EP0281515B1 - Vorrichtung zum Kühlen einer Leichtmetall-Strangpresse - Google Patents

Vorrichtung zum Kühlen einer Leichtmetall-Strangpresse Download PDF

Info

Publication number
EP0281515B1
EP0281515B1 EP88810090A EP88810090A EP0281515B1 EP 0281515 B1 EP0281515 B1 EP 0281515B1 EP 88810090 A EP88810090 A EP 88810090A EP 88810090 A EP88810090 A EP 88810090A EP 0281515 B1 EP0281515 B1 EP 0281515B1
Authority
EP
European Patent Office
Prior art keywords
cooling
ring
die
press
bore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88810090A
Other languages
English (en)
French (fr)
Other versions
EP0281515A3 (en
EP0281515A2 (de
Inventor
Hannes Baumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aluminium AG
Original Assignee
Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium AG filed Critical Aluminium AG
Priority to AT88810090T priority Critical patent/ATE92799T1/de
Publication of EP0281515A2 publication Critical patent/EP0281515A2/de
Publication of EP0281515A3 publication Critical patent/EP0281515A3/de
Application granted granted Critical
Publication of EP0281515B1 publication Critical patent/EP0281515B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C29/00Cooling or heating work or parts of the extrusion press; Gas treatment of work

Definitions

  • the invention relates to a device for cooling a light metal extrusion press, wherein at least one cooling ring is provided in the forming zone area in the direction of movement in front of the pressing die, in which a coolant circulates closed for dissipating the forming heat, with lines for the supply and discharge of the Coolant are connected.
  • Extruded light metal extruded profiles are particularly critical with regard to the pressing temperature and extrusion speed because hot short cracking easily occurs.
  • a flawless, smooth surface of the extruded strand is particularly disturbed if a critical temperature is exceeded in the material to be pressed, at which the eutectic components present as residues become liquid and as a result lead to a rough strand surface.
  • a cooling device for light metal extrusion presses in which a cooling channel is arranged in a so-called antechamber upstream of the die, which follows the contour of the particular profile shape to be produced.
  • the area immediately in front of the die and the end face of the die are cooled.
  • the matrices are stressed to the limit of their resilience. Due to the non-uniform cooling, additional stresses of thermal origin arise in the die, which in many cases lead to breakage or at least to a reduced service life of the tools.
  • EP-A-01210 256 relates to a process for continuous casting in which the material to be formed is cooled in front of the die. For this purpose there is a plate with a cooling channel open towards the face of the die.
  • the cooling system the shape of which is determined by the profile shape to be produced, is located here in the pre-dies and in the main die.
  • the cooling system has to be incorporated into the dies and adapted to the respective extruded profile shape.
  • the die is weakened and susceptible to cracking due to the temperature gradient.
  • the main purpose of this cooling device is to regulate the exit speed of the individual strands in order to obtain strands that are as long as possible.
  • cooling is carried out at the end of the die.
  • This type of construction is particularly suitable for the use of liquid nitrogen as a cooling medium, which escapes in gas form and is directed onto the strand.
  • the shape and effect of the cooling system depends on the profile shape to be produced.
  • US-A-4 462 234 shows a two-stage die that is cooled outside the press room.
  • Such a cooling device is practically only suitable for single-hole matrices.
  • the cooling device is also not independent of the die.
  • the object to be achieved by the invention is to provide an effective cooling device in a light metal extrusion press, which can be produced with simple means, is independent of the die and thus of the extrusion profile forms to be produced, and the cooling is effective in the area of the largest material forming.
  • the device according to the invention with which this object is achieved is characterized in that the cooling ring, which consists of one or more coaxial rings and is independent of the pressing die, has a bore of the same diameter as the receiving bore of the pressing bolt, and a plurality of rings which are distributed in the ring surface in the axial direction and run to bore the There are radially distanced pairs of pressbore receptacles, which are connected at their area facing away from the die-side mouth by a radial bore which is closed to the outside, and the cooling ring is surrounded radially on the outside by at least one shrunk-on pressure ring which is rigidly connected to the pressbolt pickup.
  • the cooling device is a component that is independent of the die, no additional cooling channels or other changes need to be provided on the exchangeable dies themselves, which simplifies their manufacture and permits the further use of existing dies.
  • the cooling ring does not have to be changed for different profile shapes.
  • the highly stressed die is not affected by temperature jumps charged.
  • the largest possible extrusion diameter is not affected by the cooling device.
  • the same cooling device can be used for different types of profiles, such as solid or hollow profiles, single or multi-hole matrices and for pipes with cooled or uncooled mandrel.
  • the design of the cooling elements around the die-side end of the press pin receiver bore allows the cooling medium to be brought close to the material to be cooled in the forming zone and thus to achieve a rapidly reacting and effective cooling of this forming zone. By removing the friction and forming heat directly from the forming zone, a higher inlet temperature of the press bolt can be used.
  • a press die 3 contains single or multiple openings 4, corresponding to the cross-sectional shape of extruded profiles 5 to be produced in a one-step operation closed circulates.
  • “Closed circulation” is to be understood to mean that the cooling medium does not come into contact with the goods to be cooled, but is supplied via a feed line and is led away from the cooling ring via a return line.
  • This cooling ring 12 sits coaxially on a one-piece inner ring 8.
  • the cylindrical bore 10 of this inner ring 8 is the axial continuation of the diameter of the pressing pin receiver bore 9 and thus corresponds to the diameter of the punch 13.
  • the cooling ring 12 are all over Annular ring-shaped and evenly distributed several, in the axial direction extending pairs of holes 14, 15, the mutual distance on their inner pitch circle 15-50 mm, depending on the diameter of the bore 9.
  • Each pair of holes 14, 15 is close to the inside of the cooling ring 12 its end facing away from the die each flow-connected through a radial bore 16.
  • These radial bores 16 are each closed at their outer ends by a plug 17. This results in a circulation for the cooling medium inside the cooling ring 12, the cooling medium not coming into direct contact with the material to be pressed 1.
  • the pairs of holes 14, 15 are each connected to a feed line or return line, which are each in an annular housing 18.
  • annular housing there are two concentric annular chambers 27, 28 with different diameters on the end face 6 of the cooling ring 12, with all of the openings of the bores 14 lying radially outside and the other all openings of the bores 15 being radially further into the other lie inside, flow into.
  • 18 connecting nipples 29 are provided in the annular housing for connecting pipe or hose lines.
  • a controllable throttle valve V is preferably installed, with which the flow and thus the cooling capacity can be continuously adapted to the requirements so that the temperature of the pressed material 1 in the forming zone can be kept at its optimal temperature level, for example using of a temperature sensor. If, for reasons of space, the preferred arrangement of the supply and discharge of the cooling medium at the die-side end of the cooling ring is not possible for existing presses, the lines for supply and discharge of the cooling medium can also be designed as radial bores on the pressing pin receiver side.
  • the cooling medium can be water, but other liquids, vapors or gases can also be used.
  • the die rests on the face against the cooling ring 12 and the inner ring 8.
  • the axial length of the cooling ring 12 is preferably 0.25-2 times the diameter of the press pin bore 9.
  • the wall thickness of the ring 8 is less than half the wall thickness of the cooling ring 12.
  • the wall thickness is Ring 8 preferably less than 1/4 of the diameter of the press pin bore 9.
  • the radially innermost, approximately horizontal axes of the cooling bores 15 are arranged on a ring, the diameter of which is less than 1 1/2 times, preferably less than 1 1/4 times of the diameter of the press pin receiver bore 9.
  • a radially outer shrunk-on pressure ring 20 surrounds the cooling ring 12 on the outside. It is fastened with screws 24 to the end face 32 of the press pin receiver 2. For reasons of strength, it is also possible to provide a plurality of pressure rings 20 lying coaxially one above the other, which are shrunk onto one another. The cooling ring 12 is also shrunk onto the inner ring 8. For the transmission of axial forces, the inner ring 8 and the cooling ring 12 and the pressure ring 20 are each provided with ring shoulders 11 and 22, respectively. Instead of ring shoulders, the rings 8, 12, 20 could also be conical on their interlocking parts.
  • FIG. 3 an embodiment is shown in which the cooling ring 12 ⁇ is formed with the omission of the inner ring 8 directly as the same diameter coaxial limitation of the die-near press pin bore 9. At least one pressure ring 20 is shrunk onto the contact ring 12 auf in a coaxial arrangement. Otherwise, the same reference numerals correspond to the same parts and the same functions as in the exemplary embodiment according to FIGS. 1 and 2.
  • the inner ring 8 and / or the cooling ring 12, 12 'to be conical over part of its length in the region on the die side, but the entry-side end of the bore 10 being of the same diameter as the press bolt bore 9.
  • the forming and frictional heat can thus be dissipated directly from the main forming zone in front of the press die 3 by cooling in order to keep the temperature of the pressed material 1 at an optimal level. This enables a sudden increase in the pressing speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Magnetic Heads (AREA)

Description

  • Die Erfindung bezieht sich auf eine Vorrichtung zum Kühlen einer Leichtmetall-Strangpresse, wobei im Umformzonenbereich in Bewegungsrichtung vor der Pressmatrize mindestens ein Kühlring vorhanden ist, in welchem ein Kühlmittel zum Abführen der Umformwärme geschlossen zirkuliert, wobei mit dem Kühlring Leitungen für die Zufuhr und Abfuhr des Kühlmittels verbunden sind.
  • Beim Strangpressen von Leichtmetallen werden auf das Pressgut sehr hohe Kräfte ausgeübt, damit ein vorgewärmter Pressbolzen auf das durch eine Matrize bestimmte extrudierte Strangprofil oder Strangprofile reduziert werden kann. Dabei stehen Temperaturen des Pressbolzens und des Pressgutes, Druck, Umformungsgrad, Strangpressgeschwindigkeit, Oberflächenbeschaffenheit und metallurgische Eigenschaften des stranggepressten Profils in einer gegenseitigen Abhängigkeit. Die Verhältnisse sind relativ komplex, weil sich die Parameter bei Veränderungen gegenseitig beeinflussen. Bei der Umformung des Materials entsteht innere Umformungs- und Reibungswärme zusätzlich zu derjenigen des auf Extrusionstemperatur erwärmten Pressbolzens.
  • Extrudierte Leichtmetall-Strangpressprofile sind bezüglich Press-Temperatur und Extrudiergeschwindigkeit besonders kritisch, weil leicht Wärmerisse (hot short cracking) auftreten.
  • Eine einwandfreie, glatte Oberfläche des extrudierten Stranges wird insbesondere dann gestört, wenn im Pressgut eine kritische Temperatur überschritten wird, bei der die als Resten vorhandenen eutektischen Bestandteile flüssig werden und als Folge davon zu rauher Strangoberfläche führen.
  • Diese Probleme beschränkten bisher die mögliche Extrudiergeschwindigkeit, obschon die Extrudierpressen im Allgemeinen eine höhere Pressgeschwindigkeit zulassen würden.
  • Bisher wurde versucht, das Problem der Warmrisse des extrudierten Stranges dadurch zu beheben, dass eine relativ niedrige Pressgeschwindigkeit in Kauf genommen wurde.
  • Aus der FR-A-980781 ist eine Kühleinrichtung für Leichtmetall-Strangpressen bekannt, bei der in einer der Matrize vorgelagerten sog. Vorkammer ein Kühlkanal angeordnet ist, welcher der Kontur der jeweiligen herzustellenden Profilform folgt. Bei dieser Anordnung wird der Bereich unmittelbar vor der Matrize und die Stirnseite der Matrize gekühlt. Bei unterschiedlichen Strangpressprofilen bedingt dies eine Anpassung der Kühlkanäle des Kühlringes. Für die zahlreichen auf Strangpressen herzustellenden unterschiedlichen Profilformen ergibt sich ein grosser Aufwand, da praktisch für jedes Strangpressprofil ein eigener Kühlring mit entsprechend der Profilform angepassten Kanälen hergestellt werden muss, welcher bei jedem Werkzeugwechsel mitgewechselt werden muss.
  • Bei den mehrheitlich verwendeten Mehrlochmatrizen steigt der Aufwand überproportional an. Zudem wird es erfahrungsgemäss sehr schwierig sein, für jeden Strang die genau gleiche Kühlwirkung zu erreichen, was für den Gleichlauf der austretenden Profile absolut notwendig ist.
  • Für die Herstellung von Hohlprofilen werden sogenannte Kammer-, Brücken- und Kreuzdorn-(=Spider) Werkzeuge eingesetzt. Für diese Werkzeugtypen ist die vorgeschlagene Lösung nicht einsetzbar.
  • In der Praxis werden die Matrizen bis an die Grenze ihrer Belastbarkeit beansprucht. Durch die ungleichförmige Kühlung entstehen in der Matrize zusätzlich überlagerte Spannungen thermischen Ursprunges, die in vielen Fällen zum Bruch oder mindestens zu einer reduzierten Lebensdauer der Werkzeuge führen.
  • Die EP-A-01210 256 bezieht sich auf ein Verfahren zum Stranggiessen bei dem das umzuformende Material vor der Matrize gekühlt wird. Zu diesem Zweck ist eine Platte mit einem gegen die Stirnseite der Matrize offenen Kühlkanal vorhanden.
  • Ausserdem ist es bekannt, die Matrize selbst zu kühlen, was aber die Herstellungskosten der Matrize stark erhöht und wegen der Rissgefährdung der Matrize die Kühlintensität beschränkt.
  • Ferner ist es bekannt eine stufenweise Reduktion des Querschnittes zwischen Pressbolzen und Strangprofil vorzusehen und die Zwischenstufen zu kühlen. Dies ergibt zusätzliche, kostspielige Aufwendungen für die Werkzeuge und eignet sich praktisch nur für einlochige Strangpresswerkzeuge.
  • Aus der US-A-3 112 828 ist eine innengekühlte Einloch-Strangpressmatrize bekannt, bei der die Matrize selbst mit bei einem die zentrale Matrizenöffnung umgebenden Kühlkanal versehen ist. Die Kühlung erfolgt erst in der Matrize selbst, also nach erfolgter Haupt-Umformung des Materials. Dabei muss in jede Matrize ein eigenes Kühlsystem eingearbeitet werden, was die Matrizenherstellung wesentlich verteuert. Auch führt die Innenkühlung zu einer Querschnittsbegrenzung und Schwächung der infolge des Temperaturgefälles im Matrizeninnern hoch beanspruchten Matrize.
  • Eine ähnliche Lösung für Mehrlochmatrizen zeigt die DE-A-2 240 391. Das Kühlsystem, dessen Form von der herzustellenden Profilform bestimmt wird, befindet sich hier in den Vormatrizen und in der Hauptmatrize. Auch hier besteht der Nachteil, dass das Kühlsystem in die Matrizen einzuarbeiten und der jeweiligen Strangpressprofilform anzupassen ist. Zudem wird die Matrize geschwächt und durch das Temperaturgefälle rissanfällig. Ausserdem bezweckt diese Kühlvorrichtung in erster Linie die Regelung der Austrittsgeschwindigkeit der einzelnen Stränge, um möglichst gleich lange Stränge zu erhalten.
  • Gemäss DE-C-2 211 645 wird am Ausgang der Matrize stirnseitig gekühlt. Diese Ausführungsart eignet sich vor allem für den Einsatz von Flüssigstickstoff als Kühlmedium, das in Gasform austritt und auf den Strang gerichtet ist. Die Form und Wirkung des Kühlsystems ist von der herzustellenden Profilform abhängig.
  • Aus der DE-C-429 376 ist es bekannt, eine mit dem Pressbolzenaufnehmer starr verbundene und in den Pressraum hineinragende Matrize ausserhalb des Pressraumes zu kühlen.
  • Die US-A-4 462 234 zeigt eine zweistufige Matrize die ausserhalb des Pressraumes gekühlt wird. Eine solche Kühleinrichtung eignet sich praktisch nur für Einlochmatrizen. Die Kühlvorrichtung ist zudem nicht unabhängig von der Matrize.
  • Die mit der Erfindung zu lösende Aufgabe besteht darin, bei einer Leichtmetall-Strangpresse eine wirksame Kühlvorrichtung zu schaffen, welche mit einfachen Mitteln herstellbar ist, von der Matrize und damit vom herzustellenden Strangpressprofilformen unabhängig ist und die Kühlung im Bereich der grössten Materialumformung wirksam ist.
  • Die erfindungsgemässe Vorrichtung mit der diese Aufgabe gelöst wird ist dadurch gekennzeichnet, dass der aus einem oder mehreren koaxialen Ringen bestehende von der Pressmatrize unabhängige Kühlring eine zur Aufnahmebohrung des Pressbolzens durchmessergleiche Bohrung hat und mehrere in der Ringfläche kranzartig verteilte, in Axialrichtung verlaufende, zur Bohrung des Pressbolzenaufnehmers radial distanzierte Axialbohrungspaare vorhanden sind, die an ihrem von der matrizenseitigen Mündung abgewandten Bereich durch je eine nach aussen verschlossene Radialbohrung verbunden sind und der Kühlring radial aussen von mindestens einem aufgeschrumpften Druckring umgeben ist, der mit dem Pressbolzenaufnehmer starr verbunden ist.
  • Dabei geht man von der Erkenntnis aus, dass bei der Umformung des Pressmaterials von einem grossen ursprünglichen Pressbolzdurchmesser auf einen wesentlichen geringeren Querschnitt der extrudierten Profile bei der Materialumformung infolge innerer Reibung zusätzliche Wärme entsteht, welche auf die Entstehung der "Warmrissigkeit" einen grossen Einfluss hat. Erfindungsgemäss wird diese Wärme im Bereich ihrer Entstehung abgeführt - nämlich direkt aus dem Pressraum, also vor der Matrize und nicht erst in der Matrize selbst oder hinter der Matrize. Es ist somit wirksamer die Kühlung möglichst an der Stelle vorzunehmen, bei der die grösste Materialumformung und damit auch die grösste Temperaturerhöhung stattfindet.
  • Die praktische Realisierung dieser Erkenntnis ergibt indessen Probleme, indem die durch die Kühlung auftretenden Temperaturunterschiede in den betroffenen Bauteilen eine Rissgefahr ergeben. Durch die Kühlring-Ausbildung und den aufgeschrumpften Druckring wird dieser Rissgefahr erfolgreich entgegengewirkt. Ausserdem bewirkt der kranzartige Aufbau des Kühlsystemes eine weitgehend symmetrische Kühlung. Zudem lassen sich die Kühlkanäle durch geradlinige Bohrungen relativ einfach erzeugen - also unter Vermeidung gewundener Kühlkanalformen.
  • Da die Kühlvorrichtung ein von der Matrize unabhängiges Bauteil ist, sind an den auswechselbaren Matrizen selbst keine zusätzlichen Kühlkanäle oder sonstige Aenderungen vorzusehen, was deren Herstellung vereinfacht und die Weiterverwendung bestehender Matrizen erlaubt. Der Kühlring muss somit bei unterschiedlichen Profilformen nicht gewechselt werden. Zudem wird die hochbeanspruchte Matrize nicht durch Temperatursprünge belastet. Der grösstmögliche Strangpressdurchmesser wird durch die Kühlvorrichtung nicht beeinträchtigt. Zudem kann die gleiche Kühlvorrichtung für unterschiedliche Profilarten, wie Voll- oder Hohlprofile, Ein- oder Mehrlochmatrizen und bei Rohren mit gekühltem oder ungekühltem Dorn verwendet werden. Die Gestaltung der Kühlorgane um das matrizenseitige Ende der Pressbolzenaufnehmerbohrung herum erlaubt es, das Kühlmedium nahe an das zu kühlende Pressgut in der Umformzone heranzubringen und damit eine rasch reagierende und wirkungsvolle Kühlung dieser Umformzone zu erreichen. Durch die Abführung der Reibungs- und Umformwärme direkt aus der Umformzone kann mit einer höheren Eingangs-Temperatur des Pressbolzens gearbeitet werden.
  • In der Zeichnung sind zwei Ausführungsbeispiele der erfindungsgemäss Vorrichtung dargestgellt, die nachfolgend näher beschrieben werden. Es zeigt:
  • Fig. 1
    einen Längsschnitt durch eine Strangpresse für Leichtmetalle im Bereich der Umformzone mit Kühlvorrichtung
    Fig. 2
    einen Schnitt durch die nach der Matrize austretenden Profilstränge nach der Linie II-II in Fig.1.
    Fig. 3
    einen Längsschnitt durch eine Ausführungsvariante.
  • Das Pressgut in Form eines Leichtmetall-Bolzens wird in erwärmtem, jedoch nicht flüssigem Zustand in die Bohrung 9 eines Pressbolzenaufnehmers 2 einer Strangpresse eingesetzt. Eine Pressmatrize 3 enthält Einfach- oder Mehrfachdurchbrüche 4, entsprechend der Querschnittform von in einem einstufigen Arbeitsgang herzustellenden Strangpressprofilen 5. Im Knet- und Umformbereich des Pressgutes 1 unmittelbar vor der Pressmatrize 3 ist eine Kühlvorrichtung in Form eines einstückigen Kühlringes 12 angeordnet, in welchem ein Kühlmedium geschlossen zirkuliert. Unter "geschlossen zirkuliert" soll verstanden werden, dass das Kühlmedium nicht mit dem Kühlgut in Berührung kommt, sondern über eine Zuleitung zugeführt und über eine Rückleitung vom Kühlring weggeführt wird. Dieser Kühlring 12 sitzt koaxial auf einem aus einem Stück bestehenden inneren Ring 8. Die zylindrische Bohrung 10 dieses inneren Ringes 8 ist die axiale durchmessergleiche Fortsetzung der Pressbolzenaufnehmer-Bohrung 9 und entspricht somit dem Durchmesser des Stempels 13. Im Kühlring 12 befinden sich über die ganzen Ringfläche kranzartig und gleichmässig verteilt mehrere, in Axialrichtung verlaufende Bohrungspaare 14, 15, deren gegenseitiger Abstand auf ihrem innern Teilkreis 15-50 mm beträgt, in Abhängigkeit des Durchmessers der Bohrung 9. Jedes Bohrungspaar 14, 15 ist im Innern des Kühlringes 12, nahe an seinem von der Pressmatrize abgewandten Ende je durch eine Radialbohrung 16 durchflussverbunden. Diese Radialbohrungen 16 sind an ihren äusseren Enden je durch einen Pfropfen 17 verschlossen. Somit ergibt sich für das Kühlmedium im Innern des Kühlringes 12 eine Zirkulation, wobei das Kühlmedium mit dem Pressgut 1 nicht direkt in Berührung gelangt. An der der Matrize 3 benachbarten Stirnfläche 6 des Kühlringes 12 stehen die Bohrungspaare 14, 15 je mit einer Zuleitung bzw. Rücklaufleitung in Verbindung, welche sich je in einem ringförmigen Gehäuse 18 befinden. Im ringförmigen Gehäuse befinden sich auf der Stirnseite 6 des Kühlringes 12 zwei konzentrisch verlaufende Ringkammern 27, 28 mit unterschiedlichem Durchmesser, wobei in die eine alle Mündungen der Bohrungen 14, die radial aussen liegen und in die andere alle Mündungen der Bohrungen 15, die radial weiter innen liegen, einmünden. Zum Anschluss von Rohr- oder Schlauchleitungen sind im ringförmigen Gehäuse 18 Anschlussnippel 29 vorhanden. In der Zu- oder Rücklaufleitung 26 wird vorzugsweise ein regelbares Drosselventil V eingebaut, mit welchem der Durchfluss und damit die Kühlleistung ständig den Erfordernissen angepasst werden kann, damit die Temperatur des Pressgutes 1 in der Umformzone auf ihrem optimalen Temperaturniveau gehalten werden kann, beispielsweise unter Verwendung eines Temperaturfühlers. Falls bei bestehenden Pressen aus Platzgründen die bevorzugte Anordnung der Zufuhr und Abfuhr des Kühlmediums am matrizenseitigen Ende des Kühlringes nicht möglich ist, können die Leitungen zur Zufuhr und Abfuhr des Kühlmediums auch pressbolzenaufnehmerseitig als Radialbohrungen ausgeführt werden.
  • Das Kühlmedium kann Wasser sein, doch können auch andere Flüssigkeiten, Dämpfe oder Gase verwendet werden.
  • Die Matrize liegt stirnseitig gegen den Kühlring 12 und den inneren Ring 8 an. Die axiale Länge des Kühlringes 12 beträgt vorzugsweise das 0,25-2 fache des Durchmessers der Pressbolzenbohrung 9. Ferner beträgt die Wandstärke des Ringes 8 weniger als die Hälfte der Wandstärke des Kühlringes 12. Um eine rasch reagierende Kühlwirkung zu erhalten, beträgt die Wandstärke des Ringes 8 vorzugsweise weniger als 1/4 des Durchmessers der Pressbolzenbohrung 9. Die radial innersten, etwa horizontalen Achsen der Kühlbohrungen 15 sind auf einem Kranz angeordnet, dessen Durchmesser kleiner als das 1 1/2 fache, vorzugsweise kleiner als das 1 1/4 fache des Durchmessers der Pressbolzenaufnehmerbohrung 9 ist.
  • Ein radial äusserer aufgeschrumpfter Druckring 20 umgibt den Kühlring 12 aussen. Er ist mit Schrauben 24 an der Stirnfläche 32 des Pressbolzenaufnehmers 2 festgemacht. Aus Festigkeitsgründen können auch mehrere koaxial übereinanderliegende Druckringe 20 vorgesehen werden, die aufeinander aufgeschrumpft werden. Auch der Kühlring 12 ist auf den inneren Ring 8 aufgeschrumpft. Zur Uebertragung axialer Kräfte ist der innere Ring 8 sowie der Kühlring 12 und der Druckring 20 je mit Ringschultern 11 bzw. 22 versehen. An Stelle von Ringschultern könnten die Ringe 8, 12, 20 an ihren ineinandergreifenden Partien auch konisch ausgebildet sein.
  • In Fig. 3 ist eine Ausführungsvariante dargestellt, bei welcher der Kühlring 12ʹ unter Weglassung des inneren Ringes 8 direkt als durchmessergleiche koaxiale Begrenzung der matrizennahen Pressbolzenbohrung 9 ausgebildet ist. Mindestens ein Druckring 20 ist in koaxialer Anordnung auf dem Kühring 12ʹ aufgeschrumpft. Im übrigen entsprechen gleiche Bezugszahlen gleichen Teilen und gleichen Funktionen wie im Ausführungsbeispiel nach den Fig. 1 und 2.
  • Es ist auch möglich, dass der innere Ring 8 und/oder der Kühlring 12, 12ʹ auf einem Teil seiner Länge im matrizenseitigen Bereich konisch ausgebildet wird, wobei jedoch das eingangsseitige Ende der Bohrung 10 durchmessergleich mit der Pressbolzenbohrung 9 ist.
  • Somit kann die Umform- und Reibungswärme direkt aus der Hauptumformzone vor der Pressmatrize 3 durch Kühlung abgeleitet werden um die Temperatur des Pressgutes 1 auf einem optimalen Niveau zu halten. Dadurch ist eine sprunghafte Erhöhung der Pressgeschwindigkeit möglich.
  • Nachfolgend werden typische Beispiele erzielter Resultate aufgeführt. Die Definition der Leichtmetall-Legierung ASTM ist enthalten in folgenden Normen:
    • American Society for Testing and Materials Philadelphia (ASTM),
    • Aluminium Association Washington DC 20006.
      Figure imgb0001

Claims (5)

  1. Vorrichtung zum Kühlen einer Leichtmetall-Strangpresse, wobei im Umformzonenbereich in Bewegungsrichtung vor der Pressmatrize (3) mindestens ein Kühlring (8,12,12') vorhanden ist, in welchem ein Kühlmittel zum Abführen der Umformwärme geschlossen zirkuliert, wobei mit dem Kühlring Leitungen (26,28) für die Zufuhr und Abfuhr des Kühlmittels verbunden sind, dadurch gekennzeichnet, dass der aus einem oder mehreren koaxialen Ringen bestehende,von der Pressmatrize (3) unabhängige Kühlring (8,12,12') eine zur Aufnahmebohrung (9) des Pressbolzens (13) durchmessergleiche Bohrung (10) hat und mehrere in der Ringfläche kranzartig verteilte, in Axialrichtung verlaufende, zur Bohrung (9) des Pressbolzenaufnehmers radial distanzierte Axialbohrungspaare (14,15) vorhanden sind, die an ihrem von der matrizenseitigen Mündung abgewandten Bereich durch je eine nach aussen verschlossene Radialbohrung (16) verbunden sind und der Kühlring radial aussen von mindestens einem aufgeschrumpften Druckring (20) umgeben ist, der mit dem Pressbolzenaufnehmer (2) starr verbunden ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass je die radial innersten Kühlkanäle (15) im Kühlring (12,12') auf einem Kranz angeordnet sind, dessen Durchmesser kleiner als das 1 1/2 fache, vorzugsweise kleiner als das 1 1/4 fache des Durchmessers der zylindrischen Pressbolzenaufnehmerbohrung (9) ist.
  3. Vorrichtung nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass die Zufuhr und die Abfuhr des Kühlmediums durch zwei konzentrische Ringleitungen (27,28) am matrizenseitigen Ende des Kühlringes erfolgt, in welche die Bohrungen (14,15) einmünden.
  4. Vorrichtung nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass in der Zufuhr- oder Rückleitung (26,28) des Kühlmediums ein regelbares Drosselventil (V) angeordnet ist.
  5. Vorrichtung nach einem der Ansprüche 1-4, dadurch gekennzeichnet, dass die axiale Länge des Kühlringes (12,12') kürzer als der doppelte Durchmesser der zylindrischen Pressbolzenbohrung (9) ist.
EP88810090A 1987-03-02 1988-02-15 Vorrichtung zum Kühlen einer Leichtmetall-Strangpresse Expired - Lifetime EP0281515B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88810090T ATE92799T1 (de) 1987-03-02 1988-02-15 Vorrichtung zum kuehlen einer leichtmetallstrangpresse.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH78487 1987-03-02
CH784/87 1987-03-02

Publications (3)

Publication Number Publication Date
EP0281515A2 EP0281515A2 (de) 1988-09-07
EP0281515A3 EP0281515A3 (en) 1990-08-29
EP0281515B1 true EP0281515B1 (de) 1993-08-11

Family

ID=4195107

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88810090A Expired - Lifetime EP0281515B1 (de) 1987-03-02 1988-02-15 Vorrichtung zum Kühlen einer Leichtmetall-Strangpresse

Country Status (7)

Country Link
US (1) US4829802A (de)
EP (1) EP0281515B1 (de)
JP (1) JPS63230221A (de)
AT (1) ATE92799T1 (de)
CA (1) CA1317910C (de)
DE (1) DE3883027D1 (de)
NO (1) NO167264C (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2735171B2 (ja) * 1993-12-27 1998-04-02 本田技研工業株式会社 軽合金の押出し加工方法
JPH07284841A (ja) * 1994-04-12 1995-10-31 Yano Eng:Kk 押出用ホローダイス及びコンフォーム押出装置
US5894751A (en) * 1997-03-11 1999-04-20 Bourgoine; Jeffrey J. Shroud canister
NO316161B1 (no) 1998-11-23 2003-12-22 Norsk Hydro As Anordning ved kjöleutstyr for kjöling av pressbolt
US6349688B1 (en) 2000-02-18 2002-02-26 Briggs & Stratton Corporation Direct lever overhead valve system
KR100366856B1 (ko) * 2000-12-06 2003-01-09 표문기 열전도 냉각형 슬리브
US6598451B2 (en) 2001-11-02 2003-07-29 Sequa Can Machinery, Inc. Internally cooled tool pack
US20040069036A1 (en) * 2002-10-09 2004-04-15 Klil Industries Ltd. Extruder and method of extrusion
SE529456C2 (sv) * 2005-11-21 2007-08-14 Iut Ind Ugnsteknik Ab Förfarande vid temperaturbehandling av strängpressningsverktyg
CA2895577C (en) 2012-12-21 2019-08-06 Exco Technologies Limited Extrusion press container and mantle for same
CN103143586B (zh) * 2013-03-06 2015-07-15 佛山市三水凤铝铝业有限公司 一种铝型材挤压模具的液氮冷却方法及装置
CN103817166B (zh) * 2014-02-28 2016-08-24 金川集团股份有限公司 一种水冷挤压模套及其制作方法
CN106694595B (zh) * 2017-01-24 2018-06-19 四川阳光坚端铝业有限公司 一种铝型材等温挤压系统及其挤压方法
CN108480413B (zh) * 2018-05-16 2019-11-29 河南大润新材料有限公司 一种铝型材挤压成型模具冷却机构
CN111235500B (zh) * 2020-02-28 2024-08-09 株洲中车天力锻业有限公司 一种铝合金环去应力装置
CN112642874A (zh) * 2020-12-04 2021-04-13 马鞍山市华冶铝业有限责任公司 一种加热式工业铝型材挤出模具

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE429376C (de) * 1922-10-14 1926-05-25 Siemens & Halske Akt Ges Verfahren zum Strangpressen von Metallen und Legierungen
US2135193A (en) * 1935-04-12 1938-11-01 Aluminum Co Of America Extrusion
FR980781A (fr) * 1943-03-03 1951-05-17 Duralumin Soc Du Perfectionnement au filage à chaud des métaux
US3042195A (en) * 1957-12-18 1962-07-03 Hydraulik Gmbh Receiver for metal extrusion presses and like power-driven machines
US3112828A (en) * 1959-02-09 1963-12-03 Fred L Hill Extrusion dies
US3364707A (en) * 1965-02-16 1968-01-23 Dow Chemical Co Extrusion forming member and method
US3369385A (en) * 1965-07-07 1968-02-20 Reynolds Metals Co Metal extrusion apparatus
US3360975A (en) * 1965-12-16 1968-01-02 Babcock & Wilcox Co Water cooled container for hot working metal
CH540076A (de) * 1971-03-18 1973-08-15 Alusuisse Verfahren und Vorrichtung zum Strangpressen von Werkstücken insbesondere aus Aluminiumlegierungen
JPS5319160A (en) * 1976-08-06 1978-02-22 Hitachi Metals Ltd Internal cooling container
US4462234A (en) * 1980-06-19 1984-07-31 Battelle Development Corporation Rapid extrusion of hot-short-sensitive alloys
JPS5731408A (en) * 1980-06-19 1982-02-19 Battelle Development Corp Double extruding die and its extruding method
DE3527864A1 (de) * 1985-08-02 1987-02-05 Linde Ag Verfahren zum strangpressen bzw. strangziehen

Also Published As

Publication number Publication date
NO167264C (no) 1991-10-23
JPH0436765B2 (de) 1992-06-17
EP0281515A3 (en) 1990-08-29
NO880898D0 (no) 1988-03-01
CA1317910C (en) 1993-05-18
NO167264B (no) 1991-07-15
NO880898L (no) 1988-09-05
US4829802A (en) 1989-05-16
JPS63230221A (ja) 1988-09-26
ATE92799T1 (de) 1993-08-15
DE3883027D1 (de) 1993-09-16
EP0281515A2 (de) 1988-09-07

Similar Documents

Publication Publication Date Title
EP0281515B1 (de) Vorrichtung zum Kühlen einer Leichtmetall-Strangpresse
DE3701657A1 (de) Verbesserungen beim warmschmieden von teilen aus metallpulver mit kleiner innerer bohrung
DE1554979B1 (de) Querspritzkopf fuer eine Strangpresse zum gleichzeitigen Aufbringen von zwei verschiedenen Kunststoffschichten um einen Kern
DE2211645B2 (de) Vorrichtung zum kuehlen der matrize einer strangpresse
EP1264646A1 (de) Vorrichtung und Verfahren zur Herstellung eines Metallprofilstranges
DE69124681T2 (de) Horizontale Stranggiessvorrichtung mit verstellbarer Kokille
CH617610A5 (en) Horizontal continuous casting machine for metals
DE1527776A1 (de) Werkzeug fuer Strangpressen
DE2821752A1 (de) Verfahren zur herstellung von gekuehlten ventilen fuer brennkraftmaschinen und so erzielte ventile
WO2017152904A2 (de) GIEßKAMMER EINER KALTKAMMER-DRUCKGIEßMASCHINE MIT EINER KÜHLVORRICHTUNG SOWIE KÜHLVORRICHTUNG
DE2733009B1 (de) Verfahren und Anordnung zum Strangpressen eines granulierten,vorzugsweise pulvermetallurgischen Werkstoffes
EP1635973B1 (de) Kolben für eine kaltkammer-druckgiessmaschine
DE4242395B4 (de) Verfahren und Vorrichtung zum Strangpressen
DE3247977A1 (de) Verfahren und vorrichtung zum strangpressen eines hohlprofils
DE102015008578B4 (de) Heißkanaldüse
EP1673481B1 (de) Industrieofen und zugehöriges düsenelement
DE102006046641A1 (de) Dekompressions-Angußbuchse und Dekompressions-Maschinendüse
DE4313802A1 (de) Verfahren zum herstellen eines am einen ende geschlossenen doppelrohres
WO2021163740A1 (de) Verfahren zur herstellung eines metallischen bauteiles und vorrichtung hierzu
DE19938075A1 (de) Preßkolben und Verfahren zum Schmieren eines Preßkolbens
DE3427707A1 (de) Innengekuehlte rolle
DE3428657A1 (de) Verfahren zur herstellung einer metallprobe fuer einen nachfolgenden zug-, kriech- oder relaxationsversuch und vorrichtung zur durchfuehrung des verfahrens
DE4340134A1 (de) Metallkörper sowie Verfahren zu dessen Herstellung
DE868736C (de) Aufnehmer fuer Strangpressen
EP0733420A1 (de) Modular aufgebaute Stranggiesskokille

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890703

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19920218

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19930811

Ref country code: NL

Effective date: 19930811

Ref country code: SE

Effective date: 19930811

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930811

Ref country code: FR

Effective date: 19930811

Ref country code: GB

Effective date: 19930811

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930811

Ref country code: BE

Effective date: 19930811

REF Corresponds to:

Ref document number: 92799

Country of ref document: AT

Date of ref document: 19930815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3883027

Country of ref document: DE

Date of ref document: 19930916

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940215

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19930811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940228

Ref country code: LI

Effective date: 19940228

Ref country code: CH

Effective date: 19940228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941101