EP0359863B1 - Générateur haute tension et méthode de production d'une impulsion haute tension à forte intensité de courant pour commander un générateur d'ondes de choc - Google Patents

Générateur haute tension et méthode de production d'une impulsion haute tension à forte intensité de courant pour commander un générateur d'ondes de choc Download PDF

Info

Publication number
EP0359863B1
EP0359863B1 EP88115714A EP88115714A EP0359863B1 EP 0359863 B1 EP0359863 B1 EP 0359863B1 EP 88115714 A EP88115714 A EP 88115714A EP 88115714 A EP88115714 A EP 88115714A EP 0359863 B1 EP0359863 B1 EP 0359863B1
Authority
EP
European Patent Office
Prior art keywords
shock wave
pulse
voltage
signal
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88115714A
Other languages
German (de)
English (en)
Other versions
EP0359863A1 (fr
Inventor
Helmut Prof. Dr.-Ing. Ermert
Manfred Dr.-Ing. Pfeiler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP88115714A priority Critical patent/EP0359863B1/fr
Priority to DE3889452T priority patent/DE3889452D1/de
Priority to JP1989108265U priority patent/JPH0245177U/ja
Priority to US07/407,113 priority patent/US5109338A/en
Publication of EP0359863A1 publication Critical patent/EP0359863A1/fr
Application granted granted Critical
Publication of EP0359863B1 publication Critical patent/EP0359863B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • G10K15/043Sound-producing devices producing shock waves

Definitions

  • the invention relates to the generation of a high-voltage pulse of high current strength for driving a shock wave source, which is used to generate a shock wave in an acoustic transmission medium.
  • Acoustic shock waves are used in technology for a wide variety of purposes, for example in materials research. In medical technology, they are used for the non-invasive treatment of stone ailments.
  • a stone in the body of a patient e.g. a kidney stone
  • focused shock waves are introduced into the patient's body, under the effect of which the stone disintegrates into fragments that come off naturally or can be resolved by additional chemotherapeutic measures.
  • pathological tissue changes e.g. Tumors to be treated with shock waves.
  • shock wave sources of various types are used to generate the shock waves, for example shock wave sources with an underwater spark gap (DE-OS 26 50 624), shock wave sources according to the electrodynamic principle (DE-OS 33 28 051) and shock wave sources according to the piezoelectric principle (DE-OS 33 19 871) . All these shock wave sources have in common that a high voltage pulse of high current must be supplied to generate a shock wave. This is usually generated by means of a high-voltage generator which has a high-voltage supply, a high-voltage capacitor which can be charged to high voltage by means of the high-voltage supply and contains a high-voltage switch, for example a triggerable switching spark gap.
  • a high-voltage generator which has a high-voltage supply
  • a high-voltage capacitor which can be charged to high voltage by means of the high-voltage supply and contains a high-voltage switch, for example a triggerable switching spark gap.
  • the high-voltage switch serves to connect the charged high-voltage capacitor to the shock wave source, so that the electrical energy stored in the high-voltage capacitor is suddenly discharged into the shock wave source to generate a shock wave (see, for example, DE-OS 33 28 051).
  • the disadvantage here is that an expensive and relatively fault-prone high-voltage supply is required and the high-voltage switch can wear out relatively quickly and then has to be replaced.
  • the waveform (temporal amplitude curve and pulse duration) of the shock waves generated with the aid of the known high-voltage generator is difficult to adapt to the needs of the respective therapy case.
  • the capacitive, inductive and ohmic resistance components of the shock wave source together with the components of the high-voltage generator, form a network in which pulsed voltage and / or current curves of high energy occur when the high-voltage capacitor is discharged. Together with the acoustic properties of the shock wave source and the overlay medium (water, body tissue), their temporal course determines the wave form of the generated shock wave. It is therefore only possible to influence the waveform of the shock wave generated by changing the electrical network formed by the high-voltage generator and the shock wave source or the acoustic properties of the shock wave source, which is cumbersome and cannot be carried out in clinical practice. Usually, the waveform of the generated shock waves therefore represents a compromise that certainly cannot do justice to all, namely those that are routine today and have been used in clinical research as well as the future possible therapy cases.
  • the invention has for its object to provide a way how a high voltage supply and high voltage switch are to be avoided and in cooperation with a shock wave source of any type can easily influence the waveform of the generated shock wave.
  • the invention is based on the object of specifying a method which makes it possible to generate a high-voltage pulse of high current intensity suitable for driving shock wave sources without a high-voltage supply and high-voltage switch.
  • this object is achieved by the use of a high-voltage generator which has a signal generator for generating a low-voltage signal and a pulse-shaping network which has such a transfer function that it converts the low-voltage signal originating from the signal generator into a high-voltage pulse while shortening its pulse duration, the energy content of which corresponds essentially to that of the low-voltage signal, for generating a high-voltage pulse of high current strength suitable for driving a shock wave source which is used to generate a shock wave in an acoustic propagation medium, the energy content of the low-voltage signal being sufficient for generating a shock wave and the pulse-forming network between the signal generator and the shock wave source is switched.
  • the high-voltage pulse is therefore not generated with the aid of high-voltage switches, but rather by means of the pulse-forming network, which is made up of passive, low-loss components, for example coils and capacitors.
  • the signal generator which only generates low-voltage signals, takes its place. Such a signal generator can be constructed inexpensively using conventional technology.
  • the signal duration and / or the amplitude profile of the low-voltage signal generated and thus the shape of the high-voltage pulse behind the pulse-shaping network can be influenced with little technical effort solely on the signal generator that shock waves of different waveforms can be generated in a simple manner.
  • the maximum repetition frequency of the shock wave generation is opposite the state of the art significantly increased, since the signal generator can deliver the low-voltage signals with a high repetition frequency.
  • the function of the pulse-forming network is based on the fact that signals of any shape can be represented by superimposing harmonic vibrations of different frequencies.
  • a low-voltage signal can be easily converted into a high-voltage pulse by means of a pulse-forming network, the pulse duration of which is considerably shorter than the signal duration of the low-voltage signal. Not only does the bandwidth of the low-voltage signal remain, but the energy content of the low-voltage signal is essentially preserved when the network is made up of low-loss components.
  • the high-voltage generator can interact with shock wave sources of any type, provided high-voltage pulses are required to drive them.
  • pulse-forming networks which have such a transfer function that a signal supplied to the network is converted into a pulse of high amplitude by shortening its signal duration are already known in connection with the so-called pulse compression radar (see Schoenentechnische Zeitschrift, Vol. 21, No. 2, pages 69 to 74, D. Achilles, "The design of all-passports for pulse compression", VDE VErlag GmbH, Berlin, 1968).
  • a multi-stage filter formed from LC all-pass networks is provided as the pulse-forming network.
  • Such a filter can be constructed from high-voltage-resistant capacitors and inductors in a simple manner and almost without loss.
  • the pulse-forming network has a switchable transfer function, which can be easily achieved by switching the connections of the components of the pulse-forming network. By switching the transfer function, it is possible to change the waveform of the generated shock wave with an identical low voltage signal, since different high voltage pulses can then be supplied to the shock wave source depending on the selected transfer function.
  • the waveform of the shock wave generated can be influenced in a particularly varied and particularly simple manner if the signal generator is designed in accordance with a variant of the invention in such a way that the signal duration and / or the amplitude profile of the low-voltage signal generated can be set.
  • the signal generator is designed as a low-voltage circuit, the circuitry measures required for this are not associated with any difficulties.
  • a signal generator can be implemented in a particularly simple manner if, according to a preferred embodiment of the invention, it contains a digital / analog converter and an electronic computing device is provided, by means of which the digital / analog converter of the signal generator has a temporal sequence of the signal duration and The amplitude profile of the low-voltage signal can be supplied with corresponding amplitude values which the digital / analog converter converts into the low-voltage signal.
  • By changing the temporal sequence of amplitude values low-voltage signals of any signal form can be realized within the limits given by the resolution and the conversion time of the digital / analog converter.
  • a time sequence of amplitude values adapted to the respective treatment case is calculated by means of the electronic computing device, which is stored in a memory of the electronic computing device and supplied to the digital / analog converter each time a corresponding shock wave is to be generated becomes.
  • the electronic computing device which is stored in a memory of the electronic computing device and supplied to the digital / analog converter each time a corresponding shock wave is to be generated becomes.
  • the computing device can be formed by a clock generator, a function memory in which one or more temporal sequences of amplitude values are stored, and an addressing device for the function memory, the clock generator controlling both the digital / analog converter and the addressing device, which is designed such that only that area of the function memory can be addressed in which the temporal sequence of amplitude values corresponding to the respectively desired waveform of the shock wave is stored.
  • the electronic computing device is designed such that it takes the low-voltage signal into account, taking into account the transfer function of the pulse-shaping network, the electro-acoustic properties of the shock wave source and the acoustic properties of the transmission medium, starting from a predefinable desired wave form of the shock wave corresponding time sequence of amplitude values is calculated.
  • the doctor then has the option, with the aid of an input device, for example a data display device with a light pen, to specify a waveform of the shock wave that is adapted to the respective therapy case and is then generated automatically.
  • a wide-band, linear pressure sensor is provided in the transmission medium, which delivers a signal corresponding to the wave shape of the generated shock wave and is provided with an analog / digital signal.
  • Converter is connected, wherein the analog / digital converter outputs a temporal sequence of amplitude values corresponding to the waveform of the generated shock wave, which can be supplied to the electronic computing device, which is designed such that it compares the generated waveform with the desired waveform of the shock wave and displays the result of the comparison.
  • the electronic computing device is designed in such a way that, based on the result of the comparison, in the event of deviations in the waveform of the generated shock wave from the desired waveform, a correction can be made to the digital / analog converter time sequence of amplitude values. Deviations of the generated waveform from the desired waveform, which can be caused, for example, by non-linear acoustic transmission properties of the transmission medium, are thus automatically eliminated.
  • a clock generator which generates clock pulses for the electronic computing device, the digital / analog converter and the analog / digital converter.
  • an essentially lossless matching network can be connected between the pulse-shaping network and the shock wave source for broadband impedance matching of the pulse shaping network to the shock wave source in order to avoid efficiency-reducing reflections of the high-voltage pulse at the input of the shock wave source.
  • the object of specifying a method for generating a high-voltage pulse of high current strength suitable for driving shock wave sources is achieved according to the invention by a method in which a low-voltage signal, the energy content of which is sufficient to generate a shock wave, and the low-voltage signal with shortening its signal duration in a high-voltage pulse suitable for driving the shock wave source is transferred, the energy content of which essentially corresponds to that of the low-voltage signal.
  • the method according to the invention can be carried out without a high-voltage supply and without a high-voltage switch.
  • the signal duration and the amplitude profile of the low-voltage signal taking into account the transfer function of the pulse-shaping network, the electro-acoustic properties of the shock wave based on a predetermined waveform Shock wave source and the acoustic properties of the acoustic transmission medium can be selected such that the shock wave source is driven by means of the generated high voltage pulse to generate a shock wave of the desired wave form.
  • a low-voltage signal with a freely selectable time profile, high energy, long signal duration and low instantaneous power is generated and then converted by means of the pulse-forming network into a high-voltage pulse with approximately the same energy, shorter signal duration and high instantaneous power.
  • the time course of the instantaneous amplitudes of the low-voltage signal can be calculated, for example by means of an electronic computing device, in such a way that the high-voltage pulse which arises in cooperation with the pulse-forming network drives the shock wave source to generate a shock wave optimized according to certain criteria.
  • a device for generating shock waves is shown, as is used in medicine for crushing concrements in the body of a patient.
  • a shock wave source generally designated 1, as is e.g. is known from DE-OS 33 28 051.
  • This has a tubular housing 2 filled with water as the acoustic transmission medium, which is provided at one end with an electro-dynamic shock wave generator 3 and is closed at its other end by a flexible bag 4.
  • an acoustic converging lens 5 is arranged in the housing 2, which serves to focus the plane shock wave emitted by the shock wave generator 3, which converges in the focus of the converging lens 5.
  • the shock wave source 1 is pressed by means of the sack 4 onto the body 6 of a patient shown in cross section, in such a way that a kidney stone 8 located in a kidney 7 of the living being is in the focal point of the converging lens 5.
  • a high-voltage generator (general designated 9, is provided, by means of which high-voltage pulses of high current intensity can be generated to generate a shock wave.
  • the essential components of the high-voltage generator 9 include a signal generator 10 and a pulse-forming network 11.
  • the signal generator 10 generates a low-voltage signal of relatively low amplitude (1 to 20 volts) and a relatively long signal duration. A such a low-voltage signal is indicated at A, which reaches the input of the pulse-forming network 11 from the output of the signal generator 10 with the interposition of a power amplifier 12.
  • the high-voltage pulse appears at the output of the pulse-forming network 11 and is indicated schematically at B. It is supplied to the shock wave source 1 for generating a shock wave.
  • a matching network 13 indicated in dashed lines in the figure, can be connected between the output of the pulse-shaping network 11 and the shock wave source 1 for lossless broadband impedance matching of the output of the pulse shaping network 11 to the shock wave source 1.
  • the pulse-forming network 11 is a multi-stage LC all-pass network which is indicated schematically in the figure 14, 15, 16, 17 formed filter, which has such a transfer function that for the individual frequency components contained in the signal voltage signal A such different transit times occur in the filter that the pulse duration of the low-voltage signal A shortens and the amplitude of the low-voltage pulse in the high-voltage range becomes.
  • the all-pass networks 14, 15, 16, 17 are made up of essentially loss-free components, so that the high-voltage pulse B available at the output of the pulse-forming network 11 has essentially the same energy content as the low-voltage signal A.
  • the signal generator 10 is designed such that the signal duration and / or the amplitude profile of the generated low-voltage signal A can be set.
  • the signal generator 10 contains a digital / analog converter 20, to which a time sequence from the pulse duration and the amplitude profile of the low-voltage signal A is fed corresponding amplitude values which the digital / analog converter 20 converts to the low voltage signal.
  • the digital / analog converter 20 of the signal generator 10 receives the chronological sequence of amplitude values via a data bus 38, of which only one line is shown, from an electronic computing device 21, in which a number of different Waveforms of the shock wave corresponding temporal sequences of amplitude values is stored.
  • the electronic computing device 21 comprises a central processing unit 22, a program memory 23 which contains the necessary programs for the functions of the high-voltage generator 9 described below, a data memory 24 in which the temporal sequences of amplitude values corresponding to the different waveforms of the shock wave are stored, and a clock generator 25.
  • a keyboard 26 and a data display device 27 with light pen 28 are connected to the electronic computing device 21. By suitable actuation of the keyboard 26, the electronic computing device 21 can be prompted to retrieve from the data memory 24 the temporal sequence of amplitude values corresponding to the respectively desired waveform of the shock wave, which the signal generator 10 uses to generate the associated low-voltage signal each time a shock wave is to be generated A is fed.
  • the electronic computing device 21, the signal generator 10 and the power amplifier 12 thus together form a waveform generator, by means of which low-voltage signals A of any signal form can be generated within the limits set by the amplitude resolution and the conversion time of the digital / analog converter 20, in which operating mode the Electronic computing device 21 essentially acts as a functional memory and supplies the digital / analog converter 20 with the required clock pulses by means of its clock generator 25.
  • the electronic computing device 21 calculates taking into account the transfer function of the pulse-shaping network 11, the electro-acoustic properties of the shock wave source 1 and the acoustic properties of the transmission medium, related data are stored in the data memory 24, the temporal sequence of amplitude values of a low-voltage signal A, which is suitable for generating a shock wave of the desired waveform.
  • the chronological sequence of amplitude values is stored in the data memory 24 and is supplied to the digital / analog converter 20 of the signal generator 10 each time a shock wave is to be generated. There is thus the possibility of realizing a waveform of the shock wave that is optimally adapted to the respective therapy case.
  • the high-voltage generator 9 offers the possibility of checking to what extent the waveform of the generated shock wave matches the predetermined desired wave shape of the shock wave.
  • two linear broadband pressure sensors 29 and 30 are arranged in the transmission medium located in the shock wave source 1, one of which is arranged in front of the acoustic converging lens 5 and one behind it.
  • the pressure sensors 29 and 30, one of which can be connected to a receiving amplifier 32 by means of a switch 31, deliver electrical signals that correspond to the waveform of the generated shock wave.
  • the output of the receive amplifier 32 is connected to the input of a transient recorder 33 which contains an analog / digital converter 34 and a read / write memory 35.
  • the signals of the pressure sensor 29 or 30 fed to the analog / digital converter 34 are converted by means of the analog / digital converter 34, which receives its clock pulses from the clock generator 25 of the electronic computing device 21, into a chronological sequence of amplitude values, which in the Read / write memory 35 is stored.
  • the read / write memory 35 is addressed via a data / address bus 36, of which only a single line is shown, by means of the electronic computing device 21.
  • the electronic computing device 21 reads the in the Read / write memory 35 stores a temporal sequence of amplitude values which corresponds to the waveform of the generated shock wave and carries out a comparison with the desired waveform of the shock wave.
  • the result of the comparison is displayed, for example graphically, by means of the visual display device. This is illustrated in the FIG.
  • a desired waveform C of the shock wave predetermined for example by means of the light pen 28, on the screen of the data display device 27 and the wave shape D of the generated shock wave being shown in broken lines.
  • the treating doctor can now decide whether the waveform generated corresponds sufficiently with the desired one or whether corrections are necessary.
  • the electronic computing device 21 upon a suitable actuation of the keyboard 26, carries out a correction, based on the result of the comparison, of the temporal sequence of amplitude values that can be supplied to the digital / analog converter 20, taking into account the transfer function of the pulse-shaping Network 11, the electro-acoustic properties of the shock wave source 1 and the acoustic properties of the transmission medium.
  • the high-voltage generator 9 can act as a "learning system" in that the electronic computing device 21 evaluates the results of corrections made and develops a correction strategy.
  • the clock signals for the electronic computing device 21 as well as for the digital / analog converter 20 and the analog / digital converter 34 come from the same clock generator 25, so that the components mentioned are synchronized .
  • This permits an exact determination of the transit times of the signals in the system formed from the high-voltage generator 9 and the shock wave source 1, so that non-linear acoustic transmission properties of the transmission medium can be examined and corrected.
  • the computing device 21 is able to give the signal generator 10 the respective chronological sequence of amplitude values feed repeatedly so that a series of shock waves can be generated.
  • trigger pulses I to the electronic computing device 21 via a line 37, which are derived in a manner not shown from a periodic bodily function, for example breathing activity, of the patient, the electronic computing device 21 each time the signal generator 10 arrives when a trigger pulse I arrives supplies the temporal sequence of amplitude values so that the generation of shock waves takes place synchronously with the periodic body function.
  • a major advantage of the high-voltage generator 9 according to the invention is that, in contrast to the prior art, neither a high-voltage supply nor high-voltage switches are required. Another significant advantage is that shock waves of any waveform can be generated and the waveform of the shock waves can be optimized. Since the low-voltage signal A generated by the signal generator 10 can be varied in fine time and amplitude steps by means of the computing device 21, there is the possibility of linear distortions in the transmission behavior of the power amplifier 12, the matching network 13 and the shock wave source 1 and tolerances of the pulse-shaping network 11 in the Generation of the low-voltage signals A must be taken into account or compensated for.
  • the transmission chain formed by the signal generator 10, the power amplifier 12, the pulse-shaping network 11 and the matching network 13 acts as an inverse filter, which brings about maximum compression of the low-voltage signals generated by the signal generator 10, the transmission chain having an electrical input, namely the input of the power amplifier 12, and an acoustic output, namely the sound field generated by the shock wave source 1. Furthermore, on the basis of the waveforms of the generated shock waves that can be determined by means of the pressure sensors 29, 30 and the transient recorder 33, it is possible to use electronic computing device 21 to point out the waveforms of the generated shock waves to specific results optimize, with the aim of ensuring the optimal effect of the therapy, suppressing cavitation in the patient's tissue and reducing the patient's pain.
  • Electro-acoustic properties of the shock wave generator 3 acoustic properties of the transmission medium and electrical properties of the high voltage generator 9, which adversely affect the shock wave generation, can also be largely compensated for.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Surgical Instruments (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Claims (12)

  1. Utilisation d'un générateur à haute tension, qui comporte un générateur de signaux (10, 12) servant à produire un signal à basse tension (A), et un réseau (11) de formation d'impulsions, qui possède une fonction de transfert telle qu'il convertit le signal à basse tension (A) délivré par le générateur de signaux (10), tout en raccourcissant la durée de ce signal, en une impulsion à haute tension (B), dont le contenu en énergie correspond essentiellement à celui de l'impulsion à basse tension (A), pour la production d'une impulsion à haute tension (B) possédant une intensité de courant élevée et convenant pour l'activation d'une source d'ondes de choc (1), qui est utilisée pour produire une onde de choc dans un milieu de transmission acoustique, le contenu en énergie du signal à basse tension étant suffisant pour produire l'onde de choc, et le réseau (11) de formation d'impulsions étant branché entre le générateur de signaux (10, 12) et la source d'ondes de choc (1).
  2. Utilisation suivant la revendication 1, caractérisée par le fait qu'il est prévu, comme réseau (11) de formation d'impulsions, un filtre à plusieurs étages, constitué par des réseaux passe-tout LC (14, 15, 16, 17).
  3. Utilisation suivant la revendication 1 ou 2, caractérisée par le fait que le réseau (11) de formation d'impulsions possède une fonction de transfert commutable.
  4. Utilisation suivant l'une des revendications 1 à 3, caractérisée par le fait que le générateur de signaux (10) est agencé de telle sorte que la durée des signaux et/ou l'allure de l'amplitude du signal à basse tension produit (A) sont réglables.
  5. Utilisation suivant l'une des revendications 1 à 5, caractérisée par le fait que le générateur de signaux (10) comporte un convertisseur numérique/analogique (20) et qu'il est prévu un dispositif de calcul électronique (21), à l'aide duquel au convertisseur numérique/analogique (20) du générateur de signaux (10) peut être envoyée, une suite temporelle de valeurs d'amplitude, qui correspondent à la durée et à l'allure de l'amplitude du signal à basse tension (A) et que le convertisseur numérique/analogique (20) convertit en le signal à basse tension (A).
  6. Utilisation suivant la revendication 5, caractérisée par le fait que le dispositif de calcul électronique (21) est agencé de telle sorte qu'en tenant compte de la fonction de transfert du réseau (11) de formation d'impulsions, des caractéristiques électro-acoustiques de la source d'ondes de choc (1) et des caractéristiques acoustiques du milieu de transmission, le dispositif calcule la suite temporelle, qui correspond au signal à basse tension (A), de valeurs d'amplitude à partir d'une forme d'onde désirée (C), qui peut être prédéterminée, de l'onde de choc.
  7. Utilisation suivant la revendication 5 ou 6, caractérisée par le fait qu'il est prévu un capteur de pression à large bande (29, 30), qui est disposé dans le milieu de transmission et qui fournit un signal qui correspond à la forme (D) de l'onde de choc produite et est relié à un convertisseur analogique/numérique (34), ce dernier délivrant une suite temporelle de valeurs d'amplitude, qui correspond à la forme (D) de l'onde de choc produite et peut être envoyée au dispositif de calcul (21) qui est agencé de manière à réaliser une comparaison de la forme d'onde produite (D) avec la forme d'onde désirée (C) et afficher le résultat de la comparaison.
  8. Utilisation suivant la revendication 7, caractérisée par le fait que le dispositif de calcul électronique (21) est agencé de telle sorte qu'à partir du résultat de la comparaison et dans le cas d'écarts entre la forme (D) de l'onde de choc produite et la forme d'onde désirée (C), il réalise une correction de la suite temporelle, devant être envoyé au convertisseur numérique/analogique (20), de valeurs d'amplitude.
  9. Utilisation suivant la revendication 7 ou 8, caractérisée par le fait qu'il est prévu un générateur de cadence (25), qui produit des impulsions de cadence pour le dispositif de calcul électronique (21), le convertisseur numérique/analogique (20) et le convertisseur analogique/numérique (34).
  10. Utilisation suivant l'une des revendications 1 à 9, caractérisé par le fait qu'un réseau d'adaptation (13) essentiellement sans pertes, qui sert à réaliser l'adaptation à large bande, du point de vue impédance, du réseau (11) de formation d'impulsions, à la source d'ondes de choc (1), est branché entre le réseau (11) délivrant des impulsions et la source d'ondes de choc (1).
  11. Procédé pour produire une impulsion à haute tension (B) possédant une forte intensité de courant, pour faire fonctionner une source d'ondes de choc (1), qui sert à produire une onde de choc dans un milieu de transmission acoustique, caractérisé par le fait qu'on produit un signal à basse tension (A), dont le contenu en énergie suffit pour produire une onde de choc, et que le signal à basse tension (A) est converti, moyennant une réduction de sa durée, en une impulsion à haute tension (B) convenant pour faire fonctionner la source d'ondes de choc (1) et dont le contenu en énergie correspond essentiellement à celui du signal à basse tension (A).
  12. Procédé suivant la revendication 11, caractérisé par le fait que le signal à basse tension (A) est converti en l'impulsion à haute tension (B) au moyen d'un réseau (11) de formation d'impulsions et que sur la base d'une forme d'onde prédéterminée de l'onde de choc, la durée du signal et l'allure de l'amplitude du signal à basse tension (A) sont choisies, en tenant compte de la fonction de transfert du réseau (11) de formation d'impulsions, des caractéristiques électro-acoustiques de la source d'ondes de choc (1) et des caractéristiques acoustiques du milieu de transmission acoustique, de telle sorte que la source d'ondes de choc (1) est activée par l'impulsion à haute tension produite (B) pour produire une onde de choc possédant la forme d'onde désirée.
EP88115714A 1988-09-23 1988-09-23 Générateur haute tension et méthode de production d'une impulsion haute tension à forte intensité de courant pour commander un générateur d'ondes de choc Expired - Lifetime EP0359863B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP88115714A EP0359863B1 (fr) 1988-09-23 1988-09-23 Générateur haute tension et méthode de production d'une impulsion haute tension à forte intensité de courant pour commander un générateur d'ondes de choc
DE3889452T DE3889452D1 (de) 1988-09-23 1988-09-23 Hochspannungsgenerator und Verfahren zur Erzeugung eines Hochspannungsimpulses hoher Stromstärke zum Antrieb einer Stosswellenquelle.
JP1989108265U JPH0245177U (fr) 1988-09-23 1989-09-14
US07/407,113 US5109338A (en) 1988-09-23 1989-09-14 High-voltage generator and method for generating a high current, high-voltage pulse by pulse shaping for driving a shock wave source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP88115714A EP0359863B1 (fr) 1988-09-23 1988-09-23 Générateur haute tension et méthode de production d'une impulsion haute tension à forte intensité de courant pour commander un générateur d'ondes de choc

Publications (2)

Publication Number Publication Date
EP0359863A1 EP0359863A1 (fr) 1990-03-28
EP0359863B1 true EP0359863B1 (fr) 1994-05-04

Family

ID=8199355

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88115714A Expired - Lifetime EP0359863B1 (fr) 1988-09-23 1988-09-23 Générateur haute tension et méthode de production d'une impulsion haute tension à forte intensité de courant pour commander un générateur d'ondes de choc

Country Status (4)

Country Link
US (1) US5109338A (fr)
EP (1) EP0359863B1 (fr)
JP (1) JPH0245177U (fr)
DE (1) DE3889452D1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4213586C2 (de) * 1992-04-24 1995-01-19 Siemens Ag Therapieeinrichtung zur Behandlung mit fokussierten akustischen Wellen
US5593403A (en) * 1994-09-14 1997-01-14 Scimed Life Systems Inc. Method for modifying a stent in an implanted site
CZ297145B6 (cs) * 1997-10-24 2006-09-13 Medipool Treuhand- Und Beteiligungsgesellschaft Für Medizintechnik Gmbh Zpusob prizpusobení vzdálenosti elektrod jiskriste v elektrohydraulických systémech s rázovou vlnou
EP1727126A1 (fr) * 2004-11-26 2006-11-29 HealthTronics Inc. Procédé et dispositif pour examiner la génération d'ondes de choc
EP1727125A1 (fr) * 2004-11-26 2006-11-29 HealthTronics Inc. Méthode et dispositif pour régler un générateur d'ondes de choc
US8900166B2 (en) 2008-04-14 2014-12-02 Avner Spector Automatic adjustable voltage to stabilize pressure for shockwave medical therapy device
DE102010018707A1 (de) * 2010-04-29 2011-11-03 Richard Wolf Gmbh Stoßwellentherapiegerät für die extrakorporale Stoßwellentherapie
WO2012025833A2 (fr) * 2010-08-27 2012-03-01 Socpra- Sciences Et Génie, S.E.C. Générateur d'ondes mécaniques et procédé associé
US11865371B2 (en) * 2011-07-15 2024-01-09 The Board of Regents of the University of Texas Syster Apparatus for generating therapeutic shockwaves and applications of same
US11385261B2 (en) * 2018-10-26 2022-07-12 Keithley Instruments, Llc Test and measurement instrument having overpulsed power supply and controlled slew rate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2650624C2 (de) * 1976-11-05 1985-05-30 Dornier System Gmbh, 7990 Friedrichshafen Einrichtung zum Zertrümmern von im Körper eines Lebewesens befindlichen Konkrementen
DE3119295A1 (de) * 1981-05-14 1982-12-16 Siemens AG, 1000 Berlin und 8000 München Einrichtung zum zerstoeren von konkrementen in koerperhoehlen
DE3328051A1 (de) * 1983-08-03 1985-02-14 Siemens AG, 1000 Berlin und 8000 München Einrichtung zum beruehrungslosen zertruemmern von konkrementen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nachrichtentechnische Zeitschrift, Vol. 21, Heft 2, S. 69-74, D. Achilles: "Der Entwurf von Allpässen für die Impulsverdichtung". *

Also Published As

Publication number Publication date
JPH0245177U (fr) 1990-03-28
US5109338A (en) 1992-04-28
DE3889452D1 (de) 1994-06-09
EP0359863A1 (fr) 1990-03-28

Similar Documents

Publication Publication Date Title
EP1517757B1 (fr) Circuit con u pour une source electromagnetique destinee a produire des ondes acoustiques
EP0308644B1 (fr) Transducteur ultrasonore focalisé
EP0359863B1 (fr) Générateur haute tension et méthode de production d'une impulsion haute tension à forte intensité de courant pour commander un générateur d'ondes de choc
DE60203922T2 (de) Vorrichtung und verfahren zur erzeugung von hochdruckultraschallimpulsen
DE3390293T1 (de) Ultraschallwandler
EP0826435A2 (fr) Transducteur ultrasonore à application diagnostique et thérapeutique
DE3003967A1 (de) Ultraschallabbildungssystem
DE2626373A1 (de) Medizinisches geraet fuer chirurgische eingriffe und heilbehandlungseinrichtung mit ultraschallenergie
DE102008018262A1 (de) Chirurgisches Gerät mit Nervtesteinrichtung
DE2658222B1 (de) Geraet zur ultraschallabtastung
DE10130751B4 (de) Ultraschall-Sendeverfahren und System zum Simulieren einer Sende-Apodisation
DE2543678B2 (de) Ultraschallsende- und -empfangsvorrichtung
WO1990000040A1 (fr) Procede et dispositif de stimulation electrique du nerf auditif
EP0355178B1 (fr) Appareil pour la destruction à distance de concrétions dans le corps d'un être vivant
DE2813729C2 (de) Verfahren und Schaltungsanordnung zur Anregung von Ultraschallschwingern, die in der Impuls-Echo-Technik eingesetzt werden
EP0783870B1 (fr) Dispositif pour la localisation de concrétions dans le corps d'un patient
EP0280088B1 (fr) Générateur de son pour le traitement d'un être vivant avec des ondes sonores focalisées
DE3736360C2 (de) Einrichtung zur klinischen Durchführung der außerkörperlichen Lithotripsie
DE10207737C1 (de) Schaltkreis für eine elektromagnetische Quelle zur Erzeugung akustischer Wellen
DE3004689A1 (de) Ultraschallabbildungseinrichtung
DE4205030A1 (de) Therapeutische ultraschallvorrichtung
DE3708995C2 (de) Ultraschall-Lithotripter zur Zerstörung von Steinablagerungen im menschlichen Körper
DE69832879T2 (de) Harmonisches ultraschallbilderzeugungssystem und verfahren
DE1698149B2 (de) Ultraschallsender zur zerstoerungsfreien werkstoffpruefung
DE4125375C1 (en) Pressure pulse source for lithotripsy - has pulsed diaphragm in acoustic medium with layer of lower acoustic impedance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19900425

17Q First examination report despatched

Effective date: 19920226

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940504

Ref country code: GB

Effective date: 19940504

REF Corresponds to:

Ref document number: 3889452

Country of ref document: DE

Date of ref document: 19940609

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940504

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950919

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951116

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST