EP0265633B1 - Turbine axiale - Google Patents

Turbine axiale Download PDF

Info

Publication number
EP0265633B1
EP0265633B1 EP87112769A EP87112769A EP0265633B1 EP 0265633 B1 EP0265633 B1 EP 0265633B1 EP 87112769 A EP87112769 A EP 87112769A EP 87112769 A EP87112769 A EP 87112769A EP 0265633 B1 EP0265633 B1 EP 0265633B1
Authority
EP
European Patent Office
Prior art keywords
diffuser
flow
turbine according
ribs
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87112769A
Other languages
German (de)
English (en)
Other versions
EP0265633A1 (fr
Inventor
Franz Kreitmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4265384&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0265633(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0265633A1 publication Critical patent/EP0265633A1/fr
Application granted granted Critical
Publication of EP0265633B1 publication Critical patent/EP0265633B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/914Device to control boundary layer

Definitions

  • the invention relates to an axially flow-through turbine with reaction blading, to the outlet rotor blades of which a high Mach number flows and which is followed by a diffuser with an axial outlet into an exhaust pipe.
  • both the inner boundary wall, ie the hub and the outer boundary wall, ie the cylinder can be inclined at a certain angle to the machine axis.
  • the hub runs cylindrically with the corresponding angle adjustment of the cylinder. In machines with a high Mach number, the angle between the hub and the cylinder can easily reach 30 ° and more. The meridian streamlines at the blading outlet therefore run over this angular range.
  • the diffuser for connects to this outlet the recovery of the kinetic energy. If the conicity were to be continued in a straight line, the above-mentioned angle of 30 ° would be completely unsuitable to delay the flow and to achieve the desired pressure increase. The current would detach from the walls.
  • the invention seeks to remedy this. It is based on the task of designing the diffuser for maximum pressure recovery, especially at partial load of the system.
  • the advantage of the invention can be seen, inter alia, in the fact that the new diffuser can achieve a considerable reduction in overall length.
  • the diffuser for supporting the flow in the radial direction is divided into several partial diffusers by means of flow-guiding plates. This means that each individual partial diffuser can be optimally designed.
  • Baffles of this type are known from the exhaust steam housings of steam turbines, in which the relaxed, axially escaping steam is transferred in a radial outflow direction.
  • baffles are one-piece rings without a joint, which at least partially extend over the entire length of the diffuser.
  • the free cross-section that can be flowed through is increased.
  • the rotational symmetry of the guide plates has a very favorable effect on the vibration behavior of the system.
  • the diffuser end part is designed as a Carnot diffuser, this measure can further shorten the overall diffuser without having to accept the disadvantages of the flow.
  • the means for removing the swirl within the diffuser are at least three evenly arranged circumferential, non-curved or curved flow ribs with thick profiles, which extend over the entire height of the channel through which the flow passes. This configuration leads to the ribs being insensitive to oblique flow.
  • the flow ribs have a cavity in their radial extension through which the hub interior of the diffuser can be reached. This means that the bearings and the internal tubes are accessible at all times without disassembling the diffuser.
  • the flow ribs advantageously form support bodies for the guide rings, such that the correspondingly recessed rings are attached to the support body in the longitudinal direction of the profile, preferably welded on.
  • the flowed leading edge of the flow ribs is at a distance from the exit plane of the turbine blading, at which a diffuser area ratio of at least 2, preferably 3, prevails.
  • the first diffuser zone thus remains undisturbed due to total rotational symmetry, which leads to the greatest possible deceleration with the shortest overall length. Since the ribs only become effective in a plane in which a relatively low energy level already prevails, no interference effects between the rib and the blading are to be expected. The specific losses through the ribs are also small.
  • a part of the guide rings extends in the machine longitudinal direction only up to the plane in which the support body has its greatest profile thickness. As a result, the personnel can penetrate to the narrowest point between the outer and / or inner boundary wall of the diffuser and the flow rib without impairment.
  • the diffuser is supported in an exhaust gas housing which is screwed to the turbine housing, the internal exhaust gas housing parts on the hub side being connected to the external exhaust gas housing parts surrounding the diffuser by supporting ribs which preferably penetrate the cavity of the flow ribs.
  • the load-bearing structure can be kept at a lower and homogeneous temperature level, which has an effect on the deformation behavior, and thus ultimately enables smaller blade clearances.
  • the system becomes particularly easy to maintain when the exhaust housing / diffuser unit can be moved axially into the exhaust pipe. If the machine has to be dismantled, the exhaust pipe, which is usually installed in the wall of the machine house, can be left in place.
  • the inner ring channel formed by the inner exhaust gas housing part and the inner diffuser boundary wall are connected to one another via the cavities of the flow ribs with the outer channel by the outer exhaust gas housing part and the outer diffuser boundary wall. If an adequate coolant, for example suitably conditioned rotor cooling air, flows through the cooling channels formed in this way, the entire load-bearing structure can be kept at a low, homogeneous temperature level.
  • the gas turbine of which only the last three axially flowed stages are shown in FIG. 1, essentially consists of the bladed rotor 1 and the blade carrier 2 equipped with guide blades.
  • the blade carrier is suspended in the turbine housing 3.
  • the rotor 1 lies in a support bearing 4, which in turn is supported in an exhaust gas housing 5.
  • This exhaust housing 5 essentially consists of a hub-side, inner part 6 and an outside lying part 7. Both elements are one-piece pot housings without an axial parting plane. They are connected to each other by three welded supporting ribs 8, which are evenly distributed over the circumference.
  • the supporting ribs 8 are hollow. This makes it possible to walk inside the hub 22 of the exhaust gas housing, as symbolically represented by the fitter in FIG. 1.
  • the spatial conditions make it possible to carry out even larger storage work such as lifting off the bearing cover.
  • the supply lines can also be led out of the system.
  • the ribs have the function of transmitting the bearing forces from the inner housing part 6 to the outer housing part 7.
  • the outer housing part 7 is connected to the turbine housing 3 via flange screw connections 20 (FIG. 4).
  • the exhaust housing 5 is designed so that it is not in contact with the exhaust gas flow.
  • the actual flow control is taken over by the diffuser, which is designed as an insert for the exhaust housing.
  • the outer boundary wall 9 of the diffuser is supported on the turbine housing 3 together with the outer exhaust gas housing part 7 via sheets 19; the inner boundary wall 10, on the other hand, is suspended via struts 11 on the hub cap 12 of the inner exhaust gas housing part 6.
  • the end of the diffuser opens into the exhaust pipe 13.
  • the diffuser is designed, regardless of structural considerations, but solely on the basis of fluid dynamics.
  • the two articulation angles must be determined based on the total flow in the blading and in the diffuser, possibly even taking into account the influence of the combustion chamber.
  • the meridian curvature of the streamlines is primarily responsible for the extent of the pressure increase mentioned. This must be influenced primarily by adjusting the angle of attack in order to achieve a homogeneous energy distribution. In principle, this defines the kink angle of the inner boundary wall at the diffuser inlet. In the present case, this leads to an angle ⁇ N that rises from the horizontal in a positive direction. It can be seen that the angle is almost 20 °. This is due, among other things, to the influence of cooling air. As is known, the hub, ie the rotor surface and the blade roots, is generally cooled down to a tolerable level with cooling air.
  • the total opening angle of the diffuser is in the range of the opening angle of the blading, and may even be greater than this, but in no case holds those values that would correspond to the purely constructive considerations.
  • a diffuser with a 30 ° opening angle is unsuitable to delay the flow. It is therefore divided into partial diffusers in the radial direction by means of flow-guiding plates 15. These can now be dimensioned according to the known rules. In the present case this means that three baffles 15 are arranged in such a way that four partial diffusers 16, each with an opening angle of 7.5 °, result.
  • these guide plates 15 are designed as one-piece rings or truncated cones. Because they are designed to be rotationally symmetrical and without separating flanges, they form the best prerequisites for the undisturbed pressure conversion in the flow, which at the time was still swirling. In order to achieve the best possible pressure recovery in this way, the guide rings 15 extend without any cross-sectional impairments to a level at which a diffuser area ratio of 3 is reached. This route is considered the first diffuser zone.
  • baffles 15 must be fastened in a suitable manner in the diffuser and kept at a distance from one another.
  • the classic ribs are ideal for this.
  • the invention also provides for the best possible pressure recovery at partial load. This leads to the requirement to remove the adherent swirl from the flow, which in turn is feasible in the classic way by rectifying ribs.
  • both functions can be combined with one and the same means, namely flow ribs 17.
  • the baffles are attached to the three flow ribs 17 by welding.
  • the guide plates of the rib profile shape are cut out accordingly. Due to the long weld seams, a stable attachment is guaranteed, which enables the baffles to protrude long over the entire first diffuser zone.
  • FIG. 1 shows that only the middle baffle extends to the end of the diffuser.
  • the lower part of FIG. 1 shows that the baffles arranged between the middle plate and the boundary walls end in the plane in which the flow ribs 17 have their greatest thickness. From its end, the diffuser can thus be walked so far that, for example, the last row of the gas turbine can be subjected to a direct optical examination without further notice.
  • the first diffuser zone ends in the plane of the front edge of the flow ribs 17.
  • a second zone now extends from the front edge to the greatest profile thickness of the ribs.
  • the boundary walls 9 and 10 of the diffuser are adapted to the profile of the rib, that the flow in this second zone, in which most of the swirl is carried out, is largely without delay.
  • the second zone is followed by a third zone, which in turn is decelerated.
  • the middle baffle and the flow ribs also extend beyond this third zone.
  • This is a predominantly straight diffuser. Since the flow is already largely swirl-free at this point, it must be ensured that the expansion does not run too much in order to avoid detachment of the flow at the boundary walls 9 running cylindrically in this zone. In order not to let the system length increase excessively, the inner boundary walls 10 of the diffuser are not allowed to run out completely, but are limited in their axial extent by a blunt section 23.
  • the flow ribs 17 end in the same plane as the inner diffuser walls 10 also with a blunt section 18, which determines the trailing edges of the profile.
  • a type of Carnot diffuser is formed here in a fourth zone due to the sudden expansion, which in turn contributes to shortening the overall length.
  • the dotted surface which is composed of the blunt ends of the three ribs and the blunt end of the inner boundary walls, is less than 20% of the circular area of the exhaust pipe 13 is.
  • the exhaust gas housing and diffuser elements which form a functional unit, are designed to be displaceable as a whole.
  • the unit can be moved into the exhaust pipe 13 at least by the amount necessary to be able to lift the rotor 1 freely from the support bearing 4. Since that Support bearing in the fully assembled system is supported in the interior of the exhaust housing part 6 to be moved, for this purpose it is provided to support the rotor 1 preferably in the plane of the compressor diffuser, not shown.
  • the cooling medium is introduced downstream of the blading into the annular channel 24 between the inner exhaust gas housing part 5 and the inner diffuser boundary wall 10.
  • FIG. 4 it can be seen that the parts of the flow ribs 17 projecting beyond the flow-through channel are perforated both at their inner and at their outer end.
  • the coolant enters the cavity 21 of the ribs through the inner cooling air openings 25 ⁇ (FIG. 6).
  • the front part of this cavity is partitioned off from the end of the profile by a partition 27 which extends over the entire channel height.
  • the supporting ribs 8 are located in an actual cooling space which is flowed through from the inside to the outside in the radial direction.
  • the cooling air flows through the corresponding cooling air openings 25 ⁇ into the ring channel 26 (FIG. 7) between the outer exhaust gas housing part 7 and the outer diffuser boundary wall 9.
  • the medium is directed back to the diffuser inlet, where it is directly behind the trailing edge of the blades 14 the gap flow and the main flow is mixed as aerodynamic ballast.
  • this proportion of cooling air will also have to be taken into account when determining the articulation angle ⁇ Z.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (15)

1. Turbine axiale avec un aubage à réaction, avec des aubes de sortie mobiles (14) traversées sous un nombre de Mach élevé, auxquelles se raccorde un diffuseur avec une sortie axiale débouchant dans une conduite d'échappement (13), caractérisée en ce que
- les angles de déviation (αN, αZ) de l'entrée du diffuseur, aussi bien au moyeu qu'au cylindre, sont fixés exclusivement dans un but d'uniformisation du profil de pression totale sur la hauteur du canal à l'entrée de la dernière rangée d'aubes mobiles, l'angle de déviation (αZ) de la paroi externe (9) du diffuseur s'ouvrant vers l'extérieur par rapport à la direction de limitation de l'écoulement au porte-aubes (2) de la turbine;
- et qu'à l'intérieur de la zone de retardement, il est prévu des moyens pour supprimer le tour­billonnement de l'écoulement tourbillonnant.
2. Turbine suivant la revendication 1, caractérisée en ce que le diffuseur est, en direction radiale, subdivisé en plusieurs diffuseurs partiels (16) au moyen de déflecteurs (15) guidant l'écoulement.
3. Turbine suivant la revendication 2, caractérisée en ce que les déflecteurs (15) sont des anneaux d'une seule pièce sans joint d'assemblage, qui s'étendent au moins en partie sur toute la longueur du diffuseur.
4. Turbine suivant la revendication 1, caractérisée en ce que la partie finale du diffuseur forme un diffuseur de Carnot dans le plan de l'arête de sortie (18) des moyens pour supprimer le tourbillonnement.
5. Turbine suivant la revendication 1, caractérisée en ce que les moyens pour supprimer le tourbillonnement sont au moins trois ailettes d'écoulement (17) à profil épais, uniformément réparties sur la périphérie, qui s'étendent radialement sur toute la hauteur du canal parcouru par l'écoulement.
6. Turbine suivant la revendication 5, caractérisée en ce que, dans la zone amont des ailettes d'écoulement (17) jusqu'à leur plus forte épaisseur, il n'y a pas d'augmentation de section dans le diffuseur.
7. Turbine suivant la revendication 5, caractérisée en ce que les ailettes d'écoulement (17) présentent, suivant leur dimension radiale, une cavité (21) à travers laquelle on peut atteindre l'intérieur (22) du moyeu du diffuseur.
8. Turbine suivant les revendications 3 et 5, caractérisée en ce que les ailettes d'écoulement (17) forment des corps de support pour les déflecteurs (15), de telle sorte que les anneaux ainsi évidés sont fixés, de préférence soudés, aux ailettes d'écoulement (17) suivant la dimension longitudinale du profil.
9. Turbine suivant la revendication 5, caractérisée en ce que l'arête amont des ailettes d'écoulement (17) se trouve à une distance du plan de sortie de l'aubage de la turbine où le rapport des sections du diffuseur est au moins égal à 2, et de préférence égal à 3.
10. Turbine suivant la revendication 8, caractérisée en ce qu'une partie des déflecteurs (15) ne s'étend, dans la direction longitudinale de la machine, que jusqu'à un plan dans lequel les ailettes d'écoulement (17) présentent la plus forte épaisseur du profil.
11. Turbine suivant la revendication 7, caractérisée en ce que le diffuseur s'appuie dans un corps d'échappement (5) qui est boulonné au corps de la turbine (3), les parties (6) du corps d'échappement situées à l'intérieur du côté du moyeu sont reliées aux parties (7) du corps d'échappement situées à l'extérieur et entourant le diffuseur par des nervures porteuses (8) qui traversent de préférence la cavité (21) des ailettes d'écoulement (17).
12. Turbine suivant la revendication 11, caractérisée en ce que les nervures porteuses (8) sont creuses et accessibles.
13. Turbine suivant la revendication 11, caractérisée en ce que les parties du corps d'échappement situées à l'intérieur et à l'extérieur (6, 7) forment des coquilles d'une seule pièce sans joint d'assemblage.
14. Turbine suivant la revendication 11, caractérisée en ce que l'unité corps d'échappement/diffuseur peut coulisser axialement dans la conduite d'échappement (13).
15. Turbine suivant la revendication 11, caractérisée en ce que, pour guider l'air de refroidissement, le canal annulaire interne (24) formé par la partie intérieure (6) du corps d'échappement et par la paroi intérieure (10) du diffuseur et le canal annulaire externe (26) formé par la partie extérieure (7) du corps d'échappement et par la paroi extérieure (9) du diffuseur, sont raccordés l'un à l'autre par la cavité (21).
EP87112769A 1986-09-26 1987-09-02 Turbine axiale Expired - Lifetime EP0265633B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3876/86A CH672004A5 (fr) 1986-09-26 1986-09-26
CH3876/86 1986-09-26

Publications (2)

Publication Number Publication Date
EP0265633A1 EP0265633A1 (fr) 1988-05-04
EP0265633B1 true EP0265633B1 (fr) 1991-02-06

Family

ID=4265384

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87112769A Expired - Lifetime EP0265633B1 (fr) 1986-09-26 1987-09-02 Turbine axiale

Country Status (6)

Country Link
US (1) US4802821A (fr)
EP (1) EP0265633B1 (fr)
JP (1) JP2820403B2 (fr)
AU (1) AU603136B2 (fr)
CH (1) CH672004A5 (fr)
DE (1) DE3767965D1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0417433A1 (fr) * 1989-09-12 1991-03-20 Asea Brown Boveri Ag Turbine axiale
EP0581978A1 (fr) * 1992-08-03 1994-02-09 Asea Brown Boveri Ag Diffuseur à zones multiples pour turbomachine
US5588799A (en) * 1994-06-29 1996-12-31 Abb Management Ag Diffusor for a turbo-machine with outwardly curved guided plate
US6533546B2 (en) 2000-07-31 2003-03-18 Alstom (Switzerland) Ltd. Low-pressure steam turbine with multi-channel diffuser
EP2594741A2 (fr) 2011-11-17 2013-05-22 Alstom Technology Ltd Diffuseur, en particulier pour une machine à flux axial

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297930A (en) * 1991-12-31 1994-03-29 Cornell Research Foundation, Inc. Rotating stall suppression
US5494405A (en) * 1995-03-20 1996-02-27 Westinghouse Electric Corporation Method of modifying a steam turbine
US5743710A (en) * 1996-02-29 1998-04-28 Bosch Automotive Motor Systems Corporation Streamlined annular volute for centrifugal blower
WO1999020874A1 (fr) * 1997-10-17 1999-04-29 Zakrytoe Aktsionernoe Obschestvo 'entek' Conduit d'evacuation pour turbine a vapeur
DE19803161C2 (de) * 1998-01-28 2000-03-16 Alstom Energy Syst Gmbh Gasturbinenschalldämpfer mit Diffusor
DE19821889B4 (de) 1998-05-15 2008-03-27 Alstom Verfahren und Vorrichtung zur Durchführung von Reparatur- und/oder Wartungsarbeiten im Innengehäuse einer mehrschaligen Turbomaschine
DE19846224A1 (de) * 1998-10-07 2000-04-20 Siemens Ag Dampfturbine mit einem Abdampfgehäuse
DE10051223A1 (de) 2000-10-16 2002-04-25 Alstom Switzerland Ltd Verbindbare Statorelemente
US6807803B2 (en) * 2002-12-06 2004-10-26 General Electric Company Gas turbine exhaust diffuser
JP4040556B2 (ja) * 2003-09-04 2008-01-30 株式会社日立製作所 ガスタービン設備及び冷却空気供給方法
US20110176917A1 (en) * 2004-07-02 2011-07-21 Brian Haller Exhaust Gas Diffuser Wall Contouring
US7100358B2 (en) * 2004-07-16 2006-09-05 Pratt & Whitney Canada Corp. Turbine exhaust case and method of making
US7909569B2 (en) * 2005-06-09 2011-03-22 Pratt & Whitney Canada Corp. Turbine support case and method of manufacturing
US20110076146A1 (en) * 2009-09-30 2011-03-31 Falcone Andrew J Wind turbine electrical generating system with combined structural support members and straightening vanes
US8313286B2 (en) * 2008-07-28 2012-11-20 Siemens Energy, Inc. Diffuser apparatus in a turbomachine
US8591184B2 (en) * 2010-08-20 2013-11-26 General Electric Company Hub flowpath contour
US8628297B2 (en) * 2010-08-20 2014-01-14 General Electric Company Tip flowpath contour
US20130091865A1 (en) * 2011-10-17 2013-04-18 General Electric Company Exhaust gas diffuser
US9267687B2 (en) 2011-11-04 2016-02-23 General Electric Company Combustion system having a venturi for reducing wakes in an airflow
US8899975B2 (en) 2011-11-04 2014-12-02 General Electric Company Combustor having wake air injection
US20130180245A1 (en) * 2012-01-12 2013-07-18 General Electric Company Gas turbine exhaust diffuser having plasma actuator
PL221113B1 (pl) * 2012-01-25 2016-02-29 Gen Electric Układy dyfuzora wydechowego turbiny
EP2685054B1 (fr) * 2012-07-09 2020-11-25 ABB Schweiz AG Diffuseur d'une turbine de gaz d'échappement
WO2014158283A1 (fr) * 2013-03-14 2014-10-02 Bronwyn Power Amortisseur subsonique
WO2014175763A1 (fr) * 2013-04-25 2014-10-30 Siemens Aktiengesellschaft Turbomachine et dispositif d'utilisation de chaleur perdue
US9322553B2 (en) 2013-05-08 2016-04-26 General Electric Company Wake manipulating structure for a turbine system
US9739201B2 (en) 2013-05-08 2017-08-22 General Electric Company Wake reducing structure for a turbine system and method of reducing wake
US9435221B2 (en) 2013-08-09 2016-09-06 General Electric Company Turbomachine airfoil positioning
US20150059312A1 (en) * 2013-08-29 2015-03-05 General Electric Company Exhaust stack having a co-axial silencer
US9598981B2 (en) * 2013-11-22 2017-03-21 Siemens Energy, Inc. Industrial gas turbine exhaust system diffuser inlet lip
US9617873B2 (en) * 2014-09-15 2017-04-11 Siemens Energy, Inc. Turbine exhaust cylinder / turbine exhaust manifold bolted stiffening ribs
EP3159501A1 (fr) * 2015-10-21 2017-04-26 Siemens Aktiengesellschaft Moteur d'écoulement comprenant un agencement de sortie
US10563543B2 (en) * 2016-05-31 2020-02-18 General Electric Company Exhaust diffuser
US20190145284A1 (en) * 2017-11-13 2019-05-16 National Chung Shan Institute Of Science And Technology Exhaust channel of microturbine engine
US11028778B2 (en) 2018-09-27 2021-06-08 Pratt & Whitney Canada Corp. Engine with start assist
KR102350377B1 (ko) * 2020-03-20 2022-01-14 두산중공업 주식회사 유동박리 현상을 줄이는 배기 디퓨저의 허브 구조
CN113757021A (zh) * 2021-09-24 2021-12-07 广西桂冠电力股份有限公司大化水力发电总厂 水轮机大轴中心测量方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE697997C (de) * 1936-06-23 1940-10-29 Siemens Schuckertwerke Akt Ges Luftkanal hinter einem Axialgeblaese mit Diffusor
US2538739A (en) * 1946-03-27 1951-01-16 Joy Mfg Co Housing for fan and motor
US2828939A (en) * 1950-09-20 1958-04-01 Power Jets Res & Dev Ltd Support of turbine casings and other structure
FR1104644A (fr) * 1954-02-15 1955-11-22 Thomson Houston Comp Francaise Perfectionnements aux systèmes de commande de l'écoulement d'un fluide
GB846329A (en) * 1957-12-12 1960-08-31 Napier & Son Ltd Combustion turbine power units
DE1227290B (de) * 1959-11-04 1966-10-20 Otto Schiele Dr Ing Diffusoranordnung kurzer Baulaenge mit einem Profilgitter am Anfang und/oder am Endedes divergierenden Diffusorteiles
CH484358A (de) * 1968-02-15 1970-01-15 Escher Wyss Ag Abströmgehäuse einer axialen Turbomaschine
US3631672A (en) * 1969-08-04 1972-01-04 Gen Electric Eductor cooled gas turbine casing
US4013378A (en) * 1976-03-26 1977-03-22 General Electric Company Axial flow turbine exhaust hood
FR2401311A1 (fr) * 1977-08-25 1979-03-23 Europ Turb Vapeur Dispositif d'echappement pour turbine axiale a fluide condensable
JPS5672206A (en) * 1979-11-14 1981-06-16 Nissan Motor Co Ltd Diffuser with collector
DE3168712D1 (de) * 1980-03-10 1985-03-21 Rolls Royce Diffusion apparatus
DE3206626A1 (de) * 1982-02-24 1983-09-01 Kraftwerk Union AG, 4330 Mülheim Abgaskanal fuer gasturbinen
IT1153351B (it) * 1982-11-23 1987-01-14 Nuovo Pignone Spa Diffusore compatto perfezionato, particolarmente adatto per turbine a gas di grande potenza
JPS60196414A (ja) * 1984-03-16 1985-10-04 Hitachi Ltd ガスタ−ビンダクトの整流装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0417433A1 (fr) * 1989-09-12 1991-03-20 Asea Brown Boveri Ag Turbine axiale
US5102298A (en) * 1989-09-12 1992-04-07 Asea Brown Boveri Ltd. Axial flow turbine
EP0581978A1 (fr) * 1992-08-03 1994-02-09 Asea Brown Boveri Ag Diffuseur à zones multiples pour turbomachine
US5338155A (en) * 1992-08-03 1994-08-16 Asea Brown Boveri Ltd. Multi-zone diffuser for turbomachine
US5588799A (en) * 1994-06-29 1996-12-31 Abb Management Ag Diffusor for a turbo-machine with outwardly curved guided plate
US5707208A (en) * 1994-06-29 1998-01-13 Asea Brown Boveri Ag Diffusor for a turbo-machine with outwardly curved guide plate
US6533546B2 (en) 2000-07-31 2003-03-18 Alstom (Switzerland) Ltd. Low-pressure steam turbine with multi-channel diffuser
EP2594741A2 (fr) 2011-11-17 2013-05-22 Alstom Technology Ltd Diffuseur, en particulier pour une machine à flux axial
DE102011118735A1 (de) 2011-11-17 2013-05-23 Alstom Technology Ltd. Diffusor, insbesondere für eine axiale strömungsmaschine

Also Published As

Publication number Publication date
AU603136B2 (en) 1990-11-08
DE3767965D1 (de) 1991-03-14
EP0265633A1 (fr) 1988-05-04
US4802821A (en) 1989-02-07
JPS6390630A (ja) 1988-04-21
CH672004A5 (fr) 1989-10-13
AU7880287A (en) 1988-03-31
JP2820403B2 (ja) 1998-11-05

Similar Documents

Publication Publication Date Title
EP0265633B1 (fr) Turbine axiale
EP0581978B1 (fr) Diffuseur à zones multiples pour turbomachine
DE3447717C2 (de) Axial durchströmtes Bläsertriebwerk
DE69726626T2 (de) Dreikanal-Diffusor für ein Gasturbinentriebwerk
EP0781967B1 (fr) Chambre de combustion annulaire pour turbine à gaz
EP1141628B1 (fr) Bruleur pour generateur de chaleur
DE4422700A1 (de) Diffusor für Turbomaschine
DE1601564A1 (de) Mantelring fuer Gasturbinenanlagen
DE2632427A1 (de) Diffusor-brennkammergehaeuse fuer ein gasturbinentriebwerk
DE102004022063A1 (de) Abgasdiffusor für eine Axialströmungsturbine
EP0589215B1 (fr) Turbine à gaz avec carter d'échappement et conduit d'échappement
DE2707063A1 (de) Mischer fuer eine fan-triebwerksanlage
EP0491966B1 (fr) Dispositif de support d'une turbomachine thermique
EP0489193B1 (fr) Chambre de combustion pour turbine à gaz
DE3309268C2 (fr)
DE60200420T2 (de) Abblasvorrichtung eines Bläsertriebwerks
DE102011055109A1 (de) Anlage zum Lenken des Luftstroms in einer Kraftstoffdüsenanordnung
EP0590310B1 (fr) Turbine à gaz avec carter d'échappement bridé
DE1626114A1 (de) Gasturbinenstrahltriebwerk
CH694257A5 (de) Dampfturbine.
DE3317723A1 (de) Gasturbinentriebwerk
EP0751351B1 (fr) Chambre de combustion
DE3424141A1 (de) Luftspeicher-gasturbine
DE7502516U (de) Thermische turbomaschine, insbesondere niederdruck-dampfturbine
CH654625A5 (de) Einlassgehaeuse einer dampfturbine.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB LI NL

17P Request for examination filed

Effective date: 19880819

17Q First examination report despatched

Effective date: 19881227

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI NL

REF Corresponds to:

Ref document number: 3767965

Country of ref document: DE

Date of ref document: 19910314

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AG GRPA3 ERL S

Effective date: 19911030

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AG

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 19930128

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950823

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950915

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960930

Ref country code: CH

Effective date: 19960930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970401

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030827

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030903

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040902

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO