EP0265725B1 - Wärmetauscher - Google Patents

Wärmetauscher Download PDF

Info

Publication number
EP0265725B1
EP0265725B1 EP87114628A EP87114628A EP0265725B1 EP 0265725 B1 EP0265725 B1 EP 0265725B1 EP 87114628 A EP87114628 A EP 87114628A EP 87114628 A EP87114628 A EP 87114628A EP 0265725 B1 EP0265725 B1 EP 0265725B1
Authority
EP
European Patent Office
Prior art keywords
profile
tube
heat exchanger
elements
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87114628A
Other languages
English (en)
French (fr)
Other versions
EP0265725A1 (de
Inventor
Klaus Hagemeister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines GmbH
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP0265725A1 publication Critical patent/EP0265725A1/de
Application granted granted Critical
Publication of EP0265725B1 publication Critical patent/EP0265725B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/454Heat exchange having side-by-side conduits structure or conduit section
    • Y10S165/471Plural parallel conduits joined by manifold
    • Y10S165/472U-shaped conduits connected to side-by-side manifolds

Definitions

  • the invention relates to a heat exchanger according to the preamble of patent claim 1.
  • heat exchangers are manufactured with central collecting containers or tubes in such a way that the lancet-shaped matrix profile tubes are inserted into a wall in the opening of the collecting container or tube and then connected cohesively, for example by soldering are so that a fluidic passage from the collecting container to the interior of the profile tubes is created.
  • through openings in the collecting container wall can be formed by drilling or eroding before threading the profile tubes, which is a complex perforation procedure.
  • the individual assembly of the profile tubes, in particular the threading is comparatively cumbersome, and this is because there is a tight play (movable fit) between the profile tube and the through opening in the wall. Tight tolerances of the hole and profile tube must be observed with regard to perfect soldering or another connection.
  • a heat exchanger concept known from DE-A 3 242 842 provides that blocks are attached to the matrix profile tubes in the area of at least one profile tube end, which end the profile tube end enclose that the matrix profile tubes are arranged close together in the area of their blocks, so that the blocks form a wall of the collecting container or pipe, and that the connection points of the blocks are sealed fluid-tight.
  • the blocks are to be applied to the profile tube ends by metal sintering, powdered sintered material being arranged in a shape approximating the desired contour of the block around the respective connection-side profile tube end and sintered gas-tight.
  • the outer contact surfaces of the blocks can be machined with dimensional accuracy before the matrix profile tubes are arranged. Cold forging, embossing or profile grinding can also be considered as machining processes.
  • the profile tube base geometries can be essentially rhombic or hexagonal or honeycomb-shaped.
  • the present known case enforces a comparatively complicated and high-precision profile tube foot production. Furthermore, the entire matrix connection area (heat exchanger base) must also be assembled in a relatively complicated manner from a relatively large number of blocks which are extremely precisely matched to one another. Such a type of heat exchanger base or container structure assembled from very small particles has disadvantages with regard to the required container or base structure strength.
  • the matrix profile tubes with their ends containing an elongated oval profile cross section, are to be firmly integrated in a fluid-tight manner between, if appropriate, annular container wall elements joined in layers; in other words, the wall elements in the region of their mutual joining surfaces each have semi-elliptically pre-shaped mutual cutouts for the elongated oval ends of the matrix profile tube.
  • This known concept also requires extremely precise machining of the wall elements in question; Despite the most precise machining, there is practically no bridging of differences in shape and manufacturing tolerance, particularly in the areas of the front and rear profile ends on the connection side; locally different profile tube crushes can result, e.g.
  • matrix profile tube fields and thus correspondingly assigned fields of the oval or elliptical recesses are formed between the wall elements: this in the sense that the matrix profile tubes in question essentially spatially at uniform mutual distances within the framework of an optimal hot gas flow and while ensuring the necessary hot gas blocking interlocking.
  • a heat exchanger operating according to the countercurrent principle in which the outer ends of tubes of a heat exchanger matrix arranged in parallel next to one another are arranged in a uniformly rectangular, flattened form, and immediately following one another, between adjacent profile strips; Such a combination of strips and flattened tube ends of the matrix is intended to form the local floor structure at a correspondingly adapted frame-like opening in the heat exchanger housing.
  • the pipe end assembly is pieced together locally and is unstable in strength (soft) without an operationally stable individual to ensure pipe bracket.
  • Instructions for achieving a comparatively large number of profile tubes that can be accommodated per floor volume (large matrix volume) and at the same time operationally stable and fluid-tight individual tube anchoring on collecting or distribution tubes composed of elements cannot be found in the known case.
  • the invention has for its object to provide a heat exchanger according to the preamble of claim 1, in which a collector or manifold base can be created with relatively little effort, which creates perfect conditions for a fluid-tightly fixed matrix profile connection with optimal strength.
  • the respective profile tubes of the matrix can be shaped into a square or rectangular shape on the foot side before insertion or insertion into the relevant floor structure of a distributor or collector tube; this can e.g. done rationally on rotary hammers, whereby inner mandrels can be used depending on the degree of forming.
  • the components can be "interlocked” with one another during assembly and fixed in a predetermined position; Rectangular or square openings, also referred to as “pockets”, can be provided between the wall elements forming the relevant collecting pipe or distributor pipe or the heat exchanger base in order to integrate the relevant foot ends of the profiled pipes therein positively and firmly.
  • the invention is based on a heat exchanger according to FIG. 1, which, as two compressed air ducts arranged essentially parallel to one another, here has two, for example, separate header and distributor pipes 1, 2. According to the darkened contour, the collecting and distribution pipes 1, 2 are closed at the respective rear ends.
  • the profile tube matrix 3 projecting laterally from the two compressed air ducts 1, 2 transversely against the hot gas flow H consists of initially straight, parallel profile tube strands 4, 5 which merge into a common arcuate deflection section 6.
  • compressed air to be heated is fed into the upper collecting pipe 1 (D 0, then flows through the straight section 4 (D @), whereupon it is deflected via the deflection section 6 (D #) and then flows through the straight section 5 in the opposite direction of flow (D $ ), from which it flows through the lower manifold 2 in the heated state (D % ) in order to be supplied to a suitable consumer, for example the combustion chamber of a gas turbine engine.
  • a suitable consumer for example the combustion chamber of a gas turbine engine.
  • the invention would also be practical in a heat exchanger in which the aforementioned compressed air ducts (collecting and distribution pipe) are not arranged separately, but are integrated in a common collecting and distribution pipe, from which the pipe matrix projects on both sides in a U-shape.
  • FIG. 2 initially embodies the conventional arrangement of a profile tube field recorded here in a greatly enlarged manner, for example as a section of the straight-leg profile tube strands 4 according to FIG. 1.
  • the respective matrix profile tubes of three rows of profile tubes extending in the longitudinal direction of the tube guide - in sequence, from top to bottom - labeled 4 1 , 4 2 and 4 3 .
  • the matrix profile tubes 4 1 , 4 2 , 4s are arranged at equal distances from one another in the longitudinal and transverse pipe guide directions; out
  • Fig. 2 can also be seen that the profile tubes, for example 4 2 , engage with their hot gas upstream and downstream ends in the end-side spaces left between adjacent other profile tubes, for example 4 1 , 4 3 .
  • the arrangement of the profiled tube array according to FIG. 2 could, for example, also be defined by division planes M inclined at the same inclination angles with respect to the relevant large ellipse axes A of the profiled tubes, which are passed through profile centers designated M1, M2 and M3.
  • the profiled tubes 4 1 , 4 2 and 4 3 in FIG. 2 are set at a right angle R with respect to a central collecting or distribution tube cross plane E, the angle of incidence ⁇ of the parting planes M to plane E being determined from the angle difference Ra calculated.
  • the matrix profile tubes 4 1 , 4 2 and 4 3 have an elliptical or elongated oval, aerodynamically optimized profile cross section, wherein each profile tube has two compressed air, for example D2 (FIG 1) has leading inner channels 8, 9.
  • each profile tube e.g. 41, be equipped with a right-angled profile symmetrically assigned foot end 10; the profile tube foot end 10 in question, however, still lies with its longitudinal center plane in the plane of the large ellipse axis A (FIG. 2).
  • FIG. 3 already embodies an advantageous partial aspect of the invention, according to which two elements 11, 12 of the header or distributor pipe 1 or 2 (FIG. 1) forming the matrix connection area (FIG. 1) between the in each case include mutual connecting and joining surfaces 13, 14, which here extend in the center of the profiled tube foot, and which have a rectangular shape adapted to accommodate and enclose the relevant foot end 10.
  • FIGS. 3 and 4 it can also be seen that the section of the profile tube, for example 4 1 , around which hot gas flows (H - FIG. 1) projects over the associated foot end 10 with the profile end edge on the upstream and downstream sides; Foot end 10 and associated profile tube, for example 4 1 , each form a fluidically communicating, self-contained structural unit, the excess length of the profile being illustrated in FIG. 3 by dashed contours.
  • relatively large foot or recess distances along the common joining surfaces 13, 14 must also be maintained, in the case of a profile formation and arrangement in the sense of FIG. 2, and the number of elements used being relatively large.
  • two elements 21, 22 are each formed such that they enclose the rectangular foot ends 10 of the respective profile tubes, for example 4 1, tightly like pliers along the mutual joining surfaces lying in the inclined parting planes M with the corresponding rectangular recesses;
  • the elements 21, 22 are smooth-walled along the outer joining surfaces, for example 23, 24, which run parallel to the division planes M.
  • two elements 21, 22 can each form independent assembly units which can be equipped with the associated foot ends 10 and the associated profiled tubes, for example 4 1 - FIG.
  • FIG. 6 There are additional element divisions in FIG. 6 compared to FIG. 5, but in FIG. 6 there are uninterrupted joining surfaces, for example 23, 24 see what in turn benefits the manufacturing process.
  • the necessary steps for assigning, merging and joining parts as well as the subsequent quality control can be carried out largely automated;
  • an element is created from which the complete heat exchanger base or heat exchanger can be assembled by adding the required number of identical elements, the joints of the completely pre-assembled modules lying on planar surfaces and their edges simple shapes, e.g. Represent circles or ellipses.
  • the integral joining of the elements can be flat, e.g. by soldering or - along the mutual element edges - by laser - or EB welding.
  • lip-like projections 25, 26 of the elements provide the mutual joining surfaces, and preferably in the foot-side region of these elements; Above the lip-like projections 25, 26, upwardly open joints 27 can remain between the elements 21, 22. The welding can then take place along the lip-like projections 25, 26; the projections 25, 26 can be worked off later for possible repair purposes in order to be able to loosen the bandage at this point.
  • Fig. 8 shows a modification of Fig. 7 in such a way that two adjacent elements 21, 22 are joined together and centered by means of webs 28 which engage under one another on the inside of the manifold or distributor pipe.
  • a further embodiment of the invention (Fig. 9) is characterized in that an element 29 is formed along both-sided joining surfaces 30, 31 with outwardly open rectangular recesses 32 for the respective foot ends 10 of the profile tubes 41, 42, 43 (Fig. 2) is, each of which an open foot end side is covered by strip-shaped connecting elements 33, 34, along the joining surfaces on both ends, whereby the element 29, the connecting elements 33, 34 and the foot ends 10 together with associated profile tubes can each form an independent assembly unit.
  • Each assembly unit can then be joined with a relevant assembly unit in a material-homogeneous manner.
  • a suitable soldering, welding or diffusion connection method can be selected for the mutual connection of the respectively pre-assembled assembly units as well as for the individual component connection of each independent assembly unit.
  • the spaces marked Z in Fig. 9 can be replaced by additional material during soldering or e.g. be closed by one-sided sealing welding.
  • FIG. 10 differs mainly from FIG. 4 in that the foot end 10 ′ in question is made narrower and longer; otherwise the same geometric aspects and nomenclatures apply as in FIG. 4.
  • the invention can also be used advantageously in a profile tube matrix through which hot gas flows obliquely; this would e.g. mean that with a substantially concentric angular rotation, a, according to Fig. 10, the foot ends 10 'of the profile tubes, e.g. 4 could in each case be arranged longitudinally in divisional planes (formerly M), which, for example, are positioned at a right angle (formerly ⁇ ) to the longitudinal or central plane of the collecting pipe or distributor pipe E; the profile tubes, e.g. 4; could then lie with their respective large elliptical axes A in inclined planes, the angle of inclination of which to the central or collecting tube longitudinal center plane E results from the angle of inclination angle a.

Description

  • Die Erfindung bezieht sich auf einen Wärmetauscher nach dem Oberbegriff des Patentanspruchs 1.
  • Nach dem Stand der Technik (DE-A 2 907 810) werden wärmetauscher mit zentralen Sammelbehältem oder -rohren in der Weise gefertigt, daß die lanzettförmigen Matrixprofilrohre in eine öffnungen aufweisenden Wand des Sammeibehälters oder - rohrs gesteckt und anschließend stoffschlüssig, beispielsweise durch Löten, verbunden werden, so daß ein fluidischer Durchgang vom Sammelbehälter zum Inneren der Profilrohre geschaffen wird. oie Durchgangsöffnungen in der Sammelbehälterwand können, vor einem zinfädeln der Profilrohre, durch Bohren oder Erodieren ausgebildet werden, was eine aufwendige Belochungsprozedur ist. Die Einzelmontage der Profilrohre, insbesondere das sinfädeln, ist vergleichsweise umständlich, und zwar deshalb, weil zwischen Profilrohr und Durchgangsöffnung in der Wand ein enges Spiel (verschieblicher Paßsitz) vorhanden ist. Enge Toleranzen von Loch und Profilrohr müssen im Hinblick auf eine einwandfreie Lötung oder eine anderweitige Verbindung eingehalten werden.
  • In dem Bestreben, eine verhältnismäßig einfache, problemlose und schnelle Montage der Matrixprofilrohres am SammeloderVerteilerrohr erreichen zu wollen, sieht ein aus der DE-A 3 242 842 bekanntes wärmetauscherkonzept vor, daß an die Matrixprofilrohre im Bereich zumindest eines Profilrohrendes Klötzchen angebracht werden, die das Profilrohrende umschließen, daß die Matrixprofilrohre im Bereich ihrer Klötzchen dicht aneinandergefügt angeordnet werden, so daß die Klötzchen eine Wand des Sammelbehälters oder -rohres ausbilden, und daß die Verbindungsstellen der Klötzchen fluiddicht abgeschlossen werden.
  • Insbesondere sollen in diesem bekannten Fall die Klötzchen durch Metallsintern auf die Profilrohrenden aufgebracht werden, wobei pulverförmiges Sintergut in einer der gewünschten Kontur des Klötzchens weitgehend angenäherten Form um das jeweilige anschlußseitige Profilrohrende angeordnet und gasdicht gesintert wird. Dabei können ferner die äußeren Kontaktflächen der Klötzchen vor einer Anordnung der Matrixprofilrohre maßgenau bearbeitet werden. Als Bearbeitungsverfahren können hierbei ferner Kaltschmieden, Prägen oder Profilschleifen in Frage kommen.
  • Ferner können im vorliegenden bekannten Fall die Profilrohrfußgeometrien im wesentlichen rhombisch oder sechseckig bzw. wabenförmig ausgebildet sein.
  • Der vorliegende bekannte Fall erzwingt eine vergleichsweise komplizierte und hochpräzise Profilrohrfußherstellung. Ferner muß der gesamte Matrixanschlußbereich (Wärmetauscherboden) in ebenfalls verhältnismäßig komplizierter Weise aus einer verhältnismäßig großen Anzahl extrem genau aneinander angepaßter Klötzchen zusammengesetzt werden. Eine solcher Art aus Kleinstteilchen zusammengefügte Wärmetauscherboden- oder Behälterstruktur zeitigt Nachteile bezüglich der geforderten Behälter- bzw. Bodenstrukturfestigkeit.
  • Bei einem anderen, aus der DE-A 3 310 061 bekannten wärmetauscherkonzept sollen die Matrixprofilrohre mit ihren einen länglich ovalen Profilquerschnitt enthaltenen Enden zwischen schichtweise aneinandergereiht gefügten, gegebenenfalls ringförmigen Behälterwandelementen fluiddicht fest eingebunden werden; mit anderen Worten weisen dabei die Wandelemente im Bereich deren gegenseitiger Fügeflächen jeweils halbelliptisch vorgeformt gegenseitige Aussparungen für die länglich ovalen Matrixprofilrohrenden auf. Auch dieses bekannte Konzept verlangt ein extrem genaues Bearbeiten der betreffenden Wandelemente; trotz genauester Bearbeitung sind gegenseitige Form- und Fertigungstoleranzunterschiede praktisch kaum zu überbrücken, und zwar insbesondere in den Bereichen der anschlußseitig vorderen und hinteren Profilenden; es können sich also örtlich unterschiedliche Profilrohrendquetschungen ergeben, z.B. beim schichtweisen Fügen von Wandelementen und Profilrohren, worunter wiederum das stoffschlüssige Verbinden, beispielsweise durch Löten, zwischen Profilrohrenden und Wandelementen beeinträchtigt werden kann (örtliche Lotverlagerungen, keine feste homogene Verlötung). Auch sind im bekannten Fall Kerbwirkungsbeeinträchtigungen im Hinblick auf die mit verhältnismäßig schlanken spitzen Enden in den Wandelementen sitzenden Profilrohre nicht auszuschließen.
  • Ferner bilden sich im bekannten Fall Matrixprofilrohrfelder und damit entsprechend zugeordnete Felder der ovalen oder elliptischen Ausnehmungen zwischen den Wandelementen aus: dies in dem Sinne, daß die betreffenden Matrixprofilrohre im wesentlichen unter gleichmäßigen gegenseitigen Abständen im Rahmen einer möglichst optimalen Heißgasumströmung sowie unter Gewährleistung der erforderlichen Heißgasversperrung räumlich verschachtelt ineinandergreifen.
  • Unter Erfüllung dieser Bedingung (optimal vom Heißgas durchströmte Kompaktmatrix) führen die länglich ovalen Profilquerschnitte und damit die zugehörigen Öffnungen im Sammelrohr bzw. Wärmetauscherboden, und zwar in Schichtrichtung aufeinanderfolgend, zu einer festigkeitsmäßigen Schwächung des Sammel- oder Verteilerrohres im Matrixanschlußbereich; dies gilt sinngemäß auch für das eingangs schon erwähnte, aus der DE-A 2 907 810 bekannte Wärmetauscherkonzept.
  • Aus der US-A 3 627 039 ist ein nach dem Gegenstromprinzip arbeitender Wärmetauscher bekannt, bei dem die äußeren Enden parallel nebeneinander angeordneter Rohre einer Wärmetauschermatrix in gleichförmig rechteckig abgeflachter Form, sowie unmittelbar aufeinander folgend, zwischen benachbarten Profilleisten angeordnet sind; eine derartige Kombination aus Leisten und abgeflachten Rohrenden der Matrix soll dabei die örtliche Bodenstruktur an einer entsprechend angepaßten rahmenartigen Öffnung des Wärmetauschergehäuses ausbilden. Der im bekannten Fall örtlich zusammengestückelte Rohrendverbund ist festigkeitsmäßig instabil (weich), ohne eine betriebsstabile Einzelrohrhalterung zu gewährleisten. Anweisungen zwecks Erzielung einer vergleichsweise großen, pro Bodenvolumen unterbringbaren Profilrohranzahl (großes Matrixvolumen) bei zugleich betriebsfester und fluiddichter Einzelrohrverankerung an aus Elementen zusammengesetzten Sammel- oder Verteilerrohren sind dem bekannten Fall nicht entnehmbar.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Wärmetauscher nach dem Oberbegriff des Patentanspruchs 1 anzugeben, bei dem ein mit verhältnismäßig geringem Aufwand erstellbar er Sammel- oder Verteilerrohrboden geschaffen werden kann, der bei zugleich optimaler Festigkeit einwandfreie Voraussetzungen für eine fluiddicht fest gefügte Matrixprofilverbindung schafft.
  • Die gestellte Aufgabe ist mit den Merkmalen des Kennzeichnungsteils des Patentanspruchs 1 erfindungsgemäß gelöst.
  • Hierbei können die jeweiligen Profilrohre der Matrix vor dem Einsetzen oder Einfügen in die betreffende Bodenstruktur eines Verteiler- oder Sammelrohres fußseitig in eine quadratische oder rechteckige Form umgeformt werden; dies kann z.B. rationell auf Rundhämmermaschinen erfolgen, wobei je nach dem Grad der Umformung Innendorne verwendet werden können. Als Folge der rechteckigen oder quadratischen Formgebung der Profilrohrfu- ßenden lassen sich die Bauteile bei der Montage miteinander "verzahnen" und in einer vorgegebenen Lage fixieren; es können dabei rechteckige oder quadratische auch als, "Taschen" zu bezeichnende Offnungen zwischen den das betreffende Sammelrohr oder Verteilerrohr bzw. den Wärmetauscherboden ausbildenden Wandelementen vorgesehen sein, um die betreffenden Fußenden der Profilrohre darin formschlüssig und fest zu integrieren. Als Folge der geradlinigen glatten Seitenwandungen der Fußenden - also geradlinig glattwandig dem betreffenden Schichtverlauf folgend - können einseitig offene "Taschen" leicht formschlüssig bündig durch streifenförmige, ebenfalls geradlinig verlaufende Verbindungselemente abgedeckt werden.
  • Beim vorliegenden Wärmetauscher sind ferner wesentliche Gestaltungsvorteile hinsichtlich eines sogenannten "modularen" Baukonzeptes nutzbar, indem sich auf vergleichsweise einfache Weise vormontierte Einzelbaugruppen erstellen lassen (Elemente, Verbindungselemente, Fußenden nebst Profilrohren), die mit gleichrangig erstellten und vormontierten Baugruppen zu einer Rohr- oder Bodenstruktur zusammengefügt werden können.
  • Bezüglich vorteilhafter Ausgestaltungen der Erfindung wird auf die Patentansprüche 2 bis 9 verwiesen.
  • Anhand der Zeichnungen ist die Erfindung beispielsweise weiter erläutert; es zeigen:
    • Fig. 1 die schematische und perspektivische Darstellung eines bekannten und für die Durchführung der Erfindung geeigneten Profilrohrwärmetauschers,
    • Fig. 2 einen Teilausschnitt aus einem Matrixprofilrohrfeld,
    • Fig. 3 die äußere Ansicht einer Sammel- oder Verteilerrohrbodensektion mit hier zwar schon rechteckigen Fußenden zwischen den schichtweise aneinandergefügten Elementen, hier allerdings noch ohne Vorkehrungen gemäß der Erfindung zwecks erhöhter Bodenfestigkeit bei zugleich vergleichsweise großer Profilrohrabstandsdichte,
    • Fig. 4 eine perspektivisch dargestellte obere Matrixprofilrohransicht, in der eine gemäß der Erfindung im wesentlichen konzentrische Fußverdrehung gegenüber dem zugehörigen Profilrohr verdeutlicht ist,
    • Fig. 5 die äußere Ansicht einer gemäß der Erfindung ausgebildeten Sammel- oder Verteilerrohrbodensektion in Kombination mit der fußseitig verdrehten Profilrohrkonfiguration nach Fig. 4
    • Fig. 6 die äußere Ansicht einer weiteren Sammel-oder Verteilerrohrbodensektion gemäß der Erfindung in Kombination mit der fußseitig verdrehten Profilrohrkonfiguration nach Fig. 4,
    • Fig. 7 eine beispielsweise im Hinblick auf Fig. 6 ausgewählte Sammel- oder Verteilerrohrboden-Querschnittssektion gemäß der Erfindung unter Einschluß einer ersten gegenseitigen Elementausbildungsund Befestigungsweise,
    • Fig. 8 eine beispielsweise im Hinblick auf Fig. 7 ausgewählte Sammel- oder Verteilerrohrboden-Querschnittssektion gemäß der Erfindung unter Einschluß einer zweiten, die Ausführung nach Fig. 7 weiter ausgestaltenden gegenseitigen Elementausbildungs- und Befestigungsweise,
    • Fig. 9 die äußere Ansicht einer weiteren Sammel-oder Verteilerrohrbodensektion gemäß der Erfindung in Kombination mit der fußseitig verdrehten Profilrohrkonfiguration nach Fig. 4 und
    • Fig. 10 eine von der Fußinnenseite aus gesehene Ansicht des Profilrohrfußendes in konzentrisch abgewinkelter Verdrehstellung gegenüber dem zugehörigen Profilrohr, hier jedoch - in Abweichung von Fig. 4 - eine schlankere und längere rechteckige Profilrohrfußgeometrie verdeutlichend.
  • Die Erfindung geht von einem Wärmetauscher nach Fig. 1 aus, der, als zwei im wesentlichen parallel nebeneinander angeordnete Druckluftführungen, hier zwei z.B. separate Sammel- und Verteilerrohre 1, 2 aufweist. Gemäß abgedunkelter Kontur sind das Sammel- und Verteilerrohr 1, 2 am jeweils hinteren Ende verschlossen ausgebildet. Die seitlich von beiden Druckluftführungen 1, 2 quer gegen die Heißgasströmung H U-förmig auskragende Profilrohrmatrix 3 besteht aus zunächst geraden, parallel zueinander verlaufenden Profilrohrsträngen 4, 5, die in eine gemeinsame bogenförmige Umlenksektion 6 übergehen. Im Betrieb wird aufzuheizende Druckluft in das obere Sammelrohr 1 eingespeist (D 0, durchströmt dann die geraden Profilrohrstränge 4 (D@), worauf sie über die Umlenksektion 6 umgelenkt wird (D#) und dann in umgekehrter Strömungsrichtung die geraden Profilrohrstränge 5 durchströmt (D$), aus denen sie über das untere Verteilerrohr 2 im aufgeheizten Zustand abströmt (D%), um einem geeigneten Verbraucher, z.B. der Brennkammer eines Gasturbinentriebwerks, zugeführt zu werden.
  • Abweichend von Fig. 1 wäre die Erfindung auch bei einem Wärmetauscher praktikabel, bei dem die zuvor genannten Druckluftführungen (Sammelund Verteilerrohr) nicht separat angeordnet, sondern in ein gemeinsames Sammel- und Verteilerrohr integriert sind, von dem die Rohrmatrix beidseitig U-förmig auskragt.
  • Fig. 2 verkörpert zunächst die herkömmliche Anordnung eines hier stark vergrößert aufgezeichneten Profilrohrfeldes, z.B. als Ausschnitt aus den geradschenkeligen Profilrohrsträngen 4 nach Fig. 1. Es sind beispielsweise in Fig. 2 die jeweiligen Matrixprofilrohre von drei in Rohrführunglängsrichtung sich erstreckenden Profilrohrreihen - der Reihe nach, von oben nach unten - mit 41, 42 und 43 bezeichnet. In Rohrführungslängs- und Querrichtung sind die Matrixprofilrohre 41, 42, 4s in gleichmäßigen Abständen zueinander angeordnet; aus
  • Fig. 2 ist ferner zu erkennen, daß die Profilrohre, z.B. 42, mit ihren jeweils heißgasan- und abströmseitigen Enden in die jeweils endseitig quer belassenen Zwischenräume benachbarter übriger Profilrohre, z.B. 41, 43 eingreifen. Auf diese Weise entsteht das für Wärmetauscher im Sinne der Fig. 1 charakteristische, hochkompakte Feld von Matrixrohrprofilen. Die Anordnung des Profilrohrteldes nach Fig. 2 ließe sich z.B. auch durch jeweils unter gleichen Neigungswinkeln gegenüber den betreffenden großen Ellipsenachsen A der Profilrohre schräg angestellte Teilungsebenen M definieren, welche durch jeweils mit M1, M2 und M3 bezeichnete Profilmitten hindurchgeführt sind. Bezüglich ihrer jeweils großen Achsen A sind die Profilrohre 41, 42 und 43 in Fig. 2 unter einem rechten Winkel R gegenüber einer Sammel- oder Verteilerrohrquermittelebene E angestellt, wobei sich der Anstellwinkel ß der Teilungsebenen M zur Ebene E aus der Winkeldifferenz R-a errechnet.
  • Wie aus Fig. 2 ferner erkennbar, weisen die Matrixprofilrohre 41, 42 und 43 einen elliptischen bzw. länglich ovalen, aerodynamisch optimierten Profilquerschnitt auf, wobei jedes Profilrohr zwei durch einen mittleren Quersteg 7 voneinander getrennte, die Druckluft, z.B. D2 (Fig. 1) führende Innenkanäle 8, 9 aufweist.
  • Gemäß Fig. 3 kann jedes Profilrohr, z.B. 41, mit einem hier rechtekkigen profilsymmetrisch zugeordneten Fußende 10 ausgestattet sein; das betreffende Profilrohrfußende 10 liegt dabei aber noch mit seiner Längsmittelebene in der Ebene der großen EIlipsenachse A (Fig. 2).
  • Mit Rücksicht auf die in Fig. 2 angegebene Profilausbildung und Geometrie verkörpert Fig. 3 schon einen vorteilhaften Teilaspekt der Erfindung, wonach jeweils zwei, den Matrixanschlußbereich ausbildende Elemente 11, 12 des Sammel- oder Verteilerrohres 1 bzw. 2 (Fig. 1) zwischen den jeweils gegenseitigen, sich hier profilrohrfußmittig erstreckenden Verbindungs- und Fügeflächen 13, 14 Öffnungen 15 einschließen, die eine zur Aufnahme und Umschließung des betreffenden Fußendes 10 angepaßte rechteckige Form aufweisen.
  • Aus Fig. 3 und 4 ist ferner erkennbar, daß der im Betrieb heißgasumströmte (H - Fig. 1) Abschnitt des Profilrohres, z.B. 41, das zugehörige Fußende 10 mit der an- und abströmseitigen Profilendkante überkragt; Fußende 10 und zugehöriges Profilrohr, z.B. 41, bilden dabei eine jeweils fluidisch kommunizierende, in sich geschlossene Baueinheit aus, wobei die Profilüberlänge in Fig. 3 durch gestrichelte Konturen verdeutlicht ist. Gemäß Fig. 3 müssen also noch verhältnismäßig große Fuß- oder Ausnehmungsabstände entlang der gemeinsamen Fügeflächen 13, 14 eingehalten werden, bei einer Profilausbildung und -anordnung im Sinne der Fig. 2, und wobei die Anzahl der verwendeten Elemente verhältnismäßig groß ist.
  • Die Fig. 4 und 5 verkörpern eine komplette Erfindungsvariante, bei der das jeweilige Fußende 10 gegenüber der großen Ellipsenachse A des elliptischen Querschnitts des zugehörigen Profilrohrs, z.B. 41, unter einem jeweils gleichen Neigungswinkel a konzentrisch verdreht verformt ist. Gemäß Fig. 4 kann diese Verdrehverformung derart sein, daß die jeweilige große Ellipsenachse A bzw. die positionsgemäß identische die Profilrohrmittelebene das zugehörige Fußende 10 diagonal schneidet. In Fig. 5 erstrecken sich also die jeweiligen Fußenden 10 längsmittig in den in Fig. 2 schon näher definierten schrägen Teilungsebenen M, während die relativ zur genannten Verdrehverformung der Fußenden 10 (Neigungswinkel a, (siehe auch Fig. 4) zurückgebliebenen zugehörigen Profilrohre, z.B. 41, mit ihrer großen Achse A unter einem rechten Winkel R (Fig. 2) zur Sammel- oder Verteilerrohrquermittelebene E angestellt sind. Gemäß Fig. 5 verlaufen also auch die gegenseitigen Fügeflächen, z.B. 17, 18 der Elemente 19, 20 in den schrägen Teilungsebenen M. Beim Vergleich mit Fig. 3 ergibt sich, daß in Fig. 5 die Anzahl erforderlicher, gegebenenfalls ringförmiger Elemente 19, 20 halb so groß ist, so jedes Element 19 bzw. 20 vergleichsweise fest und stabil ist, was sich wiederum günstig auf die gesamte Festigkeitsstruktur des Sammel- oder Verteilerrohrbodens auswirkt. In gleichem Maße nimmt die Anzahl erforderlicher Trennfugen bzw. gegenseitiger Fügeflächen ab.
  • Es ermöglicht die Ausführung nach Fig. 4, ein Sammel- oder Verteilerrohr auf verschiedene Weise in eine Anzahl in zur Teilungsebene M parallelen Schnitten in z.B. ringförmige Elemente aufzuteilen. Eine weitere Variante der Erfindung ergibt sich hierzu aus Fig. 6.
  • Hierbei sind jeweils zwei Elemente 21, 22 so ausgebildet, daß sie entlang der in den schrägen Teilungsebenen M liegenden gegenseitigen Fügeflächen - innen - mit den entsprechenden rechteckigen Ausnehmungen die rechteckige Fußenden 10 der diesen jeweils zugehörigen Profilrohre, z.B. 41 dicht zangenartig umschließen; entlang der parallel zu den Teilungsebenen M verlaufenden äußeren Fügeflächen, z.B. 23, 24, sind die Elemente 21, 22 glattwandig. Vorteilhafterweise können dabei zwei Elemente 21, 22 jeweils eigenständige, für sich mit den zugehörigen Fußenden 10 und den zugehörigen, im Betrieb umströmten Profilrohren, z.B. 41 - Fig. 4 -, ausrüstbare Montageeinheiten ausbilden.
  • Es ergeben sich in Fig. 6 gegenüber Fig. 5 zwar zusätzliche Elementaufteilungen, jedoch sind in Fig. 6 ununterbrochene Fügeflächen z.B. 23, 24 vorgesehen, was wiederum dem Fertigungsvorgang zugute kommt.
  • Beispielsweise im Hinblick auf Fig. 6 wäre es z.B. möglich, zwei ringförmige Elemente 21, 22 und die darin eingeschlossenen Fußenden 10 nebst zugehörigen Profilrohren
    Figure imgb0001
    4@, 4# (Fig. 2) von den Flanken her unter Druck zu setzen und bei gleichzeitiger Wärmezufuhr (z.B. durch eine elektrische Widerstandserhitzung) eine stoffschlüssige Verbindung zu erzeugen.
  • Die dazu erforderlichen Arbeitsschritte der Teilezuordnung, -zusammenführung und -fügung sowie die anschließende Qualitätskontrolle können weitestgehend automatisiert erfolgen; es entsteht so als Zwischenprodukt ein Element, aus dem sich durch Hinzufügen der benötigten Anzahl gleicher Elemente der komplette Wärmetauscherboden bzw. Wärmetauscher zusammensetzen läßt, wobei die Fugen der komplett vormontierten Baugruppen auf planaren Flächen liegen und ihre Ränder einfache Formen, z.B. Kreise oder Ellipsen darstellen. Das stoffschlüssige Fügen der Elemente kann flächig, z.B. durch Löten oder - längs der gegenseitigen Elementränder - durch Laser - oder EB-Schweißen erfolgen.
  • Hierfür kann es u.a. gemäß Fig. 7 vorteilhaft sein, wenn lippenartige Vorsprünge 25, 26 der Elemente die gegenseitigen Fügeflächen bereitstellen, und zwar vorzugsweise im fußseitigen Bereich dieser Elemente; oberhalb der lippenartigen Vorsprünge 25, 26 können nach oben offene Fugen 27 zwischen den Elemente 21, 22 verbleiben. Entlang der lippenartigen Vorsprünge 25, 26 kann dann die Schweißung erfolgen; die Vorsprünge 25, 26 können für eventuelle Reparaturzwecke später abgearbeitet werden, um den Verband an dieser Stelle wieder lösen zu können.
  • Fig. 8 zeige eine Abwandlung von Fig. 7 dergestalt, daß jeweils zwei benachbarte Elemente 21, 22 mittels sammel- oder verteilerrohrinnenseitig einander untergreifender Stege 28 aneinandergefügt und zentriert sind.
  • Eine weitere Ausführungsform der Erfindung (Fig. 9) ist dadurch gekennzeichnet, daß jeweils ein Element 29 entlang beidendseitiger Fügeflächen 30, 31 mit nach außen offenen rechteckigen Ausnehmungen 32 für die betreffenden Fußenden 10 der Profilrohre 41, 42, 43 (Fig. 2) ausgebildet ist, deren jeweils eine offene Fußendseite von leistenförmigen Verbindungselementen 33, 34, entlang der beidendseitigen Fügeflächen abgedeckt ist, wobei das Element 29 die Verbindungselemente 33, 34 sowie die Fußenden 10 nebst zugehörigen Profilrohren jeweils eine eigenständige Montageeinheit ausbilden können.
  • Jede Montageeinheit kann dann mit einer relevanten Montageeinheit flächenhomogen stoffschlüssig gefügt werden. Für die gegenseitige Verbindung der jeweils fertig vormontierten Montageeinheiten wie auch für die Einzelbauteilverbindung jeder eigenständigen Montageeinheit kann ein geeignetes Löt-, Schweiß- oder Diffusionsverbindungsverfahren gewählt werden. Die in Fig. 9 mit Z gekennzeichneten Zwischenräume können durch Zusatzmaterial beim Löten oder z.B. durch einseitiges Dichtschweißen verschlossen werden.
  • Unter Zugrundelegung einer unveränderten Matrixprofilrohrform und -größe weicht Fig. 10 hauptsächlich von Fig. 4 dadurch ab, daß das betreffende Fußende 10' schmäler und länger ausgebildet ist; ansonsten gelten die gleichen geometrischen Gesichtspunkte und Nomenklaturen wie in Fig. 4.
  • Die Erfindung läßt sich auch bei einer schräg vom Heißgas durchströmten Profilrohrmatrix vorteilhaft einsetzen; dies würde z.B. bedeuten, daß bei einer im wesentlichen konzentrischen Winkelverdrehung, a, gemäß Fig. 10, die Fußenden 10' der Profilrohre, z.B. 4 jeweils längsmittig in Teilungsebenen (vormals M) angeordnet werden könnten, die beispielsweise unter einem rechten Winkel (vormals ß) zur Sammel- oder Verteilerrohrlängsmittelebene E angestellt sind; die Profilrohre, z.B. 4; könnten dann mit ihren jeweils großen Ellipsenachsen A in schrägen Ebenen liegen, deren Neigungswinkel zur Sammel- oder Verteilerrohrlängsmittelebene E aus dem Neigungsverdrehwinkel a resultiert.

Claims (9)

1. Wärmetauscher mit einer Rohrmatrix (3), die aus räumlich verschachtelt ineinandergreifenden Profilrohren (4f 4@) mit jeweils gleich großem elliptischen Querschnitt besteht, die quer sowie in Richtung der durch die große Ellipsenachse (A) vorgegebenen Profilerstreckung von einer Heißgasströmung (H) umströmt und von Druckluft durchströmt sind und die für die Druckluftzufuhr in die Matrix (3) bzw. -Abfuhr aus der Matrix (3) an mindestens ein Druckluftsammel- und ein Verteilerrohr (1; 2) angeschlossen sind, die für den Rohranschluß aus schichtartig fluiddicht aneinandergefügten Elementen (19, 20; 29, 34) bestehen, zwischen denen die Profilrohre (41 4@) endseitig formschlüssig fluiddicht eingebunden sind, dadurch gekennzeichnet, daß
- die Elemente (19, 20; 29, 34) im aneinandergefügten Zustand rechteckige oder quadratische Offnungen ausbilden, in welche die Profilrohre (4t 4@...) mit dementsprechend angepaßt verformten Fußenden (10; 10') formschlüssig fluiddicht eingebunden sind;
- die Fußenden (10, 10') der Profilrohre (4; 4@...) längsmittig in jeweils schrägen, parallel zu den Fügeflächen (17, 18; 30,31) der Elemente (19, 20; 29, 34) verlaufenden Teilungsebenen (M) angeordnet und dabei jeweils gegenüber der großen Ellipsenachse (A) des Ellipsenquerschnitts eines zugehörigen Profilrohrs (40 um jeweils gleiche Neigungswinkel (a) konzentrisch verdreht verformt sind.
2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß jedes Profilrohr (4t 4@, 4#) das zugehörige Fußende (10) im wesentlichen mit einer an- und abströmseitigen Profilendkante überkragt.
3. Wärmetauscher nach Anspruch 1 oder 2, bei dem mehrere Reihen von Profilrohren (4t 4@, 4#) mit gleichmäßigen gegenseitigen Abständen unter jeweils gleichem Profilneigungswinkel (R) deren jeweils großer Ellipsenachse (A) zur betreffenden Sammel- oder Verteilerrohr-Quermittelebene (E) angeordnet sind, dadurch gekennzeichnet, daß der Neigungswinkel (a) zwischen den jeweiligen Fußenden (10) und großen Ellipsenachsen (A) der zugehörigen Profilrohre (4; 4@, 4#) zugleich den jeweils vom Profilneigungswinkel (R) abweichenden Anstellwinkel (ß) einer Teilungsebene (M) sowie den mit letzterem identischen Anstellwinkel (ß) der gegenseitigen Elementfügeflächenebenen zur Sammel-oder Verteilerrohr-Quermittelebene (E) definiert.
4. Wärmetauscher nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Fußenden (10) derart um den Winkel (a) verdreht verformt sind, daß eine mit dem Verlauf der jeweils großen Ellipsenachse (A) zusammenfallende Rohrmittelebene des zugehörigen Profilrohrs (41, 42, 43) das zugehörige Fußenden (10) im wesentlichen diagonal schneidet.
5. Wärmetauscher nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß jeweils zwei Elemente (21, 22) entlang der inneren gegenseitigen Fügeflächen in Ausbildung rechteckiger oder quadratischer Öffnungen für die Fußenden (10) vorprofiliert, hingegen entlang der äußeren End- bzw. Fügeflächen (23, 24) glattwandig sind.
6. Wärmetauscher nach Anspruch 5, dadurch gekennzeichnet, daß zwischen den äußeren Endflächen zweier benachbarter Elemente (21, 22) nach oben offene Fugen (27) ausgebildet sind, wobei lippenartige Vorsprünge (25, 26) der Elemente die Fügeflächen bereitstellen.
7. Wärmetauscher nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß zwei benachbarte Elemente (21, 22) mittels sammel- oder verteilerrohrinnenseitig einander untergreifender Stege (28) aneinandergefügt und zentriert sind.
8. Wärmetauscher nach einem oder mehreren der Ansprüche 1 bis 4 sowie 6 und 7, dadurch gekennzeichnet, daß jeweils ein Element (29) entlang beidendseitiger Fügeflächen (30, 31) mit nach aussen offenen rechteckigen oder quadratischen Ausnehmungen (32) für die betreffenden Profilrohrfußenden (10) ausgebildet ist, deren jeweils eine offene Fußendseite von leistenförmigen Verbindungselementen (33, 34) entlang der beidendseitigen Fügeflächen (30, 31) abgedeckt ist, wobei das Element (29), die Verbindungselemente (33, 34) sowie die Fußenden (10) nebst zugehörigen Profilrohren (41, 42, 43) jeweils eine eigenständige Montageeinheit ausbilden.
9. Wärmetauscher nach einem oder mehreren der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß jeweils zwei Elemente (21, 22) nebst darin verankerten Fußenden (10) der Profilrohre (41, 42, 43) eine eigenständige Montageeinheit ausbilden.
EP87114628A 1986-10-29 1987-10-07 Wärmetauscher Expired - Lifetime EP0265725B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3636762 1986-10-29
DE3636762A DE3636762C1 (de) 1986-10-29 1986-10-29 Waermetauscher

Publications (2)

Publication Number Publication Date
EP0265725A1 EP0265725A1 (de) 1988-05-04
EP0265725B1 true EP0265725B1 (de) 1990-12-27

Family

ID=6312712

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87114628A Expired - Lifetime EP0265725B1 (de) 1986-10-29 1987-10-07 Wärmetauscher

Country Status (4)

Country Link
US (1) US4815535A (de)
EP (1) EP0265725B1 (de)
JP (1) JPH0731031B2 (de)
DE (1) DE3636762C1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3914774A1 (de) * 1989-05-05 1990-11-08 Mtu Muenchen Gmbh Waermetauscher
DE3914773C2 (de) * 1989-05-05 1994-03-03 Mtu Muenchen Gmbh Wärmetauscher mit mindestens zwei Sammelrohren
US5048602A (en) * 1989-05-22 1991-09-17 Showa Aluminum Kabushiki Kaisha Heat exchangers
JP2598584Y2 (ja) * 1991-09-12 1999-08-16 矢崎総業株式会社 組立式シールドコネクタ
JP2570350Y2 (ja) * 1991-09-13 1998-05-06 矢崎総業株式会社 シールドコネクタ
US5313546A (en) * 1991-11-29 1994-05-17 Sirti, S.P.A. Hermetically sealed joint cover for fibre optic cables
GB9211413D0 (en) * 1992-05-29 1992-07-15 Cesaroni Anthony Joseph Panel heat exchanger formed from tubes and sheets
DE4234006C2 (de) * 1992-10-09 1995-05-04 Mtu Muenchen Gmbh Profilrohr für Wärmetauscher
JP2772324B2 (ja) * 1992-11-11 1998-07-02 矢崎総業株式会社 シールドコネクタ
JPH06267615A (ja) * 1993-03-12 1994-09-22 Yazaki Corp 電磁シールドコネクタ
US5460544A (en) * 1993-05-26 1995-10-24 Yazaki Corporation Electro-magnetically shielded connector
DE19540683A1 (de) * 1995-11-01 1997-05-07 Behr Gmbh & Co Wärmeüberträger zum Kühlen von Abgas
DE19722097A1 (de) * 1997-05-27 1998-12-03 Behr Gmbh & Co Wärmeübertrager sowie Wärmeübertrageranordnung für ein Kraftfahrzeug
DE10156611A1 (de) * 2001-10-26 2003-05-08 Behr Gmbh & Co Rohrboden für Abgaswärmeübertrager
US7003879B2 (en) * 2002-06-28 2006-02-28 Westinghouse Air Brake Technologies Corporation Staggered rows in a CT or serpentine fin core with a round tube to header joint
US7273093B2 (en) * 2002-07-05 2007-09-25 Behr Gmbh & Co. Kg Heat exchanger in particular an evaporator for a vehicle air-conditioning unit
CN1228591C (zh) * 2002-07-12 2005-11-23 株式会社电装 用于冷却空气的制冷剂循环系统
DE10333577A1 (de) * 2003-07-24 2005-02-24 Bayer Technology Services Gmbh Verfahren und Vorrichtung zur Entfernung von flüchtigen Substanzen aus hochviskosen Medien
CA2538761A1 (en) * 2005-03-08 2006-09-08 Anthony Joseph Cesaroni Method for sealing heat exchanger tubes
TWI404903B (zh) * 2007-03-09 2013-08-11 Sulzer Chemtech Ag 用於流體媒介物熱交換及混合處理之設備
US20100230081A1 (en) * 2008-01-09 2010-09-16 International Mezzo Technologies, Inc. Corrugated Micro Tube Heat Exchanger
US8177932B2 (en) * 2009-02-27 2012-05-15 International Mezzo Technologies, Inc. Method for manufacturing a micro tube heat exchanger
FR2956949B1 (fr) 2010-03-04 2013-04-19 Pelle Equipements Dispositif de cuisson de produits alimentaires a base de pate et filet de cuisson.
DE102010025587A1 (de) * 2010-06-29 2011-12-29 Mtu Aero Engines Gmbh Gasturbine mit Profilwärmetauscher
ES1139060Y (es) * 2012-09-14 2015-08-07 Revent Int Ab Horno de aire caliente
US10823515B2 (en) * 2017-02-07 2020-11-03 Caterpillar Inc. Tube-to-header slip joint for air-to-air aftercooler
US11499717B2 (en) * 2017-08-07 2022-11-15 Zhejiang Liju Boiler Co., Ltd. Combustion chamber

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1293868A (en) * 1918-01-12 1919-02-11 Thomas E Murray Process of making headers for water-tube boilers.
US1420241A (en) * 1919-01-24 1922-06-20 John J Cain Method for making headers for tubular boilers
DE1551448B2 (de) * 1967-02-17 1971-07-08 Daimler Benz Ag, 7000 Stuttgart Waermeaustauscher mit achsparallelen rohren, die rechteckige enden aufweisen
US3885936A (en) * 1972-03-01 1975-05-27 Lund Basil Gilbert Alfred Heat exchangers
US3897821A (en) * 1973-08-03 1975-08-05 Barry Wehmiller Co Heat transfer coil
US4206806A (en) * 1976-03-15 1980-06-10 Akira Togashi Heat-conducting oval pipes in heat exchangers
JPS604479B2 (ja) * 1976-08-25 1985-02-04 日本コロムビア株式会社 電磁ピツクアツプ装置
DE2907810C2 (de) * 1979-02-28 1985-07-04 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Wärmetauscher zur Führung von Gasen stark unterschiedlicher Temperaturen
DE3310061A1 (de) * 1982-11-19 1984-05-24 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Verfahren zur herstellung einer rohrverteileranordnung sowie ein nach diesem verfahren gefertigter waermetauscher-sammelbehaelter
DE3242842A1 (de) * 1982-11-19 1984-05-24 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Rohrverteiler sowie verfahren zu dessen herstellung
DE3242845C2 (de) * 1982-11-19 1986-03-20 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Wärmetauscher für Gase stark unterschiedlicher Temperaturen

Also Published As

Publication number Publication date
EP0265725A1 (de) 1988-05-04
JPH0731031B2 (ja) 1995-04-10
JPS63127083A (ja) 1988-05-30
DE3636762C1 (de) 1988-03-03
US4815535A (en) 1989-03-28

Similar Documents

Publication Publication Date Title
EP0265725B1 (de) Wärmetauscher
EP0758917B1 (de) Statischer mikro-vermischer
DE3622316C1 (de) Plattenwaermeaustauscher
DE69931067T2 (de) Plattenwärmetauscher und verfahren zur herstellung des wärmetauschers
WO1997016239A1 (de) Statischer mikrovermischer
DE19603016A1 (de) Wärmetauscher
DE1236479B (de) Vorrichtung zum Mischen stroemender Medien, mit stillstehenden Leitelementen
DE10036133A1 (de) Wärmetauscher und darin verwendbares Rohr, das nahe der Rohrenden größere gegenüberliegende Vorsprünge hat
DE4223321A1 (de) Geschweißter Plattenwärmetauscher
DE3423736C2 (de)
DE3415807A1 (de) Waermetauscher
DE19515526C1 (de) Flachrohrwärmetauscher mit mindestens zwei Fluten für Kraftfahrzeuge
DE10220532A1 (de) Wärmetauscher
EP1856734A1 (de) Mikrowärmeübertrager
DE19543149C2 (de) Wärmetauscher, insbesondere Kältemittelverdampfer
DE2231112A1 (de) Rohrverteiler
DE19719256A1 (de) Mehrflutiger Flachrohrwärmetauscher für Kraftfahrzeuge mit Umlenkboden sowie Herstellungsverfahren
EP1842020A1 (de) Stapelscheiben-wärmetauscher
DE3502619C2 (de)
DE19814051A1 (de) Geschichteter Wärmetauscher
EP0495184B1 (de) Plattenwärmetauscher für im Gegenstrom geführte Medien
DE3807055C2 (de)
DE2112588C3 (de) Plattenförmiges Bauelement aus Metall in Sandwichbauweise
EP3255173B1 (de) Fluidtemperierter gasverteiler in schichtbauweise
DE19815218A1 (de) Schichtwärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19881029

17Q First examination report despatched

Effective date: 19890518

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT NL

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940915

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940919

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941031

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960628

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051007