EP0295420A2 - Kraftstoffeinspritzpumpe - Google Patents

Kraftstoffeinspritzpumpe Download PDF

Info

Publication number
EP0295420A2
EP0295420A2 EP88107454A EP88107454A EP0295420A2 EP 0295420 A2 EP0295420 A2 EP 0295420A2 EP 88107454 A EP88107454 A EP 88107454A EP 88107454 A EP88107454 A EP 88107454A EP 0295420 A2 EP0295420 A2 EP 0295420A2
Authority
EP
European Patent Office
Prior art keywords
valve
pump
bore
piston
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88107454A
Other languages
English (en)
French (fr)
Other versions
EP0295420B1 (de
EP0295420A3 (en
Inventor
André Brunel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0295420A2 publication Critical patent/EP0295420A2/de
Publication of EP0295420A3 publication Critical patent/EP0295420A3/de
Application granted granted Critical
Publication of EP0295420B1 publication Critical patent/EP0295420B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/14Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined rotary distributor supporting pump pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/02Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor being spaced from pumping elements
    • F02M41/06Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor being spaced from pumping elements the distributor rotating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0205Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively for cutting-out pumps or injectors in case of abnormal operation of the engine or the injection apparatus, e.g. over-speed, break-down of fuel pumps or injectors ; for cutting-out pumps for stopping the engine
    • F02M63/0215Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively for cutting-out pumps or injectors in case of abnormal operation of the engine or the injection apparatus, e.g. over-speed, break-down of fuel pumps or injectors ; for cutting-out pumps for stopping the engine by draining or closing fuel conduits

Definitions

  • the invention relates to a fuel injection pump for internal combustion engines of the type defined in the preamble of claim 1.
  • a known fuel injection pump of this type which is designed as a so-called pump nozzle (DE-OS 35 23 536)
  • the inlet line opening into the pump work chamber with an inlet opening is separated from the pump work chamber as a result of the pump piston closing the inlet inlet opening.
  • the time at which the inlet opening is closed is structurally determined and determined by the distance of the inlet opening from the bottom dead center position of the pump piston.
  • the pump working space is delimited by an annular groove on the rotating distributor piston, which is connected to filling grooves arranged around the circumference of the distributor piston and which can be connected to filling bores in the distributor cylinder when the distributor piston rotates.
  • the filling bores open into the fuel-filled pump interior and connect this to the pump work space when the filling grooves are in register with the openings of the filling bores in the distributor cylinder.
  • the pump working space is always completely filled with fuel during the suction stroke of the pump piston.
  • the amount of this fuel volume to be injected is determined as a function of parameters of the internal combustion engine, such as load and speed, by the time at which the electrical switching valve closes and opens.
  • the switching valve closes the fuel injection starts in the respective cylinder of the internal combustion engine, while when the switching valve opens, the pump work chamber is connected to the relief chamber and the fuel injection is suddenly stopped. If the switching valve is defective in such a way that it gets stuck in its closed position and no longer opens, the internal combustion engine is always supplied with the maximum fuel injection quantity regardless of the load, so that the speed of the internal combustion engine increases uninfluenced, the internal combustion engine "spins".
  • the fuel injection pump according to the invention with the characterizing features of claim 1 has the advantage that in the event of the sticking of the Switching valve in its closed position the fuel supply to the pump work space is automatically prevented. This means that no fuel can be pumped from the pump workspace to the injection nozzles, and the internal combustion engine comes to a standstill because of a missing ignition mixture.
  • the radial piston-type distributor fuel injection pump shown in detail in longitudinal section in FIG. 1 has a cup-shaped housing 10, which is only indicated in FIG. 1, and a cover 11 which closes the latter and is pushed in from the open end of the housing 10 and with a bottom of the housing 10, not shown limited a pump interior 12.
  • the pump interior 12 is filled with fuel under low pressure and serves as a fuel supply and relief space.
  • a drive shaft 13, which is indicated in FIG. 1 by its axis, is passed through the bottom of the housing 10. In the pump interior 12, this drive shaft 13 expands in a pot shape and carries along its edge a cam ring connected to it in a rotationally fixed manner, the cam track 15 provided on its inside being indicated schematically in FIG. 1 and rotated by 90 °.
  • the cam track 15 carries in a known manner inwardly directed cams, the number and sequence of the number and sequence of radial pistons contained in the fuel injection pump and the The number of piston strokes to be carried out with these radial pistons per revolution of the drive shaft 13 are adapted.
  • the feed pump (not shown), which fills the pump interior 12 with fuel, sits on the drive shaft 13 in a conventional manner.
  • a distributor piston 16 is also connected in a rotationally fixed manner to the drive shaft 13, the axis of which is aligned with the axis of the drive shaft 13.
  • the distributor piston 16 is guided except for the end connected to the drive shaft 13 in a cylinder bore 17 in the cover 11 and is fixed in its axial position relative to the cylinder bore 17.
  • guides 18 are provided in the cover, which are evenly distributed over the circumference and extend close to the distributor piston 16.
  • Radial bores 19 are provided coaxially with the guides 18, in each of which a pump piston 20 is guided so as to be longitudinally displaceable.
  • a so-called roller plunger 21 is guided in a longitudinally displaceable manner, which consists of a roller or roller 22 and a plunger cup 23.
  • the roller 22 is shown in Fig. 1 as well as the cam track 15 rotated by 90 °.
  • the spring plate 14 engages behind a collar projecting out of the radial bore 19 20a of the pump piston 20 and thus fixes the latter to the tappet cup 23.
  • Each pump piston 20 delimits a pump chamber 25 in the radial bore 19, the other end face of which is formed by an annular groove 26 on the distributor piston 16.
  • a distributor groove 27 opens axially on the distributor piston 16.
  • three injection bores 28 open in a cross-sectional plane, which are evenly distributed over the circumference of the cylinder bore 17 and through the cover 11 through one each through one Guide arrow indicated injector 29.
  • the axial length of the distributor groove 27 is dimensioned such that it projects into the cross-sectional plane of the mouths of the injection bores 28 and thus connects one of the three injection bores 28 with the annular groove 26 depending on the rotational position of the distributor piston 16.
  • the working chamber 25 is filled with fuel from the pump interior 12 during the suction stroke of the pump piston 20 via an inlet line 30 running in the cover 11, which comprises a first bore section 31 running axially to the distributor piston 16 and a second bore section 32 running radially to the distributor piston 16.
  • the first bore section 31 opens in the pump interior 12 and the second bore section 32 in the cylinder bore 17 in the region of the annular groove 26 of the distributor piston 16.
  • Both bore sections 31, 32 are connected to one another via a valve bore 34, which is coaxial to the first bore section 31 with a larger bore diameter is introduced into the lid 11.
  • the mouth of the first bore section 31 in the valve bore 34 forms a valve opening 35 of a check valve 33 arranged in the inlet line 30, the opening direction of which is directed towards the pump working chamber 25.
  • the shut-off valve 33 shown enlarged in FIG. 2 is designed as a seat valve, one in the valve bore 34 has displaceably inserted valve lifter 36.
  • the valve tappet 36 carries on its end facing the valve opening 35 a conical valve member 37 which cooperates with a valve seat 38 surrounding the valve opening 35 to close and open the valve opening 35.
  • the end face of the valve tappet 36 facing away from the valve member 37 delimits a control and spring chamber 39 in which a valve closing spring 40 designed as a helical compression spring lies, which is supported on the one hand on the end face of the valve tappet 36 and on the other hand at the base of the valve bore 34 and the valve tappet 36 in the valve closing direction charged.
  • the control and spring chamber 39 is connected to a relief line 42 via a bore section 41.
  • the relief line 42 which is divided into two bore sections 50, 51 and extends in the cover 11, opens on the one hand in the pump interior 12 and on the other hand in the cylinder bore 17, specifically in the area of the annular groove 26 on the distributor piston 16.
  • An electromagnetic switching valve 43 is switched on in the relief line 42 , via which the relief line 42 is blocked and thus the pump work space 25 is closed or the relief line 42 is released and thus the pump work space 25 can be connected to the pump interior 12 serving as a relief space.
  • the structure and mode of operation of the electromagnetic switching valve 43 is known and is described, for example, in DE-OS 35 23 536.
  • the two valve connections 44, 45 of the switching valve 43 are connected to one another via a valve opening 46, which is controlled by a valve member 47.
  • the valve member 47 is actuated by an electromagnet 48, the valve member 47 opening the valve opening 46 in the non-energized state of the electromagnet 48 under the action of a return spring (not shown) and closing the electromagnet 48 in the energized state.
  • Switch valve 43 having a separate valve housing 49 is placed on the cover 11 and fastened there in a suitable manner, wherein it closes the cylinder bore 17.
  • the valve connection 44 covers an end opening of the first bore section 50 of the relief line 42, while the second valve connection 45 coincides with an end opening of the second bore section 51 of the relief line 42.
  • the mouth of the relief line 42 in the pump interior 12 is closed with a check valve 52, which is integrated in the second bore section 51 of the relief line 42, namely between the mouth of the relief line 42 in the pump interior 12 and the mouth of the control chamber 39 of the check valve 33 with the Bore section 41 connecting relief line 42 in relief line 42.
  • the corresponding pump piston 20 in FIG. 1 is moved outwards on the falling flank of the cam track 15 rotating with the drive shaft 13, on which the roller tappet 21 bears.
  • the switching valve 43 is not energized and is therefore open.
  • This suction stroke of the pump piston 20 takes place in the area between top dead center (point 1 in FIG. 3) and bottom dead center (point 3 in FIG. 3).
  • the suction or suction pressure that occurs in this pump stroke in the pump work chamber 25 causes the valve member 37 to be lifted off the valve seat 38 against the action of the valve closing spring 40 and thus opens the check valve 33 now flows from the pump interior 12 via the feed line 30 and the annular groove 26 on the distributor piston 16 into the pump work space 25 and from there into the relief line 42.
  • the distributor groove 27 connects the pump interior 25 with an associated injection bore 28.
  • the switching valve 43 is actuated and this closes. Fuel is now conveyed via the injection bore 28 to the injection nozzle 29 and arrives there for injection into the cylinder of the internal combustion engine.
  • the control of the switching valve 43 is canceled so that it opens again.
  • the pump working chamber 25 is thus placed via the relief line 42 and the check valve 52 on the pump interior 12 which acts as a relief chamber.
  • the pressure in the pump working chamber 25 thus suddenly drops below the opening pressure of the injection nozzle 29, and this closes.
  • the fuel injection has ended.
  • the fuel injection is stopped, so that the internal combustion engine comes to a standstill due to a lack of fuel supply.
  • the switching valve 43 remains in its open position despite actuation, the pump work chamber 25 is constantly connected to the pump interior 12. No pressure overcoming the opening pressure of the injector 29 can build up in the pump work chamber 25. The injector 29 remains closed at all times. If the valve member 47 of the switching valve 43 remains stuck in its closed position, so that the switching valve 43 no longer opens despite the absence of the excitation current, the fuel-filled control chamber 39 is blocked by the closed switching valve 43 and blocks the opening movement of the valve tappet which usually occurs during the suction stroke of the pump piston 20 36 of the check valve 33.
  • the check valve 33 can no longer open and the pump work chamber 25 is no longer filled with fuel. As a result, even during the subsequent delivery stroke of the pump piston 20, fuel no longer reaches the injection nozzle 29 via the distributor groove 27 and the injection bore 28. In this case too, the internal combustion engine comes to a standstill due to a lack of fuel.
  • the check valve 33 thus brings about an automatic emergency stop of the internal combustion engine in the event of a fault in the electromagnetic switching valve 43.
  • valve tappet 36 with the valve member 37 is designed such that no force components greater than the spring force of the valve closing spring 40 arise on the surfaces of the valve tappet 36 and valve member 37 which are acted upon by the pressure in the pump working chamber 25 during the delivery stroke of the pump piston 20 so that Lock valve 33 remains securely closed during the delivery stroke of the pump piston 20.
  • valve member 37 and the valve tappet 36 which are acted upon by the fuel pressure in the pump interior 12 and by the suction pressure in the pump work chamber 25 during the suction stroke of the pump piston 20 are matched with the force of the valve closing spring 40 in such a way that the check valve 33 is secure when the suction stroke of the pump piston 20 begins opens and remains open throughout the suction stroke.
  • a check valve 53 is arranged in the second radial bore section 32 of the inlet line 30 between the valve bore 34 and the annular groove 26 in the distributor piston 26, the opening direction of which is directed towards the pump working chamber 25.
  • This check valve 53 results in a simplified design of the check valve 33, since the delivery pressure in the pump work chamber 25 no longer has to be taken into account in the formation of the areas of the valve member 37 which are acted upon by pressure.
  • the shutoff valve 233 is designed as a slide valve, a valve piston 54 sliding in the valve bore 34, which in the same way as the valve tappet in FIGS. 1 and 2 has a valve closing spring 40 is burdened.
  • the valve piston 54 divides the valve bore 34 into a front valve chamber 55, in which the first bore section 31 of the inlet line 30 opens, and into a rear valve chamber, which forms the control and spring chamber 39 and which, as in FIGS. 1 and 2, via the bore section 41 is connected to the relief line 42.
  • the second radial bore section 32 of the feed line 30 opens into an annular groove 56 provided approximately centrally in the valve bore 34.
  • valve piston 5 closes the annular groove 56 with its piston surface in the blocking position of the blocking valve 233 shown in FIG. 5 and partially frees it after covering a predetermined displacement path against the force of the valve closing spring 40, so that now the first bore section 31 of the inlet line 30 via the valve chamber 55 is connected to the second bore section 32 of the feed line 30.
  • the further exemplary embodiment of a distributor fuel injection pump of the radial piston type shown schematically in longitudinal section in FIG. 6 differs from the fuel injection pump shown in FIG. 1 only in that the check valve 33 is integrated in the distributor piston 16.
  • the distributor piston 16 has a blind bore 57, into which a sleeve 58 provided with an internal step bore 59 is inserted.
  • the larger diameter bore section 60 of the inner step bore 59 adjoins the bottom of the blind bore 57 and is connected to the annular groove 26 on the distributor piston 16 via a bore 62 radially penetrating the sleeve 58 and the distributor piston 16.
  • the second bore section 60 is connected via an oblique bore 63 opening at the bottom of the blind bore 57 to a further annular groove 64, which is arranged on the distributor piston 16 at a distance from the annular groove 26 delimiting the pump working space 25.
  • a branch bore 65 leading to the second bore section 32 of the feed line 30 opens into the cylinder bore 17.
  • the valve tappet 36 is axially displaceable in the first bore section 60 from the stop valve 33, which is again designed as a seat valve and is identical to that in FIG. 1 a.
  • the transition stage between the two bore sections 60, 61 is designed as a valve seat 38, which is carried by the valve tappet 36 conical valve member 37 cooperates.
  • valve tappet 36 facing away from the valve member 37 in turn delimits the control and spring chamber 39, in which the valve closing spring 40 lies and which is continuously connected to the relief line 42 via the oblique bore 63, the annular groove 64 and the branch bore 65.
  • the smaller-diameter bore section 61 of the inner step bore 59 is connected to the pump interior 12 and, together with the bore 62, forms the feed line 30.
  • the invention is not limited to the exemplary embodiments of a distributor fuel injection pump with radial pistons described above. It can be used in the same way in distributor fuel injection pumps with axial pistons, as described in DE-OS 35 11 492, or in fuel injection pumps designed as so-called pump nozzles, as described in DE-OS 29 03 482.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Bei einer Kraftstoffeinspritzpumpe für Brennkraftmaschinen mit mindestens einem, einen Pumpenarbeitsraum (25) begrenzenden Pumpenkolben (20), der durch einen Nockenantrieb (13,15) zur Ausführung eines Saug- und Förderhubs in eine hin- und hergehende Bewegung versetzt wird, und mit einem die Förderdauer steuernden elektrischen Schaltventil (43), das in einer von dem Pumpenarbeitsraum (25) zu dem Pumpeninnenraum (12) führenden Enlastungsleitung (42) angeordnet ist, ist zur Erzielung eines Notstops der Brennkraftmaschine bei Funktionsstörungen des Schaltventils (43) in einer den Pumpeninnenraum (12) mit dem Pumpenarbeitsraum (25) verbindenden Kraftstoff-Zulaufleitung (30) ein Sperrventil (33) mit zum Pumpenarbeitsraum hin gerichteter Öffnungsrichtung angeordnet. Das Ventilglied (37) des Sperrventils (33) ist einerseits von einer Ventilschließfeder (40) und andererseits von einem kraftstoffgefüllten Steuerraum (39) belastet, mit welchem das Ventilglied (37) in seiner Schließstellung während der Schließstellung des Schaltventils (43) verriegelt wird.

Description

    Stand der Technik
  • Die Erfindung geht aus von einer Kraftstoffeinspritzpumpe für Brennkraftmaschinen der im Oberbegriff des Anspruchs 1 definierten Gattung.
  • Bei einer bekannten Kraftstoffeinspritzpumpe dieser Art, die als sog. Pumpedüse ausgebildet ist (DE-OS 35 23 536) wird die mit einer Zulauföffnung in dem Pumpenarbeitsraum mündende Zulaufleitung infolge Verschließens der Zulauflauföffnung durch den Pumpenkolben von dem Pumpenarbeitsraum getrennt. Der Zeitpunkt des Verschließens der Zulauföffnung ist konstruktiv festgelegt und durch den Abstand der Zulauföffnung von der unteren Totpunktlage des Pumpenkolbens bestimmt.
  • Bei einer als Kraftstoffeinspritzpumpe der Radialkolbenbauart ausgebildeten Kraftstoffeinspritzpumpe (deutsche Patenanmeldung P 36 12 942.9) wird der Pumpenarbeitsraum von einer Ringnut auf dem rotierenden Verteilerkolben begrenzt, die mit um den Umfang des Verteilerkolbens verteilt angeordneten und bei der Drehung des Verteilerkolbens mit Füllbohrungen im Verteilerzylinder in Verbindung bringbaren Füllnuten verbunden ist. Die Füllbohrungen münden im kraftstoffgefüllten Pumpeninnenraum und verbinden diesen mit dem Pumpenarbeitsraum wenn die Füllnuten in Überdeckung mit den Mündungen der Füllbohrungen im Verteilerzylinder sind.
  • Bei beiden vorstehend genannten Kraftstoffeinspritzpumpen wird beim Saughub des Pumpenkolbens der Pumpenarbeitsraum immer vollständig mit Kraftstoff gefüllt. Die zur Einspritzung gelangende Menge dieses Kraftstoffvolumens wird abhängig von Parametern der Brennkraftmaschine, wie Last und Drehzahl, durch den Zeitpunkt des Schließens und Öffnens des elektrischen Schaltventils bestimmt. Mit Schließen des Schaltventils setzt die Kraftstoffeinspritzung in den jeweiligen Zylinder der Brennkraftmaschine ein, während mit Öffnen des Schaltventils der Pumpenarbeitsraum mit dem Entlastungsraum verbunden und damit die Kraftstoffeinspritzung schlagartig beendet wird. Bei einem Defekt des Schaltventils in der Weise, daß es in seiner Schließstellung hängen bleibt und nicht mehr öffnet, wird die Brennkraftmaschine lastunabhängig immer mit der maximalen Kraftstoffeinspritzmenge versorgt, so daß die Drehzahl der Brennkraftmaschine unbeeinflußbar anwächst, die Brennkraftmaschine "durchdreht".
  • Vorteile der Erfindung
  • Die erfindungsgemäße Kraftstoffeinspritzpumpe mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß im Falle des Hängenbleibens des Schaltventils in seiner Schließstellung die Kraftstoffzufuhr zu dem Pumpenarbeitsraum automatisch unterbunden wird. Damit kann kein Kraftstoff aus dem Pumpenarbeitsraum zu den Einspritzdüsen gefördert werden, und die Brennkraftmaschine kommt wegen fehlenden Zündgemisches zum Stillstand.
  • Bei Kraftstoffeinspritzpumpen der Verteilerbauart ergibt sich dabei eine wesentlich einfachere konstruktive Gestaltung des Verteilerkolbens, da Füllnuten und Füllbohrungen entfallen. Ihr Fehlen wirkt sich vorteilhaft auf die Kraftstoffversorgung des Pumpenarbeitsraums aus, da die durch die Füllnuten auftretenden Leckverluste entfallen. Zugleich erhält man ein reduziertes Totvolumen im Pumpenarbeitsraum. Der Raumbedarf ist gering, da das erfindungsgemäße zusätzliche Sperrventil in das Pumpengehäuse oder gar in den Verteilerkolben ohne weiteres integriert werden kann.
  • Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Kraftstoffeinspritzpumpe möglich.
  • Zeichnung
  • Die Erfindung ist anhand von in der Zeichnung dargestellten Ausführungsbeispielen in der nachfolgenden Beschreibung näher erläutert. Es zeigen jeweils in schematischer Darstellung:
    • Fig. 1 ausschnittweise einen Längsschnitt einer Verteilerkraftstoffeinspritzpumpe der Radialkolbenbauart,
    • Fig. 2 eine vergrößerte Darstellung des Längsschnitts eines Sperrventils der Kraftstoffeinspritzpumpe in Fig. 1,
    • Fig. 3 ausschnittweise eine Abwicklung einer Nockenbahn eines Nockenantriebs in der Kraftstoffeinspritzpumpe in Fig. 1 zur Verdeutlichung der Funktionsweise,
    • Fig. 4 und 5 jeweils eine vergrößerte Darstellung eines Sperrventils im Längsschnitt der Kraftstoffeinspritzpumpe in Fig. 1 gemäß einem zweiten und dritten Ausführungsbeispiel,
    • Fig. 6 ausschnittweise einen Längsschnitt der Kraftstoffeinspritzpumpe gemäß einem weiteren Ausführungsbeispiel.
    Beschreibung der Ausführungsbeispiele
  • Die in Fig. 1 ausschnittweise im Längsschnitt dargestellte Verteilerkraftstoffeinspritzpumpe der Radialkolbenbauart weist ein in Fig. 1 nur angedeutetes topfförmiges Gehäuse 10 und einen dieses verschließenden Deckel 11 auf, der vom offenen Ende des Gehäuses 10 her eingeschoben ist und mit einem nicht dargestellten Boden des Gehäuses 10 einen Pumpeninnenraum 12 begrenzt. Der Pumpeninnenraum 12 ist mit unter niedrigem Druck stehenden Kraftstoff gefüllt und dient als Kraftstoffvorrats- und Entlastungsraum. Durch den Boden des Gehäuses 10 ist eine Antriebswelle 13 hindurchgeführt, welche in Fig. 1 durch ihre Achse angedeutet ist. Im Pumpeninnenraum 12 erweitert sich diese Antriebswelle 13 topfförmig und trägt längs ihres Randes einen mit ihr drehfest verbundenen Nockenring, dessen auf seiner Innenseite vorgesehene Nockenbahn 15 in Fig. 1 schematisch und um 90° gedreht angedeutet ist. Die Nockenbahn 15 trägt in bekannter Weise nach innen gerichtete Nocken, die in Zahl und Folge an die Zahl und Folge von in der Kraftstoffeinspritzpumpe enthaltenen Radialkolben und an die Zahl der mit diesen Radialkolben pro Umdrehung der Antriebswelle 13 auszuführenden Kolbenhübe angepaßt sind. Auf der Antriebswelle 13 sitzt in üblicher Weise die nicht dargestellte Förderpumpe, die den Pumpeninnenraum 12 mit Kraftstoff füllt.
  • Mit der Antriebswelle 13 ist weiterhin ein Verteilerkolben 16 drehfest verbunden, dessen Achse mit der Achse der Antriebswelle 13 fluchtet. Der Verteilerkolben 16 ist bis auf das mit der Antriebswelle 13 verbundene Ende in einer Zylinderbohrung 17 im Deckel 11 geführt und in seiner axialen Lage relativ zur Zylinderbohrung 17 fixiert. Der Nockenbahn 15 benachbart, radial nach innen anschließend sind im Deckel 11 Führungen 18 vorgesehen, die über den Umfang gleichmäßig verteilt sind und bis nahe an den Verteilerkolben 16 reichen. Für eine in Fig. 1 dargestellte Verteilerkraftstoffeinspritzpumpe zur Versorgung von insgesamt drei Einspritzdüsen einer Brennkraftmaschine sind insgesamt drei Führungen 18 vorgesehen, von welchen in Fig.1 nur eine zu sehen ist. Koaxial zu den Führungen 18 sind Radialbohrungen 19 vorgesehen, in welchen jeweils ein Pumpenkolben 20 längsverschieblich geführt ist. In den Führungen 18 ist jeweils ein sog. Rollenstößel 21 längsverschieblich geführt, der aus einer Walze oder Rolle 22 und einer Stößeltasse 23 besteht. Die Rolle 22 ist in Fig. 1 genauso wie die Nockenbahn 15 um 90° gedreht dargestellt. Eine im Grunde der Führung 18 einerseits und an einem am Boden der Stößeltasse 23 anliegenden Federteller 14 andererseits sich abstützende Stößelfeder 24 drückt die Stößeltasse 23 gegen die Rolle 22 und letztere an die Nockenbahn 15. Der Federteller 14 hintergreift dabei einen aus der Radialbohrung 19 herausragenden Bund 20a des Pumpenkolbens 20 und legt letzteren damit an der Stößeltasse 23 fest.
  • Jeder Pumpenkolben 20 begrenzt in der Radialbohrung 19 einen Pumpenraum 25, dessen andere Stirnseite von einer Ringnut 26 auf dem Verteilerkolben 16 gebildet wird. In der Ringnut 26 mündet eine auf dem Verteilerkolben 16 sich axial erstreckende Verteilernut 27. In der Zylinderbohrung 17 münden in einer Querschnittsebene drei Einspritzbohrungen 28, die über den Umfang der Zylinderbohrung 17 gleichmäßig verteilt sind und durch den Deckel 11 hindurch bis zu jeweils einer durch einen Pfeil angedeuteten Einspritzdüse 29 führen. Die axiale Länge der Verteilernut 27 ist so bemessen, daß sie bis in die Querschnittsebene der Mündungen der Einspritzbohrungen 28 hineinragt und damit je nach Drehstellung des Verteilerkolbens 16 eine der drei Einspritzbohrungen 28 mit der Ringnut 26 verbindet.
  • Die Füllung des Arbeitsraums 25 mit Kraftstoff aus dem Pumpeninnenraum 12 erfolgt während des Saughubs des Pumpenkolbens 20 über eine im Deckel 11 verlaufende Zulaufleitung 30, die einen axial zum Verteilerkolben 16 verlaufenden ersten Bohrungsabschnitt 31 und einen radial zum Verteilerkolben 16 verlaufenden zweiten Bohrungsabschnitt 32 umfaßt. Der erste Bohrungsabschnitt 31 mündet im Pumpeninnenraum 12 und der zweite Bohrungsabschnitt 32 in der Zylinderbohrung 17 im Bereich der Ringnut 26 des Verteilerkolbens 16. Beide Bohrungsabschnitte 31,32 sind über eine Ventilbohrung 34 miteinander verbunden, die koaxial zum ersten Bohrungsabschnitt 31 mit einem demgegenüber größeren Bohrungsdurchmesser in den Deckel 11 eingebracht ist. Die Mündung des ersten Bohrungsabschnittes 31 in der Ventilbohrung 34 bildet dabei eine Ventilöffnung 35 eines in der Zulaufleitung 30 angeordneten Sperrventils 33, dessen Öffnungsrichtung zum Pumpenarbeitsraum 25 hin gerichtet ist. Das in Fig. 2 vergrößert dargestellte Sperrventil 33 ist als Sitzventil ausgebildet, das einen in der Ventilbohrung 34 verschieblich einliegenden Ventilstößel 36 aufweist. Der Ventilstößel 36 trägt auf seiner der Ventilöffnung 35 zugekehrten Stirnseite ein kegelförmiges Ventilglied 37, das zum Verschließen und Freigeben der Ventilöffnung 35 mit einem die Ventilöffnung 35 umgebenden Ventilsitz 38 zusammenwirkt. Die vom Ventilglied 37 abgekehrte Stirnseite des Ventilstößels 36 begrenzt einen Steuer- und Federraum 39, in dem eine als Schraubendruckfeder ausgebildete Ventilschließfeder 40 einliegt, die sich einerseits an der Stirnseite des Ventilstößels 36 und andererseits am Grunde der Ventilbohrung 34 abstützt und den Ventilstößel 36 in Ventilschließrichtung belastet. Der Steuer- und Federraum 39 ist über einen Bohrungsabschnitt 41 mit einer Entlastungsleitung 42 verbunden.
  • Die in zwei Bohrungsabschnitte 50,51 unterteilte, im Deckel 11 verlaufende Entlastungsleitung 42 mündet einerseits in dem Pumpeninnenraum 12 und andererseits in der Zylinderbohrung 17, und zwar im Bereich der Ringnut 26 auf dem Verteilerkolben 16. In der Entlastungsleitung 42 ist ein elektromagnetisches Schaltventil 43 eingeschaltet, über welches die Entlastungsleitung 42 gesperrt und damit der Pumpenarbeitsraum 25 abgeschlossen oder die Entlastungsleitung 42 freigegeben und damit der Pumpenarbeitsraum 25 mit dem als Entlastungsraum dienenden Pumpeninnenraum 12 verbunden werden kann. Aufbau und Wirkungsweise des elektromagnetischen Schaltventils 43 ist bekannt und beispielsweise in der DE-OS 35 23 536 beschrieben. Die beiden Ventilanschlüsse 44,45 des Schaltventils 43 sind über eine Ventilöffnung 46 miteinander verbunden, die von einem Ventilglied 47 gesteuert wird. Das Ventilglied 47 wird von einem Elektromagneten 48 betätigt, wobei das Ventilglied 47 die Ventilöffnung 46 im nicht erregten Zustand des Elektromagneten 48 unter der Wirkung einer nicht dargestellten Rückstellfeder freigibt und im erregten Zustand des Elektromagneten 48 verschließt. Das ein separates Ventilgehäuse 49 aufweisende Schaltventil 43 ist auf dem Deckel 11 aufgesetzt und dort in geeigneter Weise befestigt, wobei es die Zylinderbohrung 17 verschließt. Der Ventilanschluß 44 überdeckt dabei eine stirnseitige Öffnung des ersten Bohrungsabschnittes 50 der Entlastungsleitung 42 während der zweite Ventilanschluß 45 sich mit einer Stirnöffnung des zweiten Bohrungsabschnittes 51 der Entlastungsleitung 42 deckt. Die Mündung der Entlastungsleitung 42 im Pumpeninnenraum 12 ist mit einem Rückschlagventil 52 abgeschlossen, das in dem zweiten Bohrungsabschnitt 51 der Entlastungsleitung 42 integriert ist, und zwar zwischen der Mündung der Entlastungsleitung 42 im Pumpeninnenraum 12 und der Mündung des den Steuerraum 39 des Sperrventils 33 mit der Entlastungsleitung 42 verbindenden Bohrungsabschnittes 41 in der Entlastungsleitung 42.
  • Die Wirkungsweise der vorstehend beschriebenen Kraftstoffeinspritzpumpe ist nachfolgend unter Einbeziehung der Fig. 3 erläutert, wobei in Fig. 3 schematisch und ausschnittweise eine Abwicklung der Nockenbahn 15 dargestellt ist, die den Saughub und Förderhub des Pumpenkolbens 20 bewirkt.
  • Auf der abfallenden Flanke der mit der Antriebswelle 13 rotierenden Nockenbahn 15, an welcher der Rollenstößel 21 anliegt, wird der entsprechende Pumpenkolben 20 in Fig. 1 nach außen bewegt. Das Schaltventil 43 ist nicht erregt und damit geöffnet. Dieser Saughub des Pumpenkolbens 20 findet im Bereich zwischen dem oberen Totpunkt (Punkt 1 in Fig. 3) und dem unteren Totpunkt (Punkt 3 in Fig. 3) statt. Der bei diesem Saughub entstehende Sog oder Saugdruck im Pumpenarbeitsraum 25 bewirkt ein Abheben des Ventilglieds 37 vom Ventilsitz 38 gegen die Wirkung der Ventilschließfeder 40 und damit ein Öffnen des Sperrventils 33. Kraftstoff strömt nunmehr aus dem Pumpeninnenraum 12 über die Zulaufleitung 30 und die Ringnut 26 auf dem Verteilerkolben 16 in den Pumpenarbeitsraum 25 und von dort in die Entlastungsleitung 42. Am Ende des Saughubs (Punkt 3 in Fig.3) ist der Pumpenarbeitsraum 25 sowie die gesamte Entlastungsleitung 42 mit Kraftstoff gefüllt. Hat der Rollenstößel 21 und damit der Pumpenkolben 20 seine untere Totpunktlage (Punkt 3 in Fig. 3) erreicht, so wird mit Wegfall des Saugdruckes der Ventilstößel 34 des Sperrventils 33 durch die Ventilschließfeder 40 mit seinem Ventilglied 37 auf den Ventilsitz 38 (Fig. 2) aufgepreßt, und das Sperrventil 33 ist geschlossen. Nach Durchlaufen der unteren Totpunktlage bewegt sich der Rollenstößel 21 auf der ansteigenden Flanke der Nockenbahn 15, wodurch der Pumpenkolben 20 in Fig. 1 nach innen bewegt wird und seinen Förderhub ausführt. Zu Beginn des Förderhubs ist das Schaltventil 43 noch geöffnet, so daß Kraftstoff aus dem Pumpeninnenraum 25 über die Entlastungsleitung 42 und das Rückschlagventil 52 in den Pumpenarbeitsraum 12 zurückströmt. Im Bereich der ansteigenden Flanke der Nockenbahn 15 verbindet die Verteilernut 27 den Pumpeninnenraum 25 mit einer zugeordneten Einspritzbohrung 28. Hat der Rollenstößel 21 die Stellung 4 in Fig. 3 erreicht, so wird das Schaltventil 43 angesteuert, und dieses schließt. Nunmehr wird Kraftstoff über die Einspritzbohrung 28 zur Einspritzdüse 29 gefördert und gelangt dort zur Einspritzung in den Zylinder der Brennkraftmaschine.
  • Zur Beendigung der Kraftstoffeinspritzung wird die Ansteuerung des Schaltventils 43 aufgehoben, so daß dieses wieder öffnet. Damit wird der Pumpenarbeitsraum 25 über die Entlastungsleitung 42 und das Rückschlagventil 52 an den als Entlastungsraum wirkenden Pumpeninnenraum 12 gelegt. Der Druck im Pumpenarbeitsraum 25 fällt damit schlagartig unter den Öffnungsdruck der Einspritzdüse 29 ab, und diese schließt. Die Kraftstoffeinspritzung ist beendet.
  • In jedem Falle einer Funktionsstörung des Schaltventils 43 wird die Kraftstoffeinspritzung beendet, so daß die Brennkraftmaschine wegen fehlender Kraftstoffversorgung zum Stillstand kommt. Verbleibt das Schaltventil 43 trotz Ansteuerung in seiner Offenstellung, so ist der Pumpenarbeitsraum 25 ständig mit dem Pumpeninnenraum 12 verbunden. Im Pumpenarbeitsraum 25 kann sich kein den Öffnungsdruck der Einspritzdüse 29 überwindender Druck aufbauen. Die Einspritzdüse 29 bleibt ständig geschlossen. Bleibt das Ventilglied 47 des Schaltventils 43 in seiner Schließstellung kleben, so daß das Schaltventil 43 trotz Wegfall des Erregerstroms nicht mehr öffnet, so ist der kraftstoffgefüllte Steuerraum 39 durch das geschlossene Schaltventil 43 abgesperrt und blockiert die üblicherweise beim Saughub des Pumpenkolbens 20 einsetzende Öffnungsbewegung des Ventilstößels 36 des Sperrventils 33. Das Sperrventil 33 kann nicht mehr öffnen und der Pumpenarbeitsraum 25 wird nicht mehr mit Kraftstoff gefüllt. Damit gelangt auch bei dem sich anschließenden Förderhub des Pumpenkolbens 20 kein Kraftstoff mehr über die Verteilernut 27 und die Einspritzbohrung 28 zu der Einspritzdüse 29. Auch in diesem Fall kommt die Brennkraftmaschine wegen Kraftstoffmangels zum Stillstand. Das Sperrventil 33 bewirkt damit einen automatischen Notstop der Brennkraftmaschine bei Störung des elektromagnetischen Schaltventils 43.
  • In Fig. 2 ist das Sperrventil 33 vergrößert dargestellt. Wie dort zu sehen ist, ist der Ventilstößel 36 mit Ventilglied 37 so ausgebildet, daß an den beim Förderhub des Pumpenkolbens 20 vom Druck im Pumpenarbeitsraum 25 beaufschlagten Flächen von Ventilstößel 36 und Ventilglied 37 keine Kraftkomponenten entstehen, die größer sind als die Federkraft der Ventilschließfeder 40, so daß das Sperrventil 33 beim Förderhub des Pumpenkolbens 20 sicher geschlossen bleibt. Andererseits sind die vom Kraftstoffdruck im Pumpeninnenraum 12 und vom Saugdruck im Pumpenarbeitsraum 25 während des Saughubs des Pumpenkolbens 20 beaufschlagten Flächen des Ventilglieds 37 und des Ventilstößels 36 mit der Kraft der Ventilschließfeder 40 so abgestimmt, daß das Sperrventil 33 mit Einsetzen des Saughubs des Pumpenkolbens 20 sicher öffnet und während des gesamten Saughubs geöffnet bleibt.
  • Bei dem in Fig. 4 dargestellten weiteren Ausführungsbeispiel eines ebenfalls als Sitzventil ausgebildeten Sperrventils 133 ist in dem zweiten radialen Bohrungsabschnitt 32 der Zulaufleitung 30 zwischen Ventilbohrung 34 und Ringnut 26 im Verteilerkolben 26 ein Rückschlagventil 53 angeordnet, dessen Öffnungsrichtung zum Pumpenarbeitsraum 25 hin gerichtet ist. Durch dieses Rückschlagventil 53 ergibt sich eine vereinfachte Auslegung des Sperrventils 33, da bei der Ausbildung der vom Druck beaufschlagten Flächen des Ventilgliedes 37 der Förderdruck im Pumpenarbeitsraum 25 nicht mehr berücksichtigt werden muß.
  • Bei dem in Fig. 5 dargestellten weiteren Ausführungsbeispiel des Sperrventils in Fig. 1 ist das Sperrventil 233 als Schieberventil ausgebildet, wobei in der Ventilbohrung 34 ein Ventilkolben 54 gleitet, der in gleicher Weise wie der Ventilstößel in Fig. 1 und 2 von einer Ventilschließfeder 40 belastet ist. Der Ventilkolben 54 unterteilt die Ventilbohrung 34 in einen vorderen Ventilraum 55, in welchem der erste Bohrungsabschnitt 31 der Zulaufleitung 30 mündet, und in einen hinteren, den Steuer- und Federraum 39 bildenden Ventilraum, der wie in Fig. 1 und 2 über den Bohrungsabschnitt 41 mit der Entlastungsleitung 42 verbunden ist. Der zweite radiale Bohrungsabschnitt 32 der Zulaufleitung 30 mündet in einer etwa mittig in der Ventilbohrung 34 vorgesehenen Ringnut 56. Der Ventilkolben 54 verschließt in der in Fig. 5 dargestellten Sperrstellung des Sperrventils 233 mit seiner Kolbenfläche die Ringnut 56 und gibt diese nach Zurücklegen eines vorbestimmten Verschiebeweges gegen die Kraft der Ventilschließfeder 40 teilweise frei, so daß nunmehr der erste Bohrungsabschnitt 31 der Zulaufleitung 30 über den Ventilraum 55 mit dem zweiten Bohrungsabschnitt 32 der Zulaufleitung 30 verbunden ist.
  • Das in Fig. 6 schematisch im Längsschnitt dargestellte weitere Ausführungsbeispiel einer Verteilerkraftstoffeinspritzpumpe der Radialkolbenbauart unterscheidet sich von der in Fig. 1 dargestellten Kraftstoffeinspritzpumpe nur dadurch, daß das Sperrventil 33 in dem Verteilerkolben 16 integriert ist. Hierzu weist der Verteilerkolben 16 eine Sackbohrung 57 auf, in welcher eine mit einer Innenstufenbohrung 59 versehene Hülse 58 eingeschoben ist. Der den größeren Durchmesser aufweisende Bohrungsabschnitt 60 der Innenstufenbohrung 59 grenzt dabei an den Grund der Sackbohrung 57 an und ist über eine die Hülse 58 und den Verteilerkolben 16 radial durchdringende Bohrung 62 mit der Ringnut 26 auf dem Verteilerkolben 16 verbunden. Außerdem steht der zweite Bohrungsabschnitt 60 über eine am Grund der Sackbohrung 57 mündende Schrägbohrung 63 mit einer weiteren Ringnut 64 in Verbindung, die auf dem Verteilerkolben 16 im Abstand von der den Pumpenarbeitsraum 25 begrenzenden Ringnut 26 angeordnet ist. Im Bereich der Ringnut 64 mündet in der Zylinderbohrung 17 eine bis hin zum zweiten Bohrungsabschnitt 32 der Zuleitung 30 führende Stichbohrung 65. Von dem wiederum als Sitzventil und identisch wie in Fig. 1 ausgebildeten Sperrventil 33 liegt der Ventilstößel 36 axial verschieblich in dem ersten Bohrungsabschnitt 60 ein. Die Übergangsstufe zwischen den beiden Bohrungsabschnitten 60,61 ist als Ventilsitz 38 ausgebildet, der mit dem vom Ventilstößel 36 getragenen kegelförmigen Ventilglied 37 zusammenwirkt. Die vom Ventilglied 37 abgekehrte Stirnseite des Ventilstößels 36 begrenzt wiederum den Steuer- und Federraum 39, in welchem die Ventilschließfeder 40 einliegt und welcher über die Schrägbohrung 63, die Ringnut 64 und die Stichbohrung 65 ständig mit der Entlastungsleitung 42 verbunden ist. Der den kleineren Durchmesser aufweisende Bohrungsabschnitt 61 der Innenstufenbohrung 59 steht mit dem Pumpeninnenraum 12 in Verbindung und bildet zusammen mit Bohrung 62 die Zulaufleitung 30. Der übrige Aufbau und die Funktionsweise der Kraftstoffeinspritzpumpe gemäß Fig. 6 sind so, wie dies zu Fig. 1 beschrieben ist, so daß für gleiche Bauteile insoweit gleiche Bezugszeichen verwendet worden sind.
  • Die Erfindung ist nicht auf die vorstehend beschriebenen Ausführungsbeispiele einer Verteilerkraftstoffeinspritzpumpe mit Radialkolben beschränkt. Sie kann in gleicher Weise bei Verteilerkraftstoffeinspritzpumpen mit Axialkolben, wie diese in der DE-OS 35 11 492 beschrieben sind, oder bei als sog. Pumpedüsen ausgebildeten Kraftstoffeinspritzpumpen eingesetzt werden, wie diese in der DE-OS 29 03 482 beschrieben sind.

Claims (9)

1. Kraftstoffeinspritzpumpe für Brennkraftmaschinen mit mindestens einem einen Pumpenarbeitsraum begrenzenden Pumpenkolben, der durch einen Nockenantrieb zur Ausführung eines Saug- und Förderhubs in eine hin- und hergehende Bewegung versetzt wird, wobei beim Saughub der Pumpenarbeitsraum über eine Zulaufleitung aus einem Kraftstoffvorratsraum, insbesondere Pumpeninnenraum, mit Kraftstoff gefüllt und beim Förderhub der Kraftstoff aus dem Pumpenarbeitsraum zu einer angeschlossenen Einspritzdüse gefördert wird, und mit einem die Förderdauer steuernden elektrischen Schaltventil, das in einer vom Pumpenarbeitsraum zu einem Entlastungsraum, insbesondere Pumpeninnenraum, führenden Entlastungsleitung angeordnet ist und durch Schließen den Förderbeginn und durch Öffnen das Förderende festlegt, dadurch gekennzeichnet, daß in der Zulaufleitung (30) zwischen Kraftstoffvorratsraum, vorzugsweise Pumpeninnenraum (12), und Pumpenarbeitsraum (25) ein Sperrventil (33;133;233) mit zum Pumpenarbeitsraum (25) hin weisender Öffnungsrichtung angeordnet ist, das eine sein Ventilglied (37) in Schließrichtung belastende Ventilschließfeder (40) und einen kraftstoffgefüllten Steuerraum (39) zum Verriegeln des Ventilgliedes (37) in dessen Schließstellung aufweist, und daß der Steuerraum (39) mit dem zwischen Schaltventil (43) und Entlastungsraum, vorzugsweise Pumpeninnenraum (12), liegenden Abschnitt (32) der Entlastungsleitung (30) verbunden und die Entlastungsleitung (30) zum Entlastungsraum, vorzugsweise Pumpeninnenraum (12), hin mit einem Rückschlagventil (52) abgeschlossen ist, dessen Öffnungsrichtung zum Entlastungsraum, vorzugsweise Pumpeninnenraum (12), hin gerichtet ist.
2. Pumpe nach Anspruch 1, dadurch gekennzeichnet, daß die vom Kraftstoffdruck beaufschlagten Flächen des Ventilglieds (37) und die Ventilschließfeder (40) so aufeinander abgestimmt sind, daß das Sperrventil (33;133;233) beim Saughub des Pumpenkolbens (20) öffnet und beim Förderhub des Pumpenkolbens (20) schließt.
3. Pumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Sperrventil (33;133) als Sitzventil mit einem in einer Ventilbohrung (34) gleitenden Ventilstößel (36) ausgebildet ist, der auf seiner einen Stirnseite das mit einem eine Ventilöffnung (35) in der Zulaufleitung (30) umgebenden Ventilsitz (38) zusammenwirkenden, kegel­oder kugelförmigen Ventilglied (37) trägt und mit seiner davon abgekehrten Stirnseite einen den Steuerraum (39) bildenden Bohrungsabschnitt der Ventilbohrung (34) begrenzt, daß im Steuerraum (39) die Ventilschließfeder (40) aufgenommen ist und daß der Steuerraum (40) über eine Verbindungsbohrung (41;63,64,65) an der Entlastungsleitung (42) angeschlossen ist.
4. Pumpe nach Anspruch 3, dadurch gekennzeichnet, daß die beim Förderhub des Pumpenkolbens (20) vom Druck im Pumpenarbeitsraum (25) beaufschlagte Fläche des Ventilgliedes (37) des Sperrventils (33) derart ausgebildet ist, daß die Ventilöffnung (35) auch bei im Pumpenarbeitsraum (25) herrschenden Einspritzdruck zuverlässig geschlossen bleibt.
5. Pumpe nach Anspruch 3, dadurch gekennzeichnet, daß in dem zwischen der Ventilöffnung (35) des Sperrventils (133) und dem Pumpenarbeitsraum (25) liegenden Leitungsabschnitt (32) der Zulaufleitung (30) ein Rückschlagventil (53) mit zum Pumpenarbeitsraum (25) hin gerichteter Öffnungsrichtung angeordnet ist.
6. Pumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Sperrventil (233) als Schieberventil mit einem in einer Ventilbohrung (34) axial verschieblichen Ventilkolben (54) ausgebildet ist, der einen in der Ventilbohrung (34) mündenden, zu dem Kraftstoffvorratsraum, vorzugsweise Pumpeninnenraum (12), führenden ersten Leitungsabschnitt (31) und einen in der Ventilbohrung (34) mündenden, zu dem Pumpenarbeitsraum (25) führenden zweiten Leitungsabschnitt (32) voneinander trennt bzw. miteinander verbindet, daß die eine Stirnseite des Ventilkolbens (54) einen Bohrungsabschnitt (55) begrenzt, in welchem der erste Leitungsabschnitt (31) mündet und daß die andere Stirnseite des Ventilkolbens (54) einen den Steuerraum (39) bildenden Bohrungsabschnitt begrenzt, der über eine Verbindungsbohrung (41) mit der Entlastungsleitung (42) verbunden ist.
7. Pumpe nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, daß das Sperrventil (33;133;233) im Pumpengehäuse (11) angeordnet ist.
8. Pumpen nach einem der Ansprüche 1 - 6 mit einem rotierenden Verteilerkolben zur Versorgung einer Mehrzahl von Einspritzdüsen, dadurch gekennzeichnet, daß das Sperrventil (33) im Verteilerkolben (16) integriert ist.
9. Pumpe nach Anspruch 8, dadurch gekennzeichnet, daß im Verteilerkolben (16) eine gestufte Sackbohrung (57,58,59) vorgesehen ist, daß in dem am Sackgrund liegenden hinteren Bohrungsabschnitt (60) mit dem größeren Bohrungsdurchmesser der Ventilstößel (36) oder Ventilkolben des Sperrventils (33) axial verschieblich einliegt und sich über die Ventilschließfeder (40) am Sackgrund abstützt, daß der von der dem Sackgrund zugekehrten Stirnfläche des Ventilstößels (36) oder Ventilkolben begrenzte Teil des hinteren Bohrungsabschnittes (60) über eine Bohrung (63) mit einer Ringnut (64) am Mantel des Verteilerkolbens (16) verbunden ist, die mit einer zur Entlastungsleitung (41) führenden Bohrung (65) in Verbindung steht, und daß der von der vom Sackgrund abgekehrten Stirnfläche des Ventilstößels (36) oder Ventilkolbens begrenzter Teil des hinteren Bohrungsabschnittes (60) über eine Bohrung (62) mit dem Pumpenarbeitsraum (25) verbunden ist, die zusammen mit dem den kleineren Bohrungsdurchmesser aufweisenden vorderen Bohrungsabschnitt (61) der Sackbohrung (57,58,59) die Zulaufleitung (30) bildet.
EP19880107454 1987-06-13 1988-05-10 Kraftstoffeinspritzpumpe Expired - Lifetime EP0295420B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873719831 DE3719831A1 (de) 1987-06-13 1987-06-13 Kraftstoffeinspritzpumpe
DE3719831 1987-06-13

Publications (3)

Publication Number Publication Date
EP0295420A2 true EP0295420A2 (de) 1988-12-21
EP0295420A3 EP0295420A3 (en) 1990-05-02
EP0295420B1 EP0295420B1 (de) 1991-11-13

Family

ID=6329672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880107454 Expired - Lifetime EP0295420B1 (de) 1987-06-13 1988-05-10 Kraftstoffeinspritzpumpe

Country Status (6)

Country Link
US (1) US4840162A (de)
EP (1) EP0295420B1 (de)
JP (1) JP2695842B2 (de)
KR (1) KR950003755B1 (de)
CN (1) CN1013892B (de)
DE (2) DE3719831A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0408915A1 (de) * 1989-07-20 1991-01-23 Robert Bosch Gmbh Kraftstoffeinspritzpumpe für Brennkraftmaschinen
FR2683595A1 (fr) * 1991-11-13 1993-05-14 Bosch Gmbh Robert Pompe d'injection de carburant pour des moteurs a combustion interne.
DE19631655A1 (de) * 1996-08-05 1998-02-12 Hatz Motoren Motorabschaltung für eine Brennkraftmaschine

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3719807A1 (de) * 1987-06-13 1988-12-22 Bosch Gmbh Robert Verteilerkraftstoffeinspritzpumpe der radialkolbenbauart
DE3719832A1 (de) * 1987-06-13 1988-12-22 Bosch Gmbh Robert Kraftstoffeinspritzpumpe
DE3722265A1 (de) * 1987-07-06 1989-01-19 Bosch Gmbh Robert Kraftstoffeinspritzpumpe
DE3900318A1 (de) * 1989-01-07 1990-07-12 Bosch Gmbh Robert Verteilerkraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3910793C2 (de) * 1989-04-04 1996-05-23 Kloeckner Humboldt Deutz Ag Brennstoffeinspritzvorrichtung
DE3927742A1 (de) * 1989-08-23 1991-02-28 Bosch Gmbh Robert Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3928612A1 (de) * 1989-08-30 1991-03-07 Bosch Gmbh Robert Kraftstoffverteilereinspritzpumpe fuer brennkraftmaschinen
US5215060A (en) * 1991-07-16 1993-06-01 Stanadyne Automotive Corp. Fuel system for rotary distributor fuel injection pump
DE4315646A1 (de) * 1993-05-11 1994-11-17 Bosch Gmbh Robert Kraftstoffeinspritzpumpe für Brennkraftmaschinen
DE4338344A1 (de) * 1993-11-10 1995-05-11 Bosch Gmbh Robert Verteilerkraftstoffeinspritzpumpe für Brennkraftmaschinen
GB9701877D0 (en) * 1997-01-30 1997-03-19 Lucas Ind Plc Fuel pump
US5887569A (en) * 1997-07-17 1999-03-30 Pacer Industries, Inc. Centrifugal fuel distributor
AU781331B2 (en) * 1999-09-22 2005-05-19 Kaneka Corporation Novel baker's yeast and doughs containing the same
US20060159572A1 (en) * 2005-01-18 2006-07-20 Malcolm Higgins Pilot injection pump
US8316875B2 (en) * 2008-12-30 2012-11-27 General Electric Company Methods, apparatus and/or systems relating to fuel delivery systems for industrial machinery
CN102434320A (zh) * 2010-09-29 2012-05-02 戴长春 一种一体化燃气喷射器总成
CN102434323A (zh) * 2010-09-29 2012-05-02 戴长春 一种一体化燃气喷射器总成的切断阀机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2097858A (en) * 1981-05-05 1982-11-10 Sulzer Ag A fuel injector for an internal combustion engine
US4437444A (en) * 1980-12-19 1984-03-20 Nissan Motor Company Ltd. Fuel injection pump for a diesel engine
JPS60122268A (ja) * 1983-12-07 1985-06-29 Nippon Soken Inc 内燃機関の燃料供給装置
US4574759A (en) * 1981-06-23 1986-03-11 Robert Bosch Gmbh Fuel injection pump
JPS61138837A (ja) * 1984-12-07 1986-06-26 Nippon Denso Co Ltd デイ−ゼル機関用燃料噴射率制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1210233A (en) * 1967-03-28 1970-10-28 Cav Ltd Liquid fuel injection pumping apparatus
GB2076561B (en) * 1980-04-26 1985-04-03 Diesel Kiki Co Distribution type fuel injection apparatus
JPS5741462A (en) * 1980-08-25 1982-03-08 Mazda Motor Corp Fuel injection device for diesel engine
DE3112381A1 (de) * 1981-03-28 1982-11-11 Robert Bosch Gmbh, 7000 Stuttgart Elektrisch gesteuerte kraftstoffeinspritzeinrichtung fuer mehrzylinder-brennkraftmaschinen, insbesondere zur kraftstoffdirekteinspritzung bei fremdgezuendeten brennkraftmaschinen
DE3123325A1 (de) * 1981-06-12 1982-12-30 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzeinrichtung fuer brennkraftmaschinen
DE3127543A1 (de) * 1981-07-11 1983-01-20 Robert Bosch Gmbh, 7000 Stuttgart "kraftstoffversorgungseinrichtung fuer brennkraftmaschinen"
JPS5951139A (ja) * 1982-09-17 1984-03-24 Nippon Soken Inc 燃料供給装置
GB8417862D0 (en) * 1984-07-13 1984-08-15 Lucas Ind Plc Fuel pumping apparatus
GB8417860D0 (en) * 1984-07-13 1984-08-15 Lucas Ind Plc Fuel injection pumping apparatus
GB8417861D0 (en) * 1984-07-13 1984-08-15 Lucas Ind Plc Fuel pumping apparatus
GB8611687D0 (en) * 1986-05-13 1986-06-18 Lucas Ind Plc Liquid fuel injection pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437444A (en) * 1980-12-19 1984-03-20 Nissan Motor Company Ltd. Fuel injection pump for a diesel engine
GB2097858A (en) * 1981-05-05 1982-11-10 Sulzer Ag A fuel injector for an internal combustion engine
US4574759A (en) * 1981-06-23 1986-03-11 Robert Bosch Gmbh Fuel injection pump
JPS60122268A (ja) * 1983-12-07 1985-06-29 Nippon Soken Inc 内燃機関の燃料供給装置
JPS61138837A (ja) * 1984-12-07 1986-06-26 Nippon Denso Co Ltd デイ−ゼル機関用燃料噴射率制御装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 333 (M-534)[2389], 12. November 1986; & JP-A-61 138 837 (NIPPON DENSO) 26-06-1986 *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 279 (M-427)[2002], 7. November 1985; & JP-A-60 122 268 (NIPPON JIDOSHA) 29-06-1985 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0408915A1 (de) * 1989-07-20 1991-01-23 Robert Bosch Gmbh Kraftstoffeinspritzpumpe für Brennkraftmaschinen
FR2683595A1 (fr) * 1991-11-13 1993-05-14 Bosch Gmbh Robert Pompe d'injection de carburant pour des moteurs a combustion interne.
DE19631655A1 (de) * 1996-08-05 1998-02-12 Hatz Motoren Motorabschaltung für eine Brennkraftmaschine
DE19631655C2 (de) * 1996-08-05 2003-03-27 Hatz Motoren Motorabschaltung für eine Brennkraftmaschine

Also Published As

Publication number Publication date
EP0295420B1 (de) 1991-11-13
KR890000775A (ko) 1989-03-16
EP0295420A3 (en) 1990-05-02
CN88103541A (zh) 1988-12-28
DE3866170D1 (de) 1991-12-19
CN1013892B (zh) 1991-09-11
JPS6419164A (en) 1989-01-23
DE3719831A1 (de) 1988-12-22
JP2695842B2 (ja) 1998-01-14
US4840162A (en) 1989-06-20
KR950003755B1 (ko) 1995-04-18

Similar Documents

Publication Publication Date Title
EP0295420B1 (de) Kraftstoffeinspritzpumpe
DE3235413C2 (de)
DE3824467C2 (de)
EP0290797B1 (de) Kraftstoffeinspritzpumpe
EP0688950B1 (de) Kraftstoffeinspritzsystem
EP0322426B1 (de) Kraftstoffeinspritzpumpe
EP0489740B1 (de) Kraftstoffverteilereinspritzpumpe für brennkraftmaschinen
EP0451227B1 (de) Kraftstoffeinspritzpumpe
DE2401736A1 (de) Kraftstoffeinspritzvorrichtung fuer verbrennungskraftmaschinen
DE1576617C3 (de) Einspritzvorrichtung für Brennkraftmaschinen mit Druckzündung
EP0318534B1 (de) Verteilerkraftstoffeinspritzpumpe der radialkolbenbauart
DE1476247A1 (de) Kraftstoffeinspritzvorrichtung fuer mit Kraftstoffeinspritzung und Kompressionszuendung arbeitende Brennkraftmaschinen
DE2930221A1 (de) Kraftstoffeinspritzsystem und -pumpe, dafuer vorgesehenes druckventil und kraftstoffeinspritzverfahren
EP0318535B1 (de) Kraftstoffeinspritzpumpe
EP0406592B1 (de) Kraftstoffeinspritzpumpe
DE69004665T2 (de) Kraftstoffpumpvorrichtung.
DE3236828A1 (de) Brennstoffeinspritzvorrichtung
EP0032168A1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen, insbesondere für Dieselmotoren
DE2716854A1 (de) Kraftstoff-foerderanlage
DE2647788C2 (de)
DE4315646A1 (de) Kraftstoffeinspritzpumpe für Brennkraftmaschinen
DE916605C (de) Verfahren einer in Vor- und Haupteinspritzung unterteilten Kraftstoffeinspritzung mittels Einspritzpumpe
DE3429128A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
EP0396127B1 (de) Kraftstoffeinspritzvorrichtung
DE2935912A1 (de) Brennstoffeinspritzvorrichtung fuer brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19900929

17Q First examination report despatched

Effective date: 19910429

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3866170

Country of ref document: DE

Date of ref document: 19911219

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991230

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010423

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010528

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020510

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050510