umfangswand 105 auf, die mit einem Gewinde 106 versehen ist, in das ein verstellbarer ringförmiger Anschlag 103 eingeschraubt ist. An diesem Anschlag kommt führungsbohrungsseitig ein zweiter Federteller 101 zur Anlage, zwischen dem und der Anschlagplatte 76 eine zweite Druckfeder 100 eingespannt ist.
  • In der gezeigten Darstellung in Figur 3 befindet sich der Kolbenschieber bei nicht erregtem Magnet in Offenstellung. In dieser wird er durch die Rückstellfeder 75 gehalten, wobei eine Schulter 108 zwischen Führungsteil 67 und Teil 71 zur Anlage an der Anschlagplatte 76 kommt. Bei einer Teilerregung des Elektromagneten wird der Kolbenschieber entgegen der Kraft der Rückstellfeder 75 so weit axial in Schließrichtung verschoben, bis er mit dem einstellbaren Anschlag 104 zur Anlage an dem Federteller 101 gelangt. Diese Position bewirkt eine Teilschließstellung des Magnetventils, bei der gedrosselt über die Verbindungsleitung 18 Fluid zur Teilentlastung abfließen kann. Ab einer zweiten Erregungsstufe des Magneten wird dann die Vorspannkraft der zweiten Feder 100 überwunden und der Kolbenschieber in Schließstellung gebracht.
  • Diese Ausgestaltung hat den Vorteil, daß ein großer Entlastungsquerschnitt der Verbindungsleitung 18 während der Saug- und Absteuerphase z. B. eines Pumpenarbeitsraumes zur Verfügung steht. Damit werden schnelle Entlastungen erzielt und bei der Verwendung bei Kraftstoffeinspritzpumpen durch schnelles Entlasten des Pumpenarbeitsraumes auch ein exaktes Ende der Hochdruckförderphase. Wenn die Verbindungsleitung zusätzlich als Fülleitung für den Pumpenarbeitsraum dient, so steht mit dem großen Verbindungsquerschnitt bei ganz geöffnetem Magnetventil ein großer Überströmquerschnitt zur Verfügung, der eine gute Füllung des Pumpenarbeitsraumes gewährleistet. Bei Beginn des Förderhubs des Pumpenkolbens einer zugeordneten Kraftstoffeinspritzpumpe kann für den Spritzbeginn zunächst die Verbindungsleitung zum Teil geschlossen werden um dann, zur Bestimmung des eigentlichen Beginns der Hochdruckförderphase des Pumpenkolbens ganz geschlossen zu werden. Für diesen letzten Schließvorgang muß nur noch ein kleiner Kolbenschieberhub zurückgelegt werden. Entsprechend klein ist auch der Luftspalt zwischen Anker und Kern des Elektromagneten, so daß kurze Schaltzeiten bei nur geringem Strombedarf des Elektromagneten gewährleistet sind. Mit einem solchermaßen ausgestaltetem Magnetventil kann der Gesamtöffnungsquerschnitt in der Verbindungsleitung 18 sehr groß geschaltet werden, da zur Bestimmung des Beginns der Hochdruckförderphase nicht der Gesamthub des Kolbenschiebers zum Ansatz kommt. Aufgrund der großen Überströmquerschnitte kann die Verbindungsleitung vorteilhafterweise grundsätzlich auch als Fülleitung verwendet werden. Diese hat den Vorteil, daß bei einem Versagen, das vor allen Dingen als Klemmen des Kolbenschiebers auftreten kann und entweder der Pumpenarbeitsraum gar nicht mit Kraftstoff versorgt wird oder sich im Pumpenarbeitsraum nicht der erforderliche Hochdruck für einen Einspritzvorgang einstellen kann. Ein Einsatz eines solchen Magnetventils verbessert somit die Sicherheit insbesondere gegen Durchgehen oder Beschädigung beim Betrieb einer Brennkraftmaschine.

Claims (11)

1. Magnetventil zur Steuerung des Durchgangs einer Verbindungsleitung (18) zwischen einem zumindest zweitweise auf Fluidhochdruck gebrachten Hochdruckraum, insbesondere einem Pumpenarbeitsraum einer Kraftstoffeinspritzpumpe und einem Niederdruckraum, mit einem Ventilgehäuse (1) und einer darin angeordneten Führungsbohrung (4, 73), in der als Ventilschließglied ein Kolbenschieber (12, 67) von einem Elektromagneten (29) entgegen der Kraft einer Rückstellfeder (32) verschiebbar ist und die in einen Ringraum (17) mündet, der am axial gegenüberliegenden Ende sich kegelförmig mit einem ersten Spitzenkegelwinkel (α 1) verjüngend in eine zur Führungsbohrung koaxiale Austrittsbohrung (5) übergeht, durch die ein durch eine ringförmige Ausnehmung (14) gebildeter Übergangsteil des bis dahin als Führungsteil (11) mit durchgehend gleichem Durchmesser versehenen zylindrischen Kolbenschieber mit radialem Abstand geführt ist, wobei der Übergang zwischen dem zylindrischen Führungsteil (11) und dem Übergangsteil sich kegelförmig zum Übergangsteil hin verjüngend ausgebildet ist mit einem zweiten Spitzenkegelwinkel ( α 2), der größer als der erste Spitzenkegelwinkel ( α 1) ist und die Grenzlinie zwischen Führungsteil (11) und Übergangsteil (14) als Dichtkante (15) dient, mit der der Kolbenschieber in seiner Schließstellung zur Anlage an einen durch den sich kegelförmig zur Austrittsbohrung (5) verjüngenden Teil des Ringraums (17) gebildeteten Ventilsitz (7) kommt und mit einem zweiten, in der Austrittsbohrung (5) gleitender zylindrischer Teil (16) des Kolbenschiebers, der sich an die ringförmige Ausnehmung (14) anschließt, dessen Stirnseite einen Raum (31) im Ventilgehäuse (1) begrenzt, der über einen Verbindungskanal (30, 26) mit einem von Führungsteil (11) stirnseitig begrenzten Raum (28, 72) verbunden ist und der über eine Drossel (9, 9′, 78, 93) mit einem Entlastungsraum verbunden ist, ferner mit einer Eintrittsöffnung der vom Hochdruckraum kommenden Verbindungsleitung (18) in der Wand des Ringraumes (17) und einer Austrittsöffnung in der Wand der Austrittsbohrung (5, 55) innerhalb des Überdeckungsbereichs mit der ringförmigen Ausnehmung (14, 66) und mit einem axialen Anschlag (33), an dem der Kolbenschieber bei vom Ventilsitz (7, 57) abgehobener Dichtkante (15) in Offenstellung bringbar ist, dadurch gekennzeichnet, daß die von Stirnseiten des Kolbenschiebers begrenzten Räume (31, 28; 61, 72; 31, 28˝) im Ventilgehäuse (1) druckentlastet sind und der Kolbenschieber durch die Rückstellfeder (32) zur Offenstellung hin beaufschlagt ist.
2. Magnetventil nach Anspruch 1, dadurch gekennzeichnet, daß der Kolbenschieber einen Durchgangskanal (30, 26) aufweist, der die Stirnseiten des Kolbenschiebers miteinander verbindet und die Drossel (9) als Drosselbohrung im stirnseitigen Abschluß der Austrittsbohrung (5) angeordnet ist (Figur 1).
3. Magnetventil nach Anspruch 1, dadurch gekennzeichnet, daß die Räume (61, 79) über einen die Drossel bildenden Ringspalt (78) zwischen zweitem zylindrischen Teil (68) und Austrittsbohrung (55) mit der ringförmigen Ausnehmung (66) verbunden sind (Figur 3).
4. Magnetventil nach Anspruch 1, dadurch gekennzeichnet, daß der Kolbenschieber einen Durchgangskanal (30, 26′) aufweist, der die Stirnseiten des Kolbenschiebers miteinander verbindet und die Drossel (9′) in einer Verbindungsbohrung zwischen Durchgangskanal (30) und ringförmiger Ausnehmung (14) angeordnet 9st (Figur 2).
5. Magnetventil nach Anspruch 2, dadurch gekennzeichnet, daß die Rückstellfeder (32) innerhalb einer axialen Ausnehmung (30) des zweiten zylindrischen Teils (16) zwischen diesem und einem stirnseitigen Abschluß (8) der Austrittsbohrung (5) eingespannt ist (Fig. 1, 2, 4, 5).
6. Magnetventil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Rückstellfeder (75) sich an einem Federteller (74), der sich am Ende eines aus der Führungsbohrung (73) herausragenden Teils (71) des Führungsbohrungsteils (67) des Kolbenschiebers abstützt und daß am gegenüberliegenden Teil des Kolbenschiebers der Anker (77) des Elektromagneten angreift (Figur 3).
7. Magnetventil nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß das dem Ringraum (17) abgewandte Ende der Führungsbohrung (4′) eine ringförmige, flache Ausnehmung (86) aufweist, in der ein Rundschnurring (87) unter leichter Verformung axial hin- und herbewegbar ist, der andererseits mit seinem Innendurchmesser an einem aus der Führungsbohrung herausragenden, zylindrischen Teil (21˝) des Kolbenschiebers anliegt, welcher Teil gegenüber dem Führungsteil (11) des Kolbenschiebers im Durchmesser reduziert ist und der zwischen Anlage des Rundschnurrings (87) und Führungsteil (11) einen Verbindungskanal (27) aufweist, der zu dem von der austrittsbohrungsseitigen Stirnseite des Kolbenschiebers begrenzten Raum (31) abführt (Fig. 4 + 5).
8. Magnetventil nach Anspruch 7, dadurch gekennzeichnet, daß der Kolbenschieber eine axial durchgehende Ausnehmung (30, 26˝) aufweist, wobei das herausragende zylindrische Teil (21˝) mit dem Anker (22) des Elektromagneten (13) verbunden ist und stirnseitig verschlossen ist und der den Anker (22) und Elektromagneten aufnehmende Raum (28˝) über eine Drossel (93) zur Umgebungsluft hin entlastet ist (Fig. 4).
9. Magnetventil nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß das dem Ringraum (17) abgewandte Ende der Führungsbohrung (4′) eine ringförmige, flache Ausnehmung (6) aufweist, in der ein Rundschnurring (87) unter leichter Verformung axial hin- und herbewegbar ist, der andererseits mit seinem Innendurchmesser an einem aus der Führungsbohrung herausragenden, zylindrischen Teil (21˝) des Kolbenschiebers anliegt, welcher Teil gegenüber dem Führungsteil (11) des Kolbenschiebers im Durchmesser reduziert ist und der zwischen Anlage des Rundschnurrings (87) und Führungsteil (11) einen Verbindungskanal aufweist, der zu einem Entlastungsraum abführt und daß das dem Ringraum (17) abgewandte Ende der Austrittsbohrung (5˝) eine ringförmige, flache Ausnehmung (96) aufweist, in der ein zweiter Rundschnurring (97) unter leichter Verformung axial hin- und herbewegbar ist, der andererseits mit seinem Innendurchmesser am Ende des in der Austrittsbohrung (5˝) verschiebbaren zweiten zylindrischen Teils (16) anliegt und der ringraumseitige vom Rundschnurring eingeschlossene Raum (98) über einen Verbindungsgkanal zum Entlastungsraum abführt (Fig. 5).
10. Magnetventil nach Anspruch 9, dadurch gekennzeichnet, daß der Kolbenschieber eine axial durchgehende Ausnehmung (30, 26˝) aufweist, wobei an dem zyindrischen Teil (21˝) der Anker (22) des Elektromagneten befestigt ist und der den Anker und den Elektromagneten aufnehmende Raum (28˝) über eine Drossel (93) zur Umgebungsluft hin entlastet ist (Fig. 5).
11. Magnetventil nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß zusätzlich zur Rückstellfeder (32) eine zweite Feder (100) vorgesehen ist, die zwischen einem ortsfesten Teil (76) des Magnetventilgehäuses und einem sich an einem einstellbaren Anschlag (103) am Magnetventilgehäuse abstützenden Federteller (101) eingespannt ist, der ab einem Teilhub des Kolbenschiebers in Schließrichtung zur Anlage an einem Anschlag (104) am Kolbenschieber kommt und über den restlichen Schließhub des Kolbenschiebers vom ortsfesten Teil abhebbar ist.
EP88114822A 1987-09-26 1988-09-09 Magnetventil Expired - Lifetime EP0309797B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3732553 1987-09-26
DE19873732553 DE3732553A1 (de) 1987-09-26 1987-09-26 Magnetventil

Publications (3)

Publication Number Publication Date
EP0309797A2 true EP0309797A2 (de) 1989-04-05
EP0309797A3 EP0309797A3 (en) 1990-05-09
EP0309797B1 EP0309797B1 (de) 1992-05-06

Family

ID=6336999

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88114822A Expired - Lifetime EP0309797B1 (de) 1987-09-26 1988-09-09 Magnetventil

Country Status (4)

Country Link
US (1) US4832312A (de)
EP (1) EP0309797B1 (de)
JP (1) JP2635717B2 (de)
DE (2) DE3732553A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652394A1 (de) * 1993-11-05 1995-05-10 Lucas Industries Public Limited Company Steuerventil

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4142998C1 (de) * 1991-12-24 1993-07-22 Robert Bosch Gmbh, 7000 Stuttgart, De
GB9203636D0 (en) * 1992-02-19 1992-04-08 Lucas Ind Plc Fuel pumping apparatus
DE9202519U1 (de) 1992-02-27 1992-05-14 Lanny, Michael, 7547 Wildbad Ventil
JPH0642372A (ja) * 1992-07-23 1994-02-15 Zexel Corp 燃料噴射制御装置
DE69302062T2 (de) * 1992-07-23 1996-12-12 Zexel Corp Kraftstoffeinspritzvorrichtung
DE4238727C2 (de) * 1992-11-17 2001-09-20 Bosch Gmbh Robert Magnetventil
US5386965A (en) * 1993-06-04 1995-02-07 Ber-Lo Manufacturing Company, Inc. High pressure flow valve with pressure assist valve seal
DE4322546A1 (de) * 1993-07-07 1995-01-12 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
JP3142038B2 (ja) * 1993-12-03 2001-03-07 株式会社デンソー 電磁弁
DE4342398C1 (de) * 1993-12-13 1995-04-20 Daimler Benz Ag Druckausgeglichenes Magnetventil
DE4342938C1 (de) * 1993-12-16 1995-06-01 Geha Werke Gmbh Schneidwerk für einen Schriftgutvernichter
DE4426152C2 (de) * 1994-07-23 1999-01-07 Zahnradfabrik Friedrichshafen Elektromagnetisches Druckregelventil
DE4431459C2 (de) * 1994-09-03 2000-02-10 Bosch Gmbh Robert Elektromagnetventil und Verfahren zu dessen Herstellung
DE19640826B4 (de) * 1995-10-03 2004-11-25 Nippon Soken, Inc., Nishio Speicherkraftstoffeinspritzvorrichtung und Druckregelvorrichtung hierfür
DE19540021A1 (de) * 1995-10-27 1997-04-30 Bosch Gmbh Robert Ventil zum dosierten Einleiten von aus einem Brennstofftank einer Brennkraftmaschine verflüchtigtem Brennstoffdampf
US5709342A (en) * 1995-11-09 1998-01-20 Caterpillar Inc. Vented armature/valve assembly and fuel injector utilizing same
AU709936B2 (en) * 1995-12-19 1999-09-09 Frank Stuart Curnow Shut-off valves
DE19645308A1 (de) * 1996-11-04 1998-05-07 Bosch Gmbh Robert Elektrisch gesteuertes Ventil
US6167869B1 (en) * 1997-11-03 2001-01-02 Caterpillar Inc. Fuel injector utilizing a multiple current level solenoid
DE29800346U1 (de) * 1998-01-12 1999-05-12 Robert Bosch Gmbh, 70469 Stuttgart Schaltmagnet
US6116209A (en) * 1998-05-27 2000-09-12 Diesel Technology Company Method of utilization of valve bounce in a solenoid valve controlled fuel injection system
DE19826579B4 (de) * 1998-06-15 2013-02-21 Hydraulik-Ring Gmbh Magnetventil
DE19837333A1 (de) * 1998-08-18 2000-02-24 Bosch Gmbh Robert Steuereinheit zur Steuerung des Druckaufbaus in einer Pumpeneinheit
US6676105B2 (en) * 2001-12-20 2004-01-13 Eaton Corporation Self-contained hydraulic dampening for a solenoid operated spool valve
DE102004004095B3 (de) * 2004-01-27 2005-07-14 Siemens Ag Druckbegrenzungsvorrichtung
JP2007078048A (ja) * 2005-09-13 2007-03-29 Aisin Seiki Co Ltd 電磁弁
DE102005051937A1 (de) * 2005-10-29 2007-05-03 Pierburg Gmbh Schubumluftventilvorrichtung für eine Brennkraftmaschine
US8167000B2 (en) * 2007-04-05 2012-05-01 Mac Valves, Inc. Balanced solenoid valve
US8151824B2 (en) * 2007-04-05 2012-04-10 Mac Valves, Inc. Balanced solenoid valve
US8777182B2 (en) 2008-05-20 2014-07-15 Grinon Industries Fluid transfer assembly and methods of fluid transfer
CN104905631B (zh) 2008-05-20 2017-07-11 格里南实业公司 流体输送组件及流体输送方法
CN102213167B (zh) * 2011-05-04 2012-12-19 北京航空航天大学 一种液体计量喷射器及其喷射控制方法
JP5906372B2 (ja) * 2011-09-30 2016-04-20 株式会社テージーケー 制御弁
EP2797833B1 (de) 2011-12-30 2016-08-03 Grinon Industries Flüssigkeitstransferanordnung und verfahren für flüssigkeitstransfer
JP2016108993A (ja) * 2014-12-04 2016-06-20 愛三工業株式会社 燃料供給装置
GB201509225D0 (en) * 2015-05-29 2015-07-15 Delphi Int Operations Lux Srl High pressure valve
EP3771850B1 (de) * 2019-07-29 2022-04-13 Bieri Hydraulik Ag Ventilsystem

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1267295A (fr) * 1960-06-09 1961-07-21 électro-vanne
FR2171342A1 (de) * 1972-02-10 1973-09-21 Sirai Srl
FR2422885A1 (fr) * 1978-04-11 1979-11-09 Jouvenel & Cordier Vanne, notamment pour le reglage d'installations de climatisation
DE3302294A1 (de) * 1983-01-25 1984-07-26 Klöckner-Humboldt-Deutz AG, 5000 Köln Kraftstoffeinspritzvorrichtung fuer luftverdichtende, selbstzuendende brennkraftmaschinen
US4529165A (en) * 1984-08-14 1985-07-16 United Technologies Diesel Systems, Inc. Solenoid valve
EP0171667A1 (de) * 1984-07-25 1986-02-19 Klöckner-Humboldt-Deutz Aktiengesellschaft Steuerventil für eine Kraftstoffeinspritzvorrichtung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1025693B (de) * 1953-04-02 1958-03-06 Erich Herion Elektromagnetisch gesteuertes Dreiwege-Ventil mit Entlastungsmitteln
AU431320B2 (en) * 1968-02-27 1972-12-28 Theuniversity Of Sydney Improvements in air ducting
DE2208183A1 (de) * 1972-02-22 1973-08-30 Bosch Gmbh Robert Magnetventil
IT1068670B (it) * 1975-09-19 1985-03-21 Lucas Industries Ltd Valvole controllate elettromagneti camente
US4276000A (en) * 1978-01-31 1981-06-30 Lucas Industries Limited Liquid fuel pumping apparatus
US4449503A (en) * 1981-06-23 1984-05-22 The Bendix Corporation Fuel injection pump
GB2129163B (en) * 1982-10-21 1986-07-30 Lucas Ind Plc Liquid fuel pumping apparatus
US4505243A (en) * 1983-07-04 1985-03-19 Nissan Motor Company, Limited Electromagnetic injection control valve in unit fuel injector
JPS6152474A (ja) * 1984-08-21 1986-03-15 Toyota Motor Corp 油圧制御用電磁バルブ
DE3442750A1 (de) * 1984-11-23 1986-05-28 Robert Bosch Gmbh, 7000 Stuttgart Magnetventil zur fluidsteuerung
US4583509A (en) * 1985-01-07 1986-04-22 Ford Motor Company Diesel fuel injection system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1267295A (fr) * 1960-06-09 1961-07-21 électro-vanne
FR2171342A1 (de) * 1972-02-10 1973-09-21 Sirai Srl
FR2422885A1 (fr) * 1978-04-11 1979-11-09 Jouvenel & Cordier Vanne, notamment pour le reglage d'installations de climatisation
DE3302294A1 (de) * 1983-01-25 1984-07-26 Klöckner-Humboldt-Deutz AG, 5000 Köln Kraftstoffeinspritzvorrichtung fuer luftverdichtende, selbstzuendende brennkraftmaschinen
EP0171667A1 (de) * 1984-07-25 1986-02-19 Klöckner-Humboldt-Deutz Aktiengesellschaft Steuerventil für eine Kraftstoffeinspritzvorrichtung
US4529165A (en) * 1984-08-14 1985-07-16 United Technologies Diesel Systems, Inc. Solenoid valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652394A1 (de) * 1993-11-05 1995-05-10 Lucas Industries Public Limited Company Steuerventil

Also Published As

Publication number Publication date
DE3870789D1 (de) 1992-06-11
EP0309797A3 (en) 1990-05-09
EP0309797B1 (de) 1992-05-06
DE3732553A1 (de) 1989-04-13
US4832312A (en) 1989-05-23
JPH01113570A (ja) 1989-05-02
JP2635717B2 (ja) 1997-07-30

Similar Documents

Publication Publication Date Title
EP0309797B1 (de) Magnetventil
DE602005000662T2 (de) Einspritzventil einer Brennkraftmaschine
DE3638369C2 (de) Elektromagnetisch gesteuertes Ventil für ein Kraftstoffeinspritzsystem
DE3541938C2 (de) Magnet-Überströmventil
EP0864794B1 (de) Proportional-Drosselventil
EP1332282B1 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
DE19816316A1 (de) Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE19709794A1 (de) Ventil zum Steuern von Flüssigkeiten
DE2219768A1 (de) Einrichtung zur regelung des massenverhaeltnisses des kraftstoff-luft-gemisches einer brennkraftmaschine
DE68916435T2 (de) Schnell ansprechendes, druckausgeglichenes, elektromagnetisches hochdruck-steuerventil.
DE2126777A1 (de) Pumpe Düse zur Kraftstoffeinspritzung fur Brennkraftmaschinen
EP1379775A1 (de) Ventil zum steuern von flüssigkeiten
EP0050710A1 (de) Kraftstoffeinspritzanlage
DE2813618A1 (de) Elektromagnetisch betaetigtes druckregelventil
EP1016783B1 (de) Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
EP0937203B1 (de) Kraftstoffeinspritzventil
DE10019764B4 (de) Ventil zum Steuern von Flüssigkeiten
LU84377A1 (de) Einstellbares drosselventil
EP0041247B1 (de) Vorgesteuerte Vorrichtung zur lastunabhängigen Volumenstromregelung
DE10111929A1 (de) Sitz/Schieber-Ventil mit Druckausgleichsstift
DE3512443C2 (de) Kraftstoffeinspritzvorrichtung für eine Brennkraftmaschine
DE102012223166A1 (de) Kraftstoffinjektor
DE10019766A1 (de) Ventil zum Steuern von Flüssigkeiten
DE2558766A1 (de) Kraftstoffeinspritzduese fuer vor- und haupteinspritzung in brennkraftmaschinen
WO2002023036A1 (de) Ventilausbildung für steuerventile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19900929

17Q First examination report despatched

Effective date: 19910201

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3870789

Country of ref document: DE

Date of ref document: 19920611

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050920

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070921

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071126

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061002

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20080908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070909