EP0265725B1 - Echangeur de chaleur - Google Patents

Echangeur de chaleur Download PDF

Info

Publication number
EP0265725B1
EP0265725B1 EP87114628A EP87114628A EP0265725B1 EP 0265725 B1 EP0265725 B1 EP 0265725B1 EP 87114628 A EP87114628 A EP 87114628A EP 87114628 A EP87114628 A EP 87114628A EP 0265725 B1 EP0265725 B1 EP 0265725B1
Authority
EP
European Patent Office
Prior art keywords
profile
tube
heat exchanger
elements
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87114628A
Other languages
German (de)
English (en)
Other versions
EP0265725A1 (fr
Inventor
Klaus Hagemeister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines GmbH
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP0265725A1 publication Critical patent/EP0265725A1/fr
Application granted granted Critical
Publication of EP0265725B1 publication Critical patent/EP0265725B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/454Heat exchange having side-by-side conduits structure or conduit section
    • Y10S165/471Plural parallel conduits joined by manifold
    • Y10S165/472U-shaped conduits connected to side-by-side manifolds

Definitions

  • the invention relates to a heat exchanger according to the preamble of patent claim 1.
  • heat exchangers are manufactured with central collecting containers or tubes in such a way that the lancet-shaped matrix profile tubes are inserted into a wall in the opening of the collecting container or tube and then connected cohesively, for example by soldering are so that a fluidic passage from the collecting container to the interior of the profile tubes is created.
  • through openings in the collecting container wall can be formed by drilling or eroding before threading the profile tubes, which is a complex perforation procedure.
  • the individual assembly of the profile tubes, in particular the threading is comparatively cumbersome, and this is because there is a tight play (movable fit) between the profile tube and the through opening in the wall. Tight tolerances of the hole and profile tube must be observed with regard to perfect soldering or another connection.
  • a heat exchanger concept known from DE-A 3 242 842 provides that blocks are attached to the matrix profile tubes in the area of at least one profile tube end, which end the profile tube end enclose that the matrix profile tubes are arranged close together in the area of their blocks, so that the blocks form a wall of the collecting container or pipe, and that the connection points of the blocks are sealed fluid-tight.
  • the blocks are to be applied to the profile tube ends by metal sintering, powdered sintered material being arranged in a shape approximating the desired contour of the block around the respective connection-side profile tube end and sintered gas-tight.
  • the outer contact surfaces of the blocks can be machined with dimensional accuracy before the matrix profile tubes are arranged. Cold forging, embossing or profile grinding can also be considered as machining processes.
  • the profile tube base geometries can be essentially rhombic or hexagonal or honeycomb-shaped.
  • the present known case enforces a comparatively complicated and high-precision profile tube foot production. Furthermore, the entire matrix connection area (heat exchanger base) must also be assembled in a relatively complicated manner from a relatively large number of blocks which are extremely precisely matched to one another. Such a type of heat exchanger base or container structure assembled from very small particles has disadvantages with regard to the required container or base structure strength.
  • the matrix profile tubes with their ends containing an elongated oval profile cross section, are to be firmly integrated in a fluid-tight manner between, if appropriate, annular container wall elements joined in layers; in other words, the wall elements in the region of their mutual joining surfaces each have semi-elliptically pre-shaped mutual cutouts for the elongated oval ends of the matrix profile tube.
  • This known concept also requires extremely precise machining of the wall elements in question; Despite the most precise machining, there is practically no bridging of differences in shape and manufacturing tolerance, particularly in the areas of the front and rear profile ends on the connection side; locally different profile tube crushes can result, e.g.
  • matrix profile tube fields and thus correspondingly assigned fields of the oval or elliptical recesses are formed between the wall elements: this in the sense that the matrix profile tubes in question essentially spatially at uniform mutual distances within the framework of an optimal hot gas flow and while ensuring the necessary hot gas blocking interlocking.
  • a heat exchanger operating according to the countercurrent principle in which the outer ends of tubes of a heat exchanger matrix arranged in parallel next to one another are arranged in a uniformly rectangular, flattened form, and immediately following one another, between adjacent profile strips; Such a combination of strips and flattened tube ends of the matrix is intended to form the local floor structure at a correspondingly adapted frame-like opening in the heat exchanger housing.
  • the pipe end assembly is pieced together locally and is unstable in strength (soft) without an operationally stable individual to ensure pipe bracket.
  • Instructions for achieving a comparatively large number of profile tubes that can be accommodated per floor volume (large matrix volume) and at the same time operationally stable and fluid-tight individual tube anchoring on collecting or distribution tubes composed of elements cannot be found in the known case.
  • the invention has for its object to provide a heat exchanger according to the preamble of claim 1, in which a collector or manifold base can be created with relatively little effort, which creates perfect conditions for a fluid-tightly fixed matrix profile connection with optimal strength.
  • the respective profile tubes of the matrix can be shaped into a square or rectangular shape on the foot side before insertion or insertion into the relevant floor structure of a distributor or collector tube; this can e.g. done rationally on rotary hammers, whereby inner mandrels can be used depending on the degree of forming.
  • the components can be "interlocked” with one another during assembly and fixed in a predetermined position; Rectangular or square openings, also referred to as “pockets”, can be provided between the wall elements forming the relevant collecting pipe or distributor pipe or the heat exchanger base in order to integrate the relevant foot ends of the profiled pipes therein positively and firmly.
  • the invention is based on a heat exchanger according to FIG. 1, which, as two compressed air ducts arranged essentially parallel to one another, here has two, for example, separate header and distributor pipes 1, 2. According to the darkened contour, the collecting and distribution pipes 1, 2 are closed at the respective rear ends.
  • the profile tube matrix 3 projecting laterally from the two compressed air ducts 1, 2 transversely against the hot gas flow H consists of initially straight, parallel profile tube strands 4, 5 which merge into a common arcuate deflection section 6.
  • compressed air to be heated is fed into the upper collecting pipe 1 (D 0, then flows through the straight section 4 (D @), whereupon it is deflected via the deflection section 6 (D #) and then flows through the straight section 5 in the opposite direction of flow (D $ ), from which it flows through the lower manifold 2 in the heated state (D % ) in order to be supplied to a suitable consumer, for example the combustion chamber of a gas turbine engine.
  • a suitable consumer for example the combustion chamber of a gas turbine engine.
  • the invention would also be practical in a heat exchanger in which the aforementioned compressed air ducts (collecting and distribution pipe) are not arranged separately, but are integrated in a common collecting and distribution pipe, from which the pipe matrix projects on both sides in a U-shape.
  • FIG. 2 initially embodies the conventional arrangement of a profile tube field recorded here in a greatly enlarged manner, for example as a section of the straight-leg profile tube strands 4 according to FIG. 1.
  • the respective matrix profile tubes of three rows of profile tubes extending in the longitudinal direction of the tube guide - in sequence, from top to bottom - labeled 4 1 , 4 2 and 4 3 .
  • the matrix profile tubes 4 1 , 4 2 , 4s are arranged at equal distances from one another in the longitudinal and transverse pipe guide directions; out
  • Fig. 2 can also be seen that the profile tubes, for example 4 2 , engage with their hot gas upstream and downstream ends in the end-side spaces left between adjacent other profile tubes, for example 4 1 , 4 3 .
  • the arrangement of the profiled tube array according to FIG. 2 could, for example, also be defined by division planes M inclined at the same inclination angles with respect to the relevant large ellipse axes A of the profiled tubes, which are passed through profile centers designated M1, M2 and M3.
  • the profiled tubes 4 1 , 4 2 and 4 3 in FIG. 2 are set at a right angle R with respect to a central collecting or distribution tube cross plane E, the angle of incidence ⁇ of the parting planes M to plane E being determined from the angle difference Ra calculated.
  • the matrix profile tubes 4 1 , 4 2 and 4 3 have an elliptical or elongated oval, aerodynamically optimized profile cross section, wherein each profile tube has two compressed air, for example D2 (FIG 1) has leading inner channels 8, 9.
  • each profile tube e.g. 41, be equipped with a right-angled profile symmetrically assigned foot end 10; the profile tube foot end 10 in question, however, still lies with its longitudinal center plane in the plane of the large ellipse axis A (FIG. 2).
  • FIG. 3 already embodies an advantageous partial aspect of the invention, according to which two elements 11, 12 of the header or distributor pipe 1 or 2 (FIG. 1) forming the matrix connection area (FIG. 1) between the in each case include mutual connecting and joining surfaces 13, 14, which here extend in the center of the profiled tube foot, and which have a rectangular shape adapted to accommodate and enclose the relevant foot end 10.
  • FIGS. 3 and 4 it can also be seen that the section of the profile tube, for example 4 1 , around which hot gas flows (H - FIG. 1) projects over the associated foot end 10 with the profile end edge on the upstream and downstream sides; Foot end 10 and associated profile tube, for example 4 1 , each form a fluidically communicating, self-contained structural unit, the excess length of the profile being illustrated in FIG. 3 by dashed contours.
  • relatively large foot or recess distances along the common joining surfaces 13, 14 must also be maintained, in the case of a profile formation and arrangement in the sense of FIG. 2, and the number of elements used being relatively large.
  • two elements 21, 22 are each formed such that they enclose the rectangular foot ends 10 of the respective profile tubes, for example 4 1, tightly like pliers along the mutual joining surfaces lying in the inclined parting planes M with the corresponding rectangular recesses;
  • the elements 21, 22 are smooth-walled along the outer joining surfaces, for example 23, 24, which run parallel to the division planes M.
  • two elements 21, 22 can each form independent assembly units which can be equipped with the associated foot ends 10 and the associated profiled tubes, for example 4 1 - FIG.
  • FIG. 6 There are additional element divisions in FIG. 6 compared to FIG. 5, but in FIG. 6 there are uninterrupted joining surfaces, for example 23, 24 see what in turn benefits the manufacturing process.
  • the necessary steps for assigning, merging and joining parts as well as the subsequent quality control can be carried out largely automated;
  • an element is created from which the complete heat exchanger base or heat exchanger can be assembled by adding the required number of identical elements, the joints of the completely pre-assembled modules lying on planar surfaces and their edges simple shapes, e.g. Represent circles or ellipses.
  • the integral joining of the elements can be flat, e.g. by soldering or - along the mutual element edges - by laser - or EB welding.
  • lip-like projections 25, 26 of the elements provide the mutual joining surfaces, and preferably in the foot-side region of these elements; Above the lip-like projections 25, 26, upwardly open joints 27 can remain between the elements 21, 22. The welding can then take place along the lip-like projections 25, 26; the projections 25, 26 can be worked off later for possible repair purposes in order to be able to loosen the bandage at this point.
  • Fig. 8 shows a modification of Fig. 7 in such a way that two adjacent elements 21, 22 are joined together and centered by means of webs 28 which engage under one another on the inside of the manifold or distributor pipe.
  • a further embodiment of the invention (Fig. 9) is characterized in that an element 29 is formed along both-sided joining surfaces 30, 31 with outwardly open rectangular recesses 32 for the respective foot ends 10 of the profile tubes 41, 42, 43 (Fig. 2) is, each of which an open foot end side is covered by strip-shaped connecting elements 33, 34, along the joining surfaces on both ends, whereby the element 29, the connecting elements 33, 34 and the foot ends 10 together with associated profile tubes can each form an independent assembly unit.
  • Each assembly unit can then be joined with a relevant assembly unit in a material-homogeneous manner.
  • a suitable soldering, welding or diffusion connection method can be selected for the mutual connection of the respectively pre-assembled assembly units as well as for the individual component connection of each independent assembly unit.
  • the spaces marked Z in Fig. 9 can be replaced by additional material during soldering or e.g. be closed by one-sided sealing welding.
  • FIG. 10 differs mainly from FIG. 4 in that the foot end 10 ′ in question is made narrower and longer; otherwise the same geometric aspects and nomenclatures apply as in FIG. 4.
  • the invention can also be used advantageously in a profile tube matrix through which hot gas flows obliquely; this would e.g. mean that with a substantially concentric angular rotation, a, according to Fig. 10, the foot ends 10 'of the profile tubes, e.g. 4 could in each case be arranged longitudinally in divisional planes (formerly M), which, for example, are positioned at a right angle (formerly ⁇ ) to the longitudinal or central plane of the collecting pipe or distributor pipe E; the profile tubes, e.g. 4; could then lie with their respective large elliptical axes A in inclined planes, the angle of inclination of which to the central or collecting tube longitudinal center plane E results from the angle of inclination angle a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Claims (9)

1. Echangeur thermique avec une matrice tubulaire (3) qui est constituée par des tubes profilés (4 4@) intercalés les uns dans les autres et qui comportent une section elliptique de dimensions identiques, ces tubes étant balayés par une circulation de gaz chauds (H) transversalement ainsi qu'en direction de l'extension du profil prédéfini par le grand axe d'ellipse (A), et étant parcourus par de l'air comprimé, tandis que pour amener l'air comprimé dans la matrice (3), ou bien par l'évacuer de cette matrice (3), ces tubes sont raccordés à au moins un tube collecteur et un tube répartiteur d'air comprimé (1, 2) qui, pour permettre le raccordement des tubes, sont constitués d'éléments (19, 20; 29, 34) disposés en couches et joints les uns aux autres de façon étanche aux fluides, les tubes profilés (41, 4@) étant intégrés et bloqués, côté extrémité de façon étanche aux gaz entre ces éléments, échangeur thermique caractérisé en ce que:
- les éléments (19, 20; 29, 34) lorsqu'ils sont joints les uns aux autres, forment des ouvertures rectangulaires ou carrées, dans lesquelles les extrémités de pieds (10, 10'), déformées de façon correspondante à ces ouvertures, des tubes profilés (41 4@ ....) sont intégrés et bloqués de façon étanche aux fluides,
- les extrémités de pieds (10, 10') des tubes profilés (
Figure imgb0002
4@ ...) sont disposées selon leurs axes longitudinaux dans des plans de division (M) respectivement obliques parallèles aux surfaces de jonction (17, 18; 30, 31) des éléments (19, 20; 29, 34), et ces extrémités de pieds sont déformées par torsion concentrique de respectivement un même angle d'inclinaison (a) par rapport au grand axe d'ellipse (A) de la section transversale elliptique d'un tube profilé correspondant (4 D.
2. Echangeur thermique selon la revendication 1, caractérisé en ce que chaque tube profilé (41 4@, 4#) fait saillie sur l'extrémité de pied correspondant (10) essentiellement par un bord terminal du profil en amont et en aval.
3. Echangeur thermique selon la revendication 1 ou la revendication 2, dans lequel plusieurs rangées de tubes profilés (
Figure imgb0003
4@, 4#) sont disposées avec des intervalles réciproques uniformes, et sous le même angle respectif d'inclinaison du profil (R) de leur grand axe d'ellipse respectif (A) par rapport au plan médian transversal (E) du tube collecteur ou répartiteur, échangeur thermique caractérisé en ce que l'angle d'inclinaison (a) entre les extrémités de pieds respectives (10) et les grands axes d'ellipse (A) des tubes profilés correspondants (4 4@, 4#) définit simultanément l'angle de positionnement (g) différent de l'angle d'inclinaison du profil (R) d'un plan de division (M) ainsi que l'angle de positionnement (p) identique au précédent des plans des surfaces de jonction des éléments antagonistes, par rapport au plan médian transversal (E) du tube collecteur ou du tube répartiteur.
4. Echangeur thermique selon la revendication 2 ou la revendication 3, caractérisé en ce que les extrémités de pieds (10) sont déformées par torsion de l'angle (a) de façon qu'un plan médian du tube profilé correspondant (4; 4@, 4#) coïncidant avec le tracé du grand axe d'ellipse respectif (A), coupe essentiellement les extrémités de pieds correspondantes (10) diagonalement.
5. Echangeur thermique selon une ou plusieurs des revendications 1 à 4, caractérisé en ce que, respectivement deux éléments (21, 22) sont préalablement profilés en ménageant le long des surfaces de jonction antagonistes internes, des ouvertures rectangulaires ou carrées pour les extrémités de pieds (10), tandis qu'ils sont par contre, à paroi lisse le long des surfaces extérieures terminales ou bien de jonction (23, 24).
6. Echangeur thermique selon la revendication 5, caractérisé en ce que, entre les surfaces terminales externes de deux éléments (21, 22) voisins, sont ménagés des joints (27) ouverts vers le haut, tandis que des saillies en forme de lèvres (25, 26) des éléments constituent les surfaces de jonction.
7. Echangeur thermique selon la revendication 5 ou la revendication 6, caractérisé en ce que deux éléments voisins (21, 22) sont joints et centrés l'un contre l'autre au moyen de nervures (28) venant en prise l'une dans l'autre du côté interne du tube collecteur ou répartiteur.
8. Echangeur thermique selon une ou plusieurs des revendications 1 à 4, ainsi que 6 et 7, caractérisé en ce que, respectivement un élément (29) est réalisé le long des surfaces de jonction des deux côtés (30, 31) des évidements rectangulaires ou carrés (32) ouverts vers l'extérieur pour recevoir les extrémités de pieds (10) des deux profilés concernés, extrémités dont respectivement un côté ouvert est recouvert par des éléments d'assemblage en forme de barrettes (33, 34) le long des surfaces de jonction des deux côtés (30, 31), auquel cas l'élément (29), les éléments d'assemblage (33, 34), ainsi que les extrémités de pied (10) et en outre, les tubes profilés correspondants (
Figure imgb0004
4@, 4#) constituent respectivement une unité de montage autonome.
9. Echangeur thermique selon une ou plusieurs des revendications 2 à 7, caractérisé en ce que respectivement deux éléments (21, 22) et, en outre, les extrémités de pieds (10), ancrées dans ces éléments, des tubes profilés (
Figure imgb0005
4@, 4#) constituent une unité de montage autonome.
EP87114628A 1986-10-29 1987-10-07 Echangeur de chaleur Expired - Lifetime EP0265725B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3636762 1986-10-29
DE3636762A DE3636762C1 (de) 1986-10-29 1986-10-29 Waermetauscher

Publications (2)

Publication Number Publication Date
EP0265725A1 EP0265725A1 (fr) 1988-05-04
EP0265725B1 true EP0265725B1 (fr) 1990-12-27

Family

ID=6312712

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87114628A Expired - Lifetime EP0265725B1 (fr) 1986-10-29 1987-10-07 Echangeur de chaleur

Country Status (4)

Country Link
US (1) US4815535A (fr)
EP (1) EP0265725B1 (fr)
JP (1) JPH0731031B2 (fr)
DE (1) DE3636762C1 (fr)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3914773C2 (de) * 1989-05-05 1994-03-03 Mtu Muenchen Gmbh Wärmetauscher mit mindestens zwei Sammelrohren
DE3914774A1 (de) * 1989-05-05 1990-11-08 Mtu Muenchen Gmbh Waermetauscher
US5048602A (en) * 1989-05-22 1991-09-17 Showa Aluminum Kabushiki Kaisha Heat exchangers
JP2598584Y2 (ja) * 1991-09-12 1999-08-16 矢崎総業株式会社 組立式シールドコネクタ
JP2570350Y2 (ja) * 1991-09-13 1998-05-06 矢崎総業株式会社 シールドコネクタ
US5313546A (en) * 1991-11-29 1994-05-17 Sirti, S.P.A. Hermetically sealed joint cover for fibre optic cables
GB9211413D0 (en) * 1992-05-29 1992-07-15 Cesaroni Anthony Joseph Panel heat exchanger formed from tubes and sheets
DE4234006C2 (de) * 1992-10-09 1995-05-04 Mtu Muenchen Gmbh Profilrohr für Wärmetauscher
JP2772324B2 (ja) * 1992-11-11 1998-07-02 矢崎総業株式会社 シールドコネクタ
JPH06267615A (ja) * 1993-03-12 1994-09-22 Yazaki Corp 電磁シールドコネクタ
US5460544A (en) * 1993-05-26 1995-10-24 Yazaki Corporation Electro-magnetically shielded connector
DE19540683A1 (de) * 1995-11-01 1997-05-07 Behr Gmbh & Co Wärmeüberträger zum Kühlen von Abgas
DE19722097A1 (de) * 1997-05-27 1998-12-03 Behr Gmbh & Co Wärmeübertrager sowie Wärmeübertrageranordnung für ein Kraftfahrzeug
DE10156611A1 (de) * 2001-10-26 2003-05-08 Behr Gmbh & Co Rohrboden für Abgaswärmeübertrager
US7003879B2 (en) * 2002-06-28 2006-02-28 Westinghouse Air Brake Technologies Corporation Staggered rows in a CT or serpentine fin core with a round tube to header joint
US7273093B2 (en) * 2002-07-05 2007-09-25 Behr Gmbh & Co. Kg Heat exchanger in particular an evaporator for a vehicle air-conditioning unit
CN1228591C (zh) * 2002-07-12 2005-11-23 株式会社电装 用于冷却空气的制冷剂循环系统
DE10333577A1 (de) * 2003-07-24 2005-02-24 Bayer Technology Services Gmbh Verfahren und Vorrichtung zur Entfernung von flüchtigen Substanzen aus hochviskosen Medien
CA2538761A1 (fr) * 2005-03-08 2006-09-08 Anthony Joseph Cesaroni Methode de scellement de tubes d'echangeur thermique
TWI404903B (zh) * 2007-03-09 2013-08-11 Sulzer Chemtech Ag 用於流體媒介物熱交換及混合處理之設備
WO2009089460A2 (fr) * 2008-01-09 2009-07-16 International Mezzo Technologies, Inc. Échangeur thermique à micro-tubes ondulés
US8177932B2 (en) * 2009-02-27 2012-05-15 International Mezzo Technologies, Inc. Method for manufacturing a micro tube heat exchanger
FR2956949B1 (fr) 2010-03-04 2013-04-19 Pelle Equipements Dispositif de cuisson de produits alimentaires a base de pate et filet de cuisson.
DE102010025587A1 (de) * 2010-06-29 2011-12-29 Mtu Aero Engines Gmbh Gasturbine mit Profilwärmetauscher
JP6502852B2 (ja) * 2012-09-14 2019-04-17 レヴェント インターナショネール アクツィーボラグRevent International Ab 熱風オーブン
US10823515B2 (en) * 2017-02-07 2020-11-03 Caterpillar Inc. Tube-to-header slip joint for air-to-air aftercooler
US11499717B2 (en) * 2017-08-07 2022-11-15 Zhejiang Liju Boiler Co., Ltd. Combustion chamber

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1293868A (en) * 1918-01-12 1919-02-11 Thomas E Murray Process of making headers for water-tube boilers.
US1420241A (en) * 1919-01-24 1922-06-20 John J Cain Method for making headers for tubular boilers
DE1551448B2 (de) * 1967-02-17 1971-07-08 Daimler Benz Ag, 7000 Stuttgart Waermeaustauscher mit achsparallelen rohren, die rechteckige enden aufweisen
US3885936A (en) * 1972-03-01 1975-05-27 Lund Basil Gilbert Alfred Heat exchangers
US3897821A (en) * 1973-08-03 1975-08-05 Barry Wehmiller Co Heat transfer coil
US4206806A (en) * 1976-03-15 1980-06-10 Akira Togashi Heat-conducting oval pipes in heat exchangers
JPS604479B2 (ja) * 1976-08-25 1985-02-04 日本コロムビア株式会社 電磁ピツクアツプ装置
DE2907810C2 (de) * 1979-02-28 1985-07-04 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Wärmetauscher zur Führung von Gasen stark unterschiedlicher Temperaturen
DE3242842A1 (de) * 1982-11-19 1984-05-24 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Rohrverteiler sowie verfahren zu dessen herstellung
DE3242845C2 (de) * 1982-11-19 1986-03-20 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Wärmetauscher für Gase stark unterschiedlicher Temperaturen
DE3310061A1 (de) * 1982-11-19 1984-05-24 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Verfahren zur herstellung einer rohrverteileranordnung sowie ein nach diesem verfahren gefertigter waermetauscher-sammelbehaelter

Also Published As

Publication number Publication date
US4815535A (en) 1989-03-28
EP0265725A1 (fr) 1988-05-04
JPS63127083A (ja) 1988-05-30
JPH0731031B2 (ja) 1995-04-10
DE3636762C1 (de) 1988-03-03

Similar Documents

Publication Publication Date Title
EP0265725B1 (fr) Echangeur de chaleur
DE3872162T2 (de) Honigwaben-koerper.
EP0758917B1 (fr) Micromelangeur statique
DE3622316C1 (de) Plattenwaermeaustauscher
DE69931067T2 (de) Plattenwärmetauscher und verfahren zur herstellung des wärmetauschers
DE69514463T2 (de) Wärmeaustauschröhren für lamellenförmigen Wärmetauscher und Verfahren zu deren Herstellung
DE69214635T2 (de) Waermetauscher
DE69504631T2 (de) Verfahren zum hartlöten von flachen rohren für lamellenförmige wärmetauscher
DE19603016A1 (de) Wärmetauscher
DE1236479B (de) Vorrichtung zum Mischen stroemender Medien, mit stillstehenden Leitelementen
DE10036133A1 (de) Wärmetauscher und darin verwendbares Rohr, das nahe der Rohrenden größere gegenüberliegende Vorsprünge hat
DE3423736C2 (fr)
DE69812671T2 (de) Wärmetauscher
DE3415807A1 (de) Waermetauscher
DE10220532A1 (de) Wärmetauscher
DE19515526C1 (de) Flachrohrwärmetauscher mit mindestens zwei Fluten für Kraftfahrzeuge
DE69720490T2 (de) Wärmetauscher
EP1856734A1 (fr) Micro-echangeur de chaleur
EP0774636A2 (fr) Echangeur de chaleur, en particulier évaporateur
DE2231112A1 (de) Rohrverteiler
DE19719256A1 (de) Mehrflutiger Flachrohrwärmetauscher für Kraftfahrzeuge mit Umlenkboden sowie Herstellungsverfahren
EP0495184B1 (fr) Echangeur de chaleur à plaques à écoulement à contre-courant
DE69411007T2 (de) Wärmetauscher
DE3807055C2 (fr)
DE2112588C3 (de) Plattenförmiges Bauelement aus Metall in Sandwichbauweise

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19881029

17Q First examination report despatched

Effective date: 19890518

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT NL

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940915

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940919

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941031

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960628

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051007