EP0308644B1 - Transducteur ultrasonore focalisé - Google Patents

Transducteur ultrasonore focalisé Download PDF

Info

Publication number
EP0308644B1
EP0308644B1 EP88113188A EP88113188A EP0308644B1 EP 0308644 B1 EP0308644 B1 EP 0308644B1 EP 88113188 A EP88113188 A EP 88113188A EP 88113188 A EP88113188 A EP 88113188A EP 0308644 B1 EP0308644 B1 EP 0308644B1
Authority
EP
European Patent Office
Prior art keywords
calotte
transducer
zones
impulses
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88113188A
Other languages
German (de)
English (en)
Other versions
EP0308644A3 (en
EP0308644A2 (fr
Inventor
Helmut Dipl.-Ing. Wurster
Werner Dipl.-Ing. Krauss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richard Wolf GmbH
Original Assignee
Richard Wolf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richard Wolf GmbH filed Critical Richard Wolf GmbH
Publication of EP0308644A2 publication Critical patent/EP0308644A2/fr
Publication of EP0308644A3 publication Critical patent/EP0308644A3/de
Application granted granted Critical
Publication of EP0308644B1 publication Critical patent/EP0308644B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0625Annular array
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/32Sound-focusing or directing, e.g. scanning characterised by the shape of the source

Definitions

  • the invention is based on a focusing transducer for generating ultrasound pulses for the destruction of objects inside the body, such as at least concrements, consisting of a spherical cap as a carrier for piezoelectric transducer elements arranged in a mosaic on the concave spherical surface, which can be excited to vibrate by means of a control device, wherein the transducer with its focus on the transducer axis can be aligned to the respective object and the ultrasound pulses generated can be transmitted to the patient's body via a coupling medium, and wherein the concave surface of the spherical cap is divided into several dome zones aligned with the transducer focus, each of which a selected number of transducer elements is assigned.
  • Such a converter is described in DE-A-31 19 295. Its dome-shaped or planar radiation surface is divided into ring-shaped or matrix-like transducer zones with corresponding transducer elements for the ultrasonic waves in order to be able to variably adjust the transducer focus.
  • the characteristic feature of this focusing ultrasound transducer is that it is designed as a direct sound system and is so large that the sound power density on the transmission path is so small that tissue damage is avoided become, but in the acoustic focus is so large that it is sufficient to destroy the concretion in focus.
  • transducer with a dome-shaped radiation surface is described in the older, not previously published EP-A-0 307 300. It also comprises a plurality of annular, concentrically arranged zones in the radiation area, each zone being equipped with a plurality of groups of transducer elements which are controlled in such a way that a sufficient energy density for object destruction is available in the focus of the transducer.
  • DE A 27 12 341 shows yet another focusing ultrasound transducer for ultrasound examination in diagnostic medicine. It consists of piezoelectric material in which the transducer body is curved in a concave manner in order to achieve acoustic focusing of the sound waves in a fixed focal point, which is given by the curvature of the transducer.
  • concentric ring electrodes are arranged around a central electrode, which face an electrode that extends over the entire active surface.
  • the aim of lithrotripsy has been to avoid the occurrence of negative pressure pulses or at least to reduce them to such an extent that cavitation symptoms occur can be excluded.
  • the measures taken here relate to a special mechanical structure of the transducer, the aim being that the wave resistance of the material forming the support cap for the transducer elements largely coincides with that of the transducer elements and that the rear cap surface has no focusing effect. Due to the freedom of reflection given thereby, the deformations of the transducer elements can follow the electrically predetermined pulse shape.
  • Such measures make a transducer designed in this way particularly suitable for the destruction of calculi, but they cannot be used for the targeted destruction of tissue cells, for example in cancer therapy.
  • the object of the invention is to provide an ultrasonic transducer which is suitable for the destruction of concretions as well as tissue cells and which enables the sound pulses to be generated almost arbitrarily with regard to their amplitude, phase position, polarity, shape and duration.
  • the spherical zones can be in the form of concentric spherical ring segments run around the transducer axis or form the shape of spherical sectors, but they can also have a shape which is characterized by a combination of the aforementioned spherical zone shapes.
  • the shape of the generated sound lobe can be influenced by appropriate wiring of the transducer elements of the dome zones, so that it can have, for example, an oval or elliptical cross section if, for example, some dome zones located on the edge of the transducer surface are not activated.
  • the amplitude and / or the duration and / or the polarity of the overall sound pulse effective in the transducer focus can also be set by serial control of spherical domes and by superimposing the sound pulses generated by them in the focus area.
  • a specific use of the transducer according to the invention as a device for destroying concrements is possible by means of a special circuitry and control of transducer elements in such a way that the dome zones that are created on the active transducer surface by the respective backward swinging of the respectively controlled negative half-waves of the sound impulses can be compensated by controlling other converter elements in phase opposition, that is to say that essentially only a positive pressure surge will develop at the focal point.
  • the use of the transducer is especially possible as a device for the destruction of tissue parts in that the positive half-waves of the sound impulses that arise on the active surface of the transducer elements being operated can be compensated for by counter-phase control of other transducer elements or dome zones in the focal point.
  • the possibility of increasing and adjusting the amplitudes of positive and negative half-waves of the sound pulses by controlling several or all of the spherical zones in phase.
  • variable wiring and control of the spherical zones therefore allows, for example, only a part of the zones to be used to generate the sound pulse and the remaining zones to be used for counter-control and cancellation of undesired pulse components.
  • all spherical zones can be activated in parallel and occasionally controlled with different pulse shapes according to the requirements, whereby a special embodiment can consist in that not only individual pulses are generated, but also, for example, a damped oscillation that adapts the transient response of the transducer is.
  • the dome zones arranged in the region of the edge zones of the transducer can also be driven with a lower or higher amplitude than the other dome zones, in order to achieve a sound pulse shape of special effectiveness.
  • a piezoelectric ultrasound transducer 2 in the form of a spherical cap 3 is located below a lying surface 1 receiving the patient P.
  • the transducer axis is denoted by A, on which the focal point F of the transducer also lies.
  • the radiation surfaces of the transducer elements are firmly aligned with this focal point.
  • the concave surface 4 of the transducer 2 or the spherical cap 3 is directed against an opening 5 arranged in the lying surface 1. This is surrounded by a sealing sleeve 6, which adapts to the patient's body and ensures that the opening 5 is sealed against the part of the patient's body intended for treatment.
  • the spherical cap 3 is surrounded by a bellows 7, which forms a container 8 together with the surface 4 of the spherical cap 3 as a base in connection with the underside of the lying surface 1 in the region of the opening 5.
  • the elasticity of the bellows 7 enables the spherical cap 3 to be adjusted in three planes, which can be done in a known manner by means of a coordinate adjustment table, not shown.
  • the container 8 is filled with degassed water heated to body temperature.
  • the concave surface 4 of the spherical cap 3 is equipped with piezoelectric transducer elements.
  • Their arrangement is such that, for example, there is a structure of concentrically arranged spherical ring segments 10 and 11, which are arranged around central spherical sectors 9, the entire surface 4 being separated by concentric and radial separating joints into individual, electrically and mechanically insulated ring segments 10.1 to 10.5 and 11.1 to 11.5 or calotte sectors 9.1 to 9.5 is divided.
  • the active surfaces of the spherical ring segments 10, 11 and the spherical sectors 9 are electrically connected to a control circuit according to FIG. 2, in which the ring segments 10 and 11 and the spherical sectors 9 are shown in simplified form in the form of block symbols.
  • the electrical voltage potential activating the ultrasound transducer 2 lies between these connections and a common surface electrode on the back of the transducer elements.
  • the selection of the transducer elements or spherical zones to be activated, the preselection of the respective pulse intensity and polarity and their temporal use are carried out with a multiplexer 12 for positive pulse shaping and a multiplexer 13 for negative pulse shaping.
  • the different polarity is ensured by corresponding pulse generators 14 and 15.
  • each circuit then has a selector switch 16, a controllable amplifier 17 for setting the respective amplitude of the pulse and a timer 18 for setting the time of activation, so that each ring segment 11.1 to 11.5 can be controlled individually or together with others.
  • some transducer elements or spherical zones can first be driven with a positive pulse and then other spherical zones with a negative pulse, taking into account the transient response of the transducer elements, so that only a positive pressure surge will occur in focus F. It is also possible to connect all transducer elements in parallel and to control them with different pulse shapes, it also being possible to set the pulse generators 14 and 15 so that, for example, instead of a single pulse, a damped oscillation can be generated which is adapted to the oscillating behavior of the transducer.
  • the individual spherical zones 9, 10 and 11 of the transducer 2 can be designed as monolithic piezoelectric vibrators, this will generally lead to a limitation of the available sound power. If higher performance is required, the converter and therefore the spherical zones will therefore be constructed from mosaic-like converter elements. In addition, all spherical zones can consist of ring segments or spherical sectors. Finally, other divisions of the entire active area 4 of the transducer 2 into zones of a different configuration are also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Surgical Instruments (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Claims (6)

  1. Transducteur de focalisation (2) servant à produire des impulsions ultrasonores pour la destruction d'objets à l'intérieur d'un corps, comme au moins des concrétions, constitué par une calotte sphérique (3) en tant que support pour des éléments transducteurs piézoélectriques disposés sous la forme d'une mosaïque sur la surface concave (4) de la calotte et qui peuvent être excités au moyen d'un appareil de commande (12-18) pour être amenés à osciller, et dans lequel le transducteur (2) peut être orienté avec son foyer (F) situé sur son axe (A), en direction de l'objet respectif et les impulsions ultrasonores produites peuvent être transmises au corps du patient par l'intermédiaire d'un milieu de couplage, et la surface concave (4) de la calotte sphérique (3) est subdivisée en plusieurs zones (9,10,11) orientées vers le foyer (F) du transducteur et auxquelles est associé respectivement un nombre sélectionné d'éléments transducteurs, caractérisé par le fait
    que l'appareil de commande comporte un premier multiplexeur (12) servant à former des impulsions positives et un second multiplexeur (13) servant à former des impulsions négatives, que chaque circuit des multiplexeurs (12,13) contient un commutateur de sélection (16), un amplificateur réglable (17) servant à régler l'amplitude des impulsions et une minuterie (18) servant à régler l'instant d'activation des zones de la calotte, et des générateurs d'impulsions (14,15) servant à régler la polarité des impulsions sont connectés aux multiplexeurs (12,13), et
    que les zones de la calotte peuvent être commandées individuellement, par groupes ou en totalité, au choix en série et/ou en parallèle, par l'appareil de commande (12-18).
  2. Transducteur selon la revendication 1, caractérisé en ce que les zones de la calotte sont disposées sous la forme de segments annulaires (10,11) autour de l'axe (A) du transducteur.
  3. Transducteur selon la revendication 1, caractérisé en ce que les zones de la calotte possèdent la forme de secteurs de calotte (9).
  4. Transducteur selon la revendication 1, caractérisé par une combinaison des formes de zones de calotte selon les revendications 2 et 3.
  5. Transducteur selon l'une des revendications 1 à 4, caractérisé en ce que des zones individuelles ou plusieurs zones de la calotte (9,10,11) peuvent être commandées en opposition de phase par les multiplexeurs (12,13), pour la compensation d'alternances négatives et/ou positives des impulsions acoustiques.
  6. Transducteur selon l'une des revendications 1 à 5, caractérisé en ce que des zones individuelles ou plusieurs zones (9,10,11) de la calotte peuvent être commandées en phase, par les multiplexeurs (12,13) pour accroître les amplitudes d'alternances positives et/ou négatives des impulsions acoustiques.
EP88113188A 1987-09-24 1988-08-13 Transducteur ultrasonore focalisé Expired - Lifetime EP0308644B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3732131 1987-09-24
DE19873732131 DE3732131A1 (de) 1987-09-24 1987-09-24 Fokussierender ultraschallwandler

Publications (3)

Publication Number Publication Date
EP0308644A2 EP0308644A2 (fr) 1989-03-29
EP0308644A3 EP0308644A3 (en) 1990-05-30
EP0308644B1 true EP0308644B1 (fr) 1994-10-26

Family

ID=6336744

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88113188A Expired - Lifetime EP0308644B1 (fr) 1987-09-24 1988-08-13 Transducteur ultrasonore focalisé

Country Status (3)

Country Link
US (1) US4888746A (fr)
EP (1) EP0308644B1 (fr)
DE (2) DE3732131A1 (fr)

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195844A (ja) * 1988-01-29 1989-08-07 Yokogawa Medical Syst Ltd 超音波受波整相回路
JPH02215452A (ja) * 1989-02-17 1990-08-28 Toshiba Corp 結石破砕装置
DE8912723U1 (de) * 1989-10-27 1989-12-28 Dornier Medizintechnik GmbH, 8000 München Lithotripter
DE3940808A1 (de) * 1989-12-09 1991-06-20 Dornier Medizintechnik Wandlerelement fuer die beruehrungsfreie lithotripsie
JPH03280939A (ja) * 1990-03-29 1991-12-11 Fujitsu Ltd 超音波探触子
DE4011017C1 (fr) * 1990-04-05 1991-10-02 Dornier Medizintechnik Gmbh, 8000 Muenchen, De
DE4102551A1 (de) * 1991-01-29 1992-07-02 Wolf Gmbh Richard Verfahren zum bestimmen der akustischen leistung fokussierender elektroakustischer wandler und vorrichtung zur durchfuehrung des verfahrens
US5316000A (en) * 1991-03-05 1994-05-31 Technomed International (Societe Anonyme) Use of at least one composite piezoelectric transducer in the manufacture of an ultrasonic therapy apparatus for applying therapy, in a body zone, in particular to concretions, to tissue, or to bones, of a living being and method of ultrasonic therapy
GB9408668D0 (en) * 1994-04-30 1994-06-22 Orthosonics Ltd Untrasonic therapeutic system
US5582578A (en) * 1995-08-01 1996-12-10 Duke University Method for the comminution of concretions
US5800365A (en) * 1995-12-14 1998-09-01 Duke University Microsecond tandem-pulse electrohydraulic shock wave generator with confocal reflectors
US6128958A (en) * 1997-09-11 2000-10-10 The Regents Of The University Of Michigan Phased array system architecture
US6237419B1 (en) * 1999-08-16 2001-05-29 General Electric Company Aspherical curved element transducer to inspect a part with curved entry surface
WO2001028623A2 (fr) * 1999-10-18 2001-04-26 Focus Surgery, Inc. Transducteur a faisceau partage
US6613004B1 (en) * 2000-04-21 2003-09-02 Insightec-Txsonics, Ltd. Systems and methods for creating longer necrosed volumes using a phased array focused ultrasound system
US6419648B1 (en) 2000-04-21 2002-07-16 Insightec-Txsonics Ltd. Systems and methods for reducing secondary hot spots in a phased array focused ultrasound system
WO2002040093A2 (fr) 2000-11-17 2002-05-23 Gendel Limited Therapie a ultrasons
US6821274B2 (en) 2001-03-07 2004-11-23 Gendel Ltd. Ultrasound therapy for selective cell ablation
US6618620B1 (en) 2000-11-28 2003-09-09 Txsonics Ltd. Apparatus for controlling thermal dosing in an thermal treatment system
US6645162B2 (en) 2000-12-27 2003-11-11 Insightec - Txsonics Ltd. Systems and methods for ultrasound assisted lipolysis
US6626854B2 (en) 2000-12-27 2003-09-30 Insightec - Txsonics Ltd. Systems and methods for ultrasound assisted lipolysis
WO2002063606A1 (fr) * 2001-02-09 2002-08-15 Koninklijke Philips Electronics N.V. Transducteur ultrasonore et procede permettant de le produire
US20050043726A1 (en) * 2001-03-07 2005-02-24 Mchale Anthony Patrick Device II
AU2002361607A1 (en) 2001-11-09 2003-05-26 Duke University Method and apparatus to reduce tissue injury in shock wave lithotripsy
US7894877B2 (en) * 2002-05-17 2011-02-22 Case Western Reserve University System and method for adjusting image parameters based on device tracking
US8088067B2 (en) 2002-12-23 2012-01-03 Insightec Ltd. Tissue aberration corrections in ultrasound therapy
US7087023B2 (en) * 2003-02-14 2006-08-08 Sensant Corporation Microfabricated ultrasonic transducers with bias polarity beam profile control and method of operating the same
US7780597B2 (en) * 2003-02-14 2010-08-24 Siemens Medical Solutions Usa, Inc. Method and apparatus for improving the performance of capacitive acoustic transducers using bias polarity control and multiple firings
US7635332B2 (en) * 2003-02-14 2009-12-22 Siemens Medical Solutions Usa, Inc. System and method of operating microfabricated ultrasonic transducers for harmonic imaging
US7618373B2 (en) * 2003-02-14 2009-11-17 Siemens Medical Solutions Usa, Inc. Microfabricated ultrasonic transducer array for 3-D imaging and method of operating the same
US7611462B2 (en) 2003-05-22 2009-11-03 Insightec-Image Guided Treatment Ltd. Acoustic beam forming in phased arrays including large numbers of transducer elements
US7850613B2 (en) * 2003-05-30 2010-12-14 Orison Corporation Apparatus and method for three dimensional ultrasound breast imaging
US20050038361A1 (en) * 2003-08-14 2005-02-17 Duke University Apparatus for improved shock-wave lithotripsy (SWL) using a piezoelectric annular array (PEAA) shock-wave generator in combination with a primary shock wave source
WO2005018469A1 (fr) 2003-08-14 2005-03-03 Duke University Procede de lithotripsie par onde de choc amelioree a generateur combine d'onde de choc a reseau piezoelectrique annulaire et hydraulique
US8409099B2 (en) 2004-08-26 2013-04-02 Insightec Ltd. Focused ultrasound system for surrounding a body tissue mass and treatment method
WO2006051542A1 (fr) * 2004-11-12 2006-05-18 Kpe Ltd. Traitement ultrasonore et imagerie diagnostique assistes par nanoparticles
US20070016039A1 (en) 2005-06-21 2007-01-18 Insightec-Image Guided Treatment Ltd. Controlled, non-linear focused ultrasound treatment
US8057408B2 (en) 2005-09-22 2011-11-15 The Regents Of The University Of Michigan Pulsed cavitational ultrasound therapy
US10219815B2 (en) 2005-09-22 2019-03-05 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US8608672B2 (en) 2005-11-23 2013-12-17 Insightec Ltd. Hierarchical switching in ultra-high density ultrasound array
US8235901B2 (en) 2006-04-26 2012-08-07 Insightec, Ltd. Focused ultrasound system with far field tail suppression
US7942809B2 (en) * 2006-05-26 2011-05-17 Leban Stanley G Flexible ultrasonic wire in an endoscope delivery system
FR2903315B1 (fr) * 2006-07-05 2016-03-11 Edap S A Procede et appareil de therapie a emetteurs ultrasonores actives sequentiellement
FR2903316B1 (fr) * 2006-07-05 2009-06-26 Edap S A Sonde de therapie et appareil de therapie incluant une telle sonde
US8262591B2 (en) * 2006-09-07 2012-09-11 Nivasonix, Llc External ultrasound lipoplasty
US7955281B2 (en) * 2006-09-07 2011-06-07 Nivasonix, Llc External ultrasound lipoplasty
CN101715320B (zh) * 2007-01-10 2012-01-25 周宇峰 冲击波碎石系统
US8323201B2 (en) 2007-08-06 2012-12-04 Orison Corporation System and method for three-dimensional ultrasound imaging
US8251908B2 (en) 2007-10-01 2012-08-28 Insightec Ltd. Motion compensated image-guided focused ultrasound therapy system
US8425424B2 (en) 2008-11-19 2013-04-23 Inightee Ltd. Closed-loop clot lysis
US8617073B2 (en) 2009-04-17 2013-12-31 Insightec Ltd. Focusing ultrasound into the brain through the skull by utilizing both longitudinal and shear waves
US9623266B2 (en) 2009-08-04 2017-04-18 Insightec Ltd. Estimation of alignment parameters in magnetic-resonance-guided ultrasound focusing
CA2770452C (fr) 2009-08-17 2017-09-19 Histosonics, Inc. Recipient de milieu de couplage acoustique jetable
US9289154B2 (en) 2009-08-19 2016-03-22 Insightec Ltd. Techniques for temperature measurement and corrections in long-term magnetic resonance thermometry
WO2011028609A2 (fr) 2009-08-26 2011-03-10 The Regents Of The University Of Michigan Dispositifs et procédés d'utilisation de cavitation commandée à nuage de bulles dans le fractionnement de calculs urinaires
WO2011024074A2 (fr) 2009-08-26 2011-03-03 Insightec Ltd. Transducteur à ultrasons asymétrique en réseau phasé
JP5863654B2 (ja) 2009-08-26 2016-02-16 リージェンツ オブ ザ ユニバーシティー オブ ミシガン 治療および画像処理超音波変換器用のマイクロマニピュレータ制御アーム
US8539813B2 (en) 2009-09-22 2013-09-24 The Regents Of The University Of Michigan Gel phantoms for testing cavitational ultrasound (histotripsy) transducers
US8661873B2 (en) 2009-10-14 2014-03-04 Insightec Ltd. Mapping ultrasound transducers
US8368401B2 (en) 2009-11-10 2013-02-05 Insightec Ltd. Techniques for correcting measurement artifacts in magnetic resonance thermometry
US9852727B2 (en) 2010-04-28 2017-12-26 Insightec, Ltd. Multi-segment ultrasound transducers
US8932237B2 (en) 2010-04-28 2015-01-13 Insightec, Ltd. Efficient ultrasound focusing
KR101999078B1 (ko) * 2010-06-09 2019-07-10 리전츠 오브 더 유니버스티 오브 미네소타 초음파 치료의 전달을 제어하기 위한 이중 모드 초음파 트랜스듀서(dmut) 시스템 및 방법
US9981148B2 (en) 2010-10-22 2018-05-29 Insightec, Ltd. Adaptive active cooling during focused ultrasound treatment
CN102579127B (zh) * 2011-01-14 2014-09-03 深圳市普罗惠仁医学科技有限公司 超声聚焦换能器
FR2973550B1 (fr) * 2011-03-30 2015-12-04 Edap Tms France Procede et appareil de generation d'ondes ultrasonores focalisees a modulation de surface
US9144694B2 (en) 2011-08-10 2015-09-29 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
EP2771712B1 (fr) 2011-10-28 2023-03-22 Decision Sciences International Corporation Formes d'ondes codées à spectre étalé dans une imagerie ultrasonore
US9049783B2 (en) 2012-04-13 2015-06-02 Histosonics, Inc. Systems and methods for obtaining large creepage isolation on printed circuit boards
WO2013166019A1 (fr) 2012-04-30 2013-11-07 The Regents Of The University Of Michigan Fabrication de transducteurs à ultrasons à l'aide d'un procédé de prototypage rapide
WO2014055906A1 (fr) 2012-10-05 2014-04-10 The Regents Of The University Of Michigan Rétroaction par doppler couleur induite par des bulles lors d'une histotripsie
US11432900B2 (en) 2013-07-03 2022-09-06 Histosonics, Inc. Articulating arm limiter for cavitational ultrasound therapy system
WO2015003142A1 (fr) 2013-07-03 2015-01-08 Histosonics, Inc. Séquences d'excitation histotripsy optimisées pour la formation d'un nuage de bulles à l'aide de diffusion de choc
WO2015027164A1 (fr) 2013-08-22 2015-02-26 The Regents Of The University Of Michigan Histotripsie au moyen d'impulsions d'ultrasons très courtes
US9844359B2 (en) 2013-09-13 2017-12-19 Decision Sciences Medical Company, LLC Coherent spread-spectrum coded waveforms in synthetic aperture image formation
WO2015192134A1 (fr) 2014-06-13 2015-12-17 University Of Utah Research Foundation Traitement thérapeutique à ultrasons du sein
BR112017000856A2 (pt) 2014-07-23 2017-12-05 Dow Global Technologies Llc adesivos estruturais tendo resistência à lavagem melhorada e método para distribuir os mesmos
JP6835744B2 (ja) 2015-02-25 2021-02-24 ディスィジョン サイエンシズ メディカル カンパニー,エルエルシー カプラントデバイス
JP6979882B2 (ja) 2015-06-24 2021-12-15 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン 脳組織の治療のための組織破砕療法システムおよび方法
CA3001315C (fr) 2015-10-08 2023-12-19 Decision Sciences Medical Company, LLC Systeme acoustique de suivi orthopedique et methodes associees
RU2697566C2 (ru) * 2017-12-28 2019-08-15 Общество с ограниченной ответственностью "ГидроМаринн" Электроакустический преобразователь для параметрической генерации ультразвука
WO2020113083A1 (fr) 2018-11-28 2020-06-04 Histosonics, Inc. Systèmes et procédés d'histotrypsie
CA3130104A1 (fr) 2019-03-06 2020-09-10 Decision Sciences Medical Company, LLC Procedes de fabrication et de distribution d'articles de couplage acoustique semi-rigide et emballage pour imagerie par ultrasons
US11154274B2 (en) 2019-04-23 2021-10-26 Decision Sciences Medical Company, LLC Semi-rigid acoustic coupling articles for ultrasound diagnostic and treatment applications
US11813485B2 (en) 2020-01-28 2023-11-14 The Regents Of The University Of Michigan Systems and methods for histotripsy immunosensitization
CN116685847A (zh) 2020-11-13 2023-09-01 决策科学医疗有限责任公司 用于对象的合成孔径超声成像的系统和方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2645727A (en) * 1948-03-26 1953-07-14 Bell Telephone Labor Inc Focusing ultrasonic radiator
FR2252580B1 (fr) * 1973-11-22 1980-02-22 Realisations Ultrasoniques Sa
FR2292978A1 (fr) * 1974-11-28 1976-06-25 Anvar Perfectionnements aux dispositifs de sondage par ultra-sons
US4183249A (en) * 1975-03-07 1980-01-15 Varian Associates, Inc. Lens system for acoustical imaging
FR2332531A1 (fr) * 1975-11-24 1977-06-17 Commissariat Energie Atomique Camera ultra-sonore
FR2334953A1 (fr) * 1975-12-11 1977-07-08 Labo Electronique Physique Systeme d'analyse par ultrasons et son application a l'echographie
GB1554349A (en) * 1976-11-01 1979-10-17 Stanford Res Inst Int Variable focus ultrasonic transducer means
US4159462A (en) * 1977-08-18 1979-06-26 General Electric Company Ultrasonic multi-sector scanner
FR2410469A1 (fr) * 1977-12-05 1979-06-29 Labo Electronique Physique Systeme electronique a ultrasons pour la determination de directions privilegiees dans des structures biologiques
CA1153097A (fr) * 1978-03-03 1983-08-30 Jack Jellins Scanner ultrasonore tournant
US4156863A (en) * 1978-04-28 1979-05-29 The United States Of America As Represented By The Secretary Of The Navy Conical beam transducer array
US4155259A (en) * 1978-05-24 1979-05-22 General Electric Company Ultrasonic imaging system
US4241611A (en) * 1979-03-02 1980-12-30 Smith Kline Instruments, Inc. Ultrasonic diagnostic transducer assembly and system
US4307613A (en) * 1979-06-14 1981-12-29 University Of Connecticut Electronically focused ultrasonic transmitter
US4281550A (en) * 1979-12-17 1981-08-04 North American Philips Corporation Curved array of sequenced ultrasound transducers
JPS56121541A (en) * 1980-02-28 1981-09-24 Tokyo Shibaura Electric Co Ultrasonic imaging apparatus
DE3119295A1 (de) * 1981-05-14 1982-12-16 Siemens AG, 1000 Berlin und 8000 München Einrichtung zum zerstoeren von konkrementen in koerperhoehlen
US4622972A (en) * 1981-10-05 1986-11-18 Varian Associates, Inc. Ultrasound hyperthermia applicator with variable coherence by multi-spiral focusing
NL8200478A (nl) * 1982-02-09 1983-09-01 Philips Nv Ultrasone zender.
JPS58157454A (ja) * 1982-03-15 1983-09-19 株式会社東芝 超音波診断装置
EP0090567B1 (fr) * 1982-03-20 1988-07-27 Fujitsu Limited Sonde par ultrasons à balayage sectoriel
JPS58216294A (ja) * 1982-06-10 1983-12-15 松下電器産業株式会社 音響レンズ
US4534221A (en) * 1982-09-27 1985-08-13 Technicare Corporation Ultrasonic diagnostic imaging systems for varying depths of field
US4471785A (en) * 1982-09-29 1984-09-18 Sri International Ultrasonic imaging system with correction for velocity inhomogeneity and multipath interference using an ultrasonic imaging array
US4537074A (en) * 1983-09-12 1985-08-27 Technicare Corporation Annular array ultrasonic transducers
FR2556582B1 (fr) * 1983-12-14 1986-12-19 Dory Jacques Appareil a impulsions ultrasonores destine a la destruction des calculs
US4582065A (en) * 1984-06-28 1986-04-15 Picker International, Inc. Ultrasonic step scanning utilizing unequally spaced curvilinear transducer array
DE3425992C2 (de) * 1984-07-14 1986-10-09 Richard Wolf Gmbh, 7134 Knittlingen Piezoelektrischer Wandler zur Zerstörung von Konkrementen im Körperinneren
DE3543867C3 (de) * 1985-12-12 1994-10-06 Wolf Gmbh Richard Vorrichtung zur räumlichen Ortung und zur Zerstörung von Konkrementen in Körperhöhlen
EP0229981B1 (fr) * 1985-12-20 1990-02-28 Siemens Aktiengesellschaft Procédé pour contrôler les caractéristiques du foyer d'un champ ultrasonique et dispositif de sa mise en oeuvre
JPS6346147A (ja) * 1986-04-24 1988-02-27 株式会社東芝 超音波治療装置
FR2614747B1 (fr) * 1987-04-28 1989-07-28 Dory Jacques Generateur d'impulsions elastiques ayant une forme d'onde predeterminee desiree et son application au traitement ou au diagnostic medical
FR2620294B1 (fr) * 1987-09-07 1990-01-19 Technomed Int Sa Dispositif piezoelectrique a ondes negatives reduites, et utilisation de ce dispositif pour la lithotritie extra-corporelle ou pour la destruction de tissus particuliers

Also Published As

Publication number Publication date
US4888746A (en) 1989-12-19
DE3851930D1 (de) 1994-12-01
EP0308644A3 (en) 1990-05-30
EP0308644A2 (fr) 1989-03-29
DE3732131A1 (de) 1989-04-06

Similar Documents

Publication Publication Date Title
EP0308644B1 (fr) Transducteur ultrasonore focalisé
DE3907605C2 (de) Stosswellenquelle
DE3119295C2 (fr)
EP0300315B1 (fr) Générateur d'ondes de choc pour un appareil de destruction sans contact des calculs, présents dans un corps
DE3888273T3 (de) Medizinischer Apparat zur Behandlung mit Ultraschall.
EP1452141B1 (fr) Dispositif de génération d'ondes de choc
EP0189756B1 (fr) Dispositif pour la création d'ondes de choc décalées en temps
DE69631555T2 (de) Gerät zum zerkleinern von konkrementen
EP0298334B1 (fr) Dispositif générateur d'ondes de choc
EP0133946B1 (fr) Appareil pour la destruction à distance des concrétions
DE3312014C2 (de) Einrichtung zur berührungsfreien Zertrümmerung von Konkrementen im Körper von Lebewesen
DE69227688T2 (de) Verwendung von piezoelektrischem kompositwandler für ultrasonische therapievorrichtung
DE3328039C2 (de) Einrichtung zum beruehrungslosen zertruemmern eines im koerper eines lebewesens befindlichen konkrements
DE2712341A1 (de) Ultraschallwandler mit variablem brennpunkt
EP0332871A2 (fr) Réduction de concrétions par traitement combiné
EP0355178B1 (fr) Appareil pour la destruction à distance de concrétions dans le corps d'un être vivant
DE19548000C1 (de) Vorrichtung zur Ortung von Konkrementen im Körper eines Patienten
EP3289781B1 (fr) Appareil auditif émettant des impulsions ultrasoniques
DE10394286T5 (de) Vorrichtung für verbesserte Schockwellen-Nierenzertrümmerung (SWL) unter Verwendung eines piezoelektrischen Ringanordnungs- (PEAA) Schockwellengenerators in Kombination mit einer primären Schockwellenquelle
DE2650624C2 (de) Einrichtung zum Zertrümmern von im Körper eines Lebewesens befindlichen Konkrementen
EP0167670B1 (fr) Dispositif pour casser des concrétions à l'intérieur d'un corps vivant
EP0359863B1 (fr) Générateur haute tension et méthode de production d'une impulsion haute tension à forte intensité de courant pour commander un générateur d'ondes de choc
DE102011102570A1 (de) Vorrichtung zur Erzeugung von Stoßwellen
EP1062933A2 (fr) Appareil, en particulier pour thérapie, pour le traitement d'objets par sons focalisés
DE3940808C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT

17P Request for examination filed

Effective date: 19901126

17Q First examination report despatched

Effective date: 19920710

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

REF Corresponds to:

Ref document number: 3851930

Country of ref document: DE

Date of ref document: 19941201

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941213

ITF It: translation for a ep patent filed
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950620

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960831

BERE Be: lapsed

Owner name: RICHARD WOLF G.M.B.H.

Effective date: 19960831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970605

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970813

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980813

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011019

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050813