EP0258348B1 - Procede et dispositif de post-combustion des gaz d'echappement de processus industriels - Google Patents

Procede et dispositif de post-combustion des gaz d'echappement de processus industriels Download PDF

Info

Publication number
EP0258348B1
EP0258348B1 EP87901447A EP87901447A EP0258348B1 EP 0258348 B1 EP0258348 B1 EP 0258348B1 EP 87901447 A EP87901447 A EP 87901447A EP 87901447 A EP87901447 A EP 87901447A EP 0258348 B1 EP0258348 B1 EP 0258348B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
temperature
purified
process exhaust
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87901447A
Other languages
German (de)
English (en)
Other versions
EP0258348A1 (fr
Inventor
Herbert Jörg OBERMÜLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grace GmbH
Original Assignee
Grace GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grace GmbH filed Critical Grace GmbH
Priority to AT87901447T priority Critical patent/ATE50353T1/de
Publication of EP0258348A1 publication Critical patent/EP0258348A1/fr
Application granted granted Critical
Publication of EP0258348B1 publication Critical patent/EP0258348B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/101Arrangement of sensing devices for temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/40Supplementary heat supply

Definitions

  • the invention relates to a method for the controlled thermal afterburning of process exhaust gas containing oxidizable constituents and to an apparatus for carrying out the method according to the preambles of claims 1 and 4.
  • US-A-2 905 523 shows a method for treating exhaust gas which is used for the catalytic combustion of soot and combustible dusts together with gaseous constituents.
  • this method uses the recirculation and mixing of part of the burned hot gas into the cold gas as an alternative for the otherwise conventional recuperative heat exchange and for starting the system in a circuit.
  • This feedback ensures the ignition level, ie the maintenance of the minimum bed temperature in the catalytic converter.
  • the method knows the feeding of air into the main and a by-pass stream of the unpurified exhaust gas, for the purpose of oxygen enrichment in the event of its lack, or also for the purpose of dilution when the flammable substance is too high.
  • thermocouples are inserted in protective tubes in a practical design and thus temperature peaks are delayed, reduced or not registered at all. This fact also does not promote the lifespan of post-combustion devices. Smaller volumetric flow fluctuations - as they can occur due to the process - usually also have an adverse effect on the combustion chamber temperature. The effects of these fluctuations can be compared with those resulting from a fluctuating input of flammable substances.
  • the 'total heat quantity' is to be understood as the enthalpy of the process gas to be cleaned, including the heat quantities introduced by the combustible substance and still supplied by the burner in the minimum position.
  • this is determined by a high degree of preheating, but also by the temperature of the exhaust air brought in from the production process. With increasing exhaust air temperature from production, the preheating temperature also rises further, so that the total absorption capacity for combustible substances decreases.
  • the conventional technology therefore uses - in order to reduce the degree of preheating of the exhaust air - the principle of bypassing one or both sides of the mostly recuperative heat exchangers, each with part quantities of exhaust air volume flows, i.e. by-pass technology.
  • Bypass or by-pass techniques in post-combustion devices always have the property that bypassing on one side (hot side or cold side) that the mass of the heat exchanger - due to the regulation of the by-pass - must constantly find a new heat balance; in other words: the mass of the heat exchanger is moved back and forth in its temperature level. If a heat exchanger is partially circumnavigated on the hot gas side, this has the consequence that the change in the preheating temperature can only be achieved by changing the thermal equilibrium of the entire mass of the heat exchanger, i.e. only by means of a very slow process. The latter is therefore not suitable as a spontaneous regulator and is therefore less common.
  • the by-pass systems are also complex in terms of construction, detailed technology, assembly and commissioning. They require an increased amount of service during operation.
  • the object of the present invention is to develop the method of the type described in the introduction such that a continuous adjustment of the heat output of the burner as a result of concentration fluctuations of the oxidizable constituents in the process exhaust gas does not have to take place, so that in particular temperature peaks are avoided, at the same time being ensured It is intended that a rise in the impurity concentration of the process exhaust gas to be fed to the combustion device, which exceeds the usual values, can be coped with without problems, and in particular that material stresses and fatigue caused by high temperature change rates are avoided.
  • the concentration of the oxidizable constituents in the combustion chamber is kept at an adjustable value and that the inlet temperature of the gas mixture to be cleaned consisting of process exhaust gas, purified process exhaust gas and fresh air to be supplied to a gas mixture adjustable value is kept.
  • the amount increases with the amount and in a controlled manner grow the concentration of combustible substance, cleaned process exhaust gas mixed in with fresh air.
  • the admixture is carried out at any time in the amount required to maintain the temperature in the combustion chamber in accordance with its setpoint. The burner itself remains at a minimum during the mixing operation and no longer intervenes in the process.
  • the production of the mixed air temperature is the responsibility of a second control circuit, by means of which it is decided whether more or less warm cleaned exhaust gas or cold fresh air is added.
  • the measure for this control task is the respective deviation of the actual exhaust gas temperature from its target temperature.
  • the inlet temperature of the gas mixture to be supplied to the afterburning device and consisting of process exhaust gas to be cleaned, purified process exhaust gas and fresh air is kept at an adjustable value.
  • the concentration of the oxidizable constituents is always adjusted in a constant manner after the burner minimum has been reached so that the amount of heat released from the combustion of the oxidizable constituents keeps the combustion chamber temperature exactly at the desired level, that is to say it does not drop or rise.
  • the measure of the admixture of air to the unpurified process air is then the excess amount of combustible substance above the maximum possible capacity with a burner base load.
  • Another variable defines the mixture of more or less warm air and cold air in metering mode: the level of the process air temperature. If this temperature is also above the nominal value, fresh air will only flow in first when mixed air is requested and warm air will only flow in after the nominal temperature has been reached.
  • a device is characterized in that there is a connection between the device and the gas supply, via which process exhaust gas cleaned to the desired extent within the device can be circulated in that the regulation of the temperature of the to be cleaned Process exhaust gas to be admixed cleaned process exhaust gas or the fresh air via control elements such as flaps, the controlled variable of which can be determined by the temperature which the gas mixture consisting of exhaust gas to be cleaned and cleaned exhaust gas and / or fresh air has on the pressure side of the blower, and that the heat exchanger tubes are bent outwards at their cold ends and the process exhaust gas can flow around them.
  • the connection preferably runs between the process exhaust gas outlet and the feed. This gives the possibility of using structurally simple means without them running inside the device and z.
  • B. have flap mechanisms, the process exhaust gas to be cleaned to the extent required to supply cleaned process exhaust gas and / or air in order to have the proportion of the oxidizable constituents at a constant value and to correct the temperature of the process gas.
  • combustion devices are designed in such a way that a connection is made between the process exhaust gas outlet and the process exhaust gas supply, which allows exhaust gas which has been cleaned to the desired extent to be circulated or recirculated, always with the same, more or less fresh air mixed.
  • the mixed air thus generated is admixed with the process exhaust gas near the suction side of the process exhaust gas blower.
  • the warm air is recirculated externally and using simple design means.
  • the dosing of the warm air and the cold air each take over an independent control body, i.e. Flaps or valves.
  • the temperature controller which is responsible for the constancy of the combustion chamber temperature, determines the total amount of air to be conveyed.
  • a conventional excess energy control is to be illustrated with the aid of FIG. 1, the essential elements of the afterburning device (10) being shown purely schematically.
  • the process gas to be cleaned is brought to the afterburning device via a blower (12) and the process gas or process exhaust gas or carrier gas supply (14). Then the process gas to be cleaned flows through a heat exchanger (16) in order to reach a combustion chamber (18) in which the oxidizable components are burned, provided that they have not already been burned in the heat exchanger part.
  • the combustion chamber (18) can emanate from a burner (20) via a high-speed pipe (not shown), the fuel supply of which can be adjusted via a control valve (22). From the combustion chamber (18) the Purified exhaust gas passes again through the heat exchanger (16) to preheat in this still to be cleaned process gas recuperator t i v.
  • the cleaned exhaust gas is then discharged via a line (24). If there are major fluctuations in the process gas with regard to the concentration of the constituents to be oxidized - that is, in the line (14) - bypasses (26) and (28) are provided, which counteract the increase in temperature in the combustion chamber (18). that by partially bypassing the heat exchanger (16) they lower the level of the preheating as much as the increase (fluctuation) in the concentration of combustible substance requires.
  • the burner (22) fires in its control minimum as long as the excessive supply of combustible substance continues.
  • the by-pass control (26) is designed as a connection for cold gases and the by-pass control (28) for hot gases.
  • Each by-pass control (26) or (28) has a line (30) or (32) running in / or around the device (10), which has control mechanisms such as valves (34.1) or (36.1) in order to drive the bypass in a modulating manner or to put it out of operation.
  • the by-pass arrangement (26) between the cold process gas flowing in the line (14) and the burner antechamber - in the schematic representation the line opens into the combustion chamber 18).
  • the by-pass arrangement (28) established a connection between the combustion chamber (18) and the exhaust gas outlet (24).
  • the devices downstream of the device (10) for utilizing residual heat in the cleaned exhaust air are shown in FIG. 1 in the form of a hot water / air heat exchanger.
  • the device comprises a heat exchanger (65), the by-pass control element represented by flaps (63.1) and (63.2) to increase or decrease the heat to be changed, the by-pass line (62) and the reunification line (64 ), and from the water circuit (61) with its consumers (67) and its circuit pump (66).
  • the cleaned and cooled in the heat exchanger (16) exhaust air is tapped at the exhaust outlet (24) - illustrated by the connection point (42), from where it flows in the line (44) to the union (47), which can have mixing properties.
  • the amount of cleaned air required or requested is provided by means of a control flap (46.1).
  • the adequate amount of fresh air flows through the control system like the control flap (46.2) to the mixing point (47).
  • Both quantities - now as a mixed air quantity - are drawn in by means of negative pressure in the line (48).
  • the line (48) opens into the process exhaust air line (14), in which this vacuum or suction pressure is kept constant.
  • the mixture of process exhaust air and added air is then conveyed from the blower (38) via line (14.1) to the heat exchanger (16).
  • the preheating does not change, nor does the combustion chamber temperature.
  • the burner burns in the control minimum, because the responsibility for the complete constancy has taken over the control described here immediately when the control minimum of the burner is reached and also keeps this responsibility until the amount of combustible substance in the exhaust gas drops again enough that the metering operation finished and the burner can take over the control task again.
  • the control system corrects itself automatically by raising the exhaust gas temperature by preferably supplying hot air. This also prevents the formation of condensate in the pipeline and in the inlet area of the combustion device. I.e. If the risk of condensate is particularly high, namely at high concentrations of condensable components and at low temperature, the described control reacts to the tendency towards condensation.
  • the first-mentioned case represents an economy mode with a very small warm air volume flow.
  • the warm air temperature corresponds exactly to the nominal process gas temperature.
  • the temperature controller (15.1) produces the mixture temperature exactly.
  • the start-up mode using warm air allows a faster and more economical start-up than with caftar air.
  • the areas between the blower (38) and the heat exchanger (16) are successively brought to higher temperatures until the system is ready for operation at a level at which the risk of condensate in the hazardous areas is switched off when switching to process conditions.
  • FIG. 3 shows a basic illustration of an afterburning device on the basis of which the teaching according to the invention can be implemented.
  • An internal annular space (66) runs concentrically to the high-speed mixing tube (62) and merges into the space (68) in which the heat exchanger tubes (70) are arranged concentrically to the longitudinal axis (58).
  • the heat exchanger tubes (70) themselves open into an outer annular space (72) adjoining the outer wall (52), which passes into the inlet (74).
  • An annular chamber (76) is also provided, which merges into the outlet (78).
  • the ends (80) of the heat exchanger tubes (70) are bent outwards in the area of the outlet (78), that is to say towards the wall (52), so as to open almost perpendicularly into the wall (82) of the outer annular space (72) .
  • the other ends (84) of the heat exchanger tubes (70) open into a tube plate (86) which separates a pre-combustion chamber (88) surrounding the burner (60) from the chamber (68).
  • a connection (100) or the outlet (78) is connected to a mixing device, not shown, which corresponds to the mixing device (46) and (47) shown in FIG. 2.
  • the process gas to be combusted by the device according to the invention is fed via the inlet (74) with the annular space (72) in order to in via the heat exchanger tubes (70), the burner stem (90), the Coanda nozzle (96), the high-speed tube (62) the main combustion chamber (64) to be directed.
  • the cleaned exhaust gas can then be discharged to the outlet (78) via the ring channel (66) and the space (68) in which the heat exchanger tubes (70) run.
  • the connection (100), from which the cleaned exhaust gas for mixing with process gas still to be cleaned is removed, is not within the device (10), the mixing proposed according to the invention is consequently possible without any design effort on the device (10), thus increasing the concentration to keep the oxidizable constituents at the tolerance level.
  • the device (50) according to the invention is easy to maintain and ensures a high degree of functional reliability.
  • the thermal afterburning system considered here is designed for a maximum of 15,000 m 3 o / h and is equipped with a heat exchanger efficiency of 76%.
  • the nominal exhaust gas temperature is 160 ° C in the example, but it effectively deviates from it.
  • the combustion chamber temperature must be kept constant at 760 ° C.
  • the system presented is equipped with a special burner which takes the oxygen it needs for combustion from the exhaust gas (secondary air burner; combustor burner).
  • the minimum output of the burner (- lower end of the control range) is 67.8 KWh / h.
  • the system is fed from various individual sources. Depending on the source and the number of sources, the volume flows are different and the exhaust gas temperature and above all the amount and concentration of combustible substances in the exhaust gas vary.
  • the flammable substances are mineral oils. Three different operating conditions are examined. The results are shown in a table.
  • the concentration of the oxidizable components in the exhaust gas is lower than the capacity of the system with this volume flow would allow. Therefore, the burner regulates the missing amount of energy exactly through its modulating throughput of fuel, without the control according to the invention having to be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Control Of Combustion (AREA)

Abstract

Un procédé et un dispositif sont utilisés pour la combustion thermique des composants oxydables de gaz utilisés dans des processus industriels. Les gaz sont conduits à travers un dispositif (10) de post-combustion comprenant parmi d'autres éléments une chambre de combustion (18) et une sortie de gaz (24). Les gaz d'échappement nettoyés éliminés par la sortie de gaz (24) sont mélangés aux gaz utilisés dans le processus industriel afin de maintenir constante leur concentration.

Claims (6)

1. Procédé de post-combustion thermique contrôlable de gaz d'échappement de processus industriels contenant des composants oxydables qui sont conduits à travers un dispositif de post-combustion dans lequel les gaz d'échappement de processus industriels franchissant une entrée de gaz, un échangeur de chaleur, un brûleur, une chambre de combustion pour arriver épurés à une sortie de gaz par l'intermédiaire de l'échangeur de chaleur, en même temps qu'il est mélangé aux gaz d'échappement de processus industriels à amener au dispositif de postcombustion des gaz d'échappement de processus industriels épurés, dans la proportion désirée, conjointement avec de l'air frais, caractérisé par les étapes du procédé:
a) la concentration des composants oxydables dans la chambre de post-combustion est maintenue à une valeur réglable,
b) la température d'entrée du mélange de gaz à diriger sur le dispositif de post-combustion, qui est composé de gaz d'échappement de processus industriels à épurer, de gaz d'échappement de processus industriels épurés et d'air frais est maintenue à une valeur réglable.
2. Procédé selon la revendication 1, caractérisé en ce que le brûleur fonctionne avec le réglage minimum (charge de base).
3. Procédé selon la revendication 1, caractérisé en ce qu'il est mélangé aux gaz d'échappement de processus industriels à épurer, du gaz d'échappement épuré, après que celui-ci a balayé l'échangeur de chaleur.
4. Dispositif pour la post-combustion thermique contrôlée de gaz d'échappement de processus industriels contenant des composants oxydables, comportant une arrivée de gaz, un brûleur avec un tube mélangeur à grande vitesse se raccordant à celui-ci, une chambre de combustion, un échangeur de chaleur avec des tubes échangeurs de chaleur recourbés à une extrémité qui sont disposés concentriquement au tube mélangeur à grande vitesse, et une sortie de gaz, pour l'exécution du procédé, selon la revendication 1, caractérisé en ce qu'il existe entre le dispositif (10, 50) et l'arrivée de gaz (14, 48, 74) une jonction (44), au moyen de laquelle du gaz d'échappement de processus industriels épuré peut être conduit dans le circuit dans la proportion désirée à l'intérieur du dispositif (10, 50), en ce que la régulation de la température du gaz d'échappement épuré ou de l'air frais à mélanger au gaz d'échappement à épurer s'effectue au moyen d'organes de réglage dont la grandeur réglable est déterminable au moyen de la température, qui présente, sur le côté de refoulement d'une soufflerie (38), le mélange de gaz constitué par les gaz d'échappement à épurer et par les gaz d'échappement épuré et/ou par l'air frais, et en ce que les tubes échangeurs de chaleurs (70) sont recourbés à leurs extrémités froides et peuvent être balayés par le gaz d'échappement épuré.
5. Dispositif selon la revendication 4, caractérisé en ce qu'il peut être produit, du côté d'aspiration de la soufflerie (38), une dépression, au moyen de laquelle des gaz d'échappement épurés et de l'air frais peuvent être amenés dans la proportion désirée aux gaz d'échappement à épurer.
6. Dispositif selon la revendication 4, caractérisé en ce que la régulation de la concentration des composants oxydables des gaz d'échappement à consumer thermiquement dans la chambre de combustion (18, 64, 94) est effectuée en fonction de la température dans la chambre de combustion, le brûleur (60) fonctionnant avec le réglage minimum.
EP87901447A 1986-02-20 1987-02-17 Procede et dispositif de post-combustion des gaz d'echappement de processus industriels Expired - Lifetime EP0258348B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87901447T ATE50353T1 (de) 1986-02-20 1987-02-17 Verfahren und vorrichtung zum nachverbrennen von prozess-abgas.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3605415 1986-02-20
DE19863605415 DE3605415A1 (de) 1986-02-20 1986-02-20 Verfahren und vorrichtung zum verbrennen oxidierbarer bestandteile in einem traegergas

Publications (2)

Publication Number Publication Date
EP0258348A1 EP0258348A1 (fr) 1988-03-09
EP0258348B1 true EP0258348B1 (fr) 1990-02-07

Family

ID=6294527

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87901447A Expired - Lifetime EP0258348B1 (fr) 1986-02-20 1987-02-17 Procede et dispositif de post-combustion des gaz d'echappement de processus industriels

Country Status (7)

Country Link
US (2) US4820500A (fr)
EP (1) EP0258348B1 (fr)
AU (1) AU592634B2 (fr)
CA (1) CA1305041C (fr)
DE (2) DE3605415A1 (fr)
ES (1) ES2004102A6 (fr)
WO (1) WO1987005090A1 (fr)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH675904A5 (fr) * 1987-12-01 1990-11-15 Peter Koenig
US5033414A (en) * 1988-03-15 1991-07-23 American Hydrotherm Corporation Heat recovery system
US5101772A (en) * 1988-03-15 1992-04-07 American Hydrotherm Corp. Heat recovery system
US4915038A (en) * 1989-06-22 1990-04-10 The Marquardt Company Sudden expansion (SUE) incinerator for destroying hazardous materials and wastes and improved method
DE59000936D1 (de) * 1990-03-10 1993-04-01 Krantz H Gmbh & Co Verfahren und vorrichtung zum verbrennen von in einem medienstrom enthaltenen stoerstoffen.
US5286459A (en) * 1992-07-30 1994-02-15 Feco Engineered Systems, Inc. Multiple chamber fume incinerator with heat recovery
US5425630A (en) * 1993-11-04 1995-06-20 Dutescu; Cornel Kinetic dissociator
US5427746A (en) * 1994-03-08 1995-06-27 W. R. Grace & Co.-Conn. Flow modification devices for reducing emissions from thermal voc oxidizers
US5460511A (en) * 1994-05-04 1995-10-24 Grahn; Dennis Energy efficient afterburner
DE19520228A1 (de) * 1995-06-01 1996-12-05 Gimborn Probat Werke Anordnung zum Rösten von pflanzlichem Schüttgut, insbesondere Kaffeebohnen
US5968320A (en) * 1997-02-07 1999-10-19 Stelco, Inc. Non-recovery coke oven gas combustion system
FR2788588A1 (fr) * 1999-01-14 2000-07-21 Pillard Chauffage Procede et dispositif d'incineration de gaz polluant
US6372009B1 (en) 1999-08-20 2002-04-16 Kvaerner Metals Method for reducing CO and VOC's in steelmaking furnace off-gas stream without forming or exhausting undesirable products
US6247315B1 (en) 2000-03-08 2001-06-19 American Air Liquids, Inc. Oxidant control in co-generation installations
JP4428818B2 (ja) * 2000-06-05 2010-03-10 株式会社日本触媒 廃ガス処理装置
GB2424829B (en) * 2002-02-15 2007-02-28 Stanley Frederick Gouldson Improved pinch grip hangers
GB2397874B (en) * 2002-11-14 2005-03-30 Edwin Robinson An indirect fired process heater
US20080028754A1 (en) * 2003-12-23 2008-02-07 Prasad Tumati Methods and apparatus for operating an emission abatement assembly
US7025810B2 (en) * 2004-01-13 2006-04-11 Arvin Technologies, Inc. Method and apparatus for shutting down a fuel-fired burner of an emission abatement assembly
US20050150219A1 (en) * 2004-01-13 2005-07-14 Crawley Wilbur H. Method and apparatus for controlling the temperature of a fuel-fired burner of an emission abatement assembly
US20050150215A1 (en) * 2004-01-13 2005-07-14 Taylor William Iii Method and apparatus for operating an airless fuel-fired burner of an emission abatement assembly
US7908847B2 (en) * 2004-01-13 2011-03-22 Emcon Technologies Llc Method and apparatus for starting up a fuel-fired burner of an emission abatement assembly
US8641411B2 (en) * 2004-01-13 2014-02-04 Faureua Emissions Control Technologies, USA, LLC Method and apparatus for directing exhaust gas through a fuel-fired burner of an emission abatement assembly
US7685811B2 (en) * 2004-01-13 2010-03-30 Emcon Technologies Llc Method and apparatus for controlling a fuel-fired burner of an emission abatement assembly
US7243489B2 (en) * 2004-01-13 2007-07-17 Arvin Technologies, Inc. Method and apparatus for monitoring engine performance as a function of soot accumulation in a filter
US7118613B2 (en) * 2004-01-13 2006-10-10 Arvin Technologies, Inc. Method and apparatus for cooling the components of a control unit of an emission abatement assembly
US7581389B2 (en) * 2004-01-13 2009-09-01 Emcon Technologies Llc Method and apparatus for monitoring ash accumulation in a particulate filter of an emission abatement assembly
US20050150376A1 (en) * 2004-01-13 2005-07-14 Crawley Wilbur H. Method and apparatus for monitoring the components of a control unit of an emission abatement assembly
US7628011B2 (en) * 2004-01-13 2009-12-08 Emcon Technologies Llc Emission abatement assembly and method of operating the same
US20050150216A1 (en) * 2004-01-13 2005-07-14 Crawley Wilbur H. Method and apparatus for cleaning the electrodes of a fuel-fired burner of an emission abatement assembly
DE102004051491B3 (de) * 2004-07-27 2006-03-02 Eisenmann Maschinenbau Gmbh & Co. Kg Thermische Nachverbrennungsvorrichtung sowie Verfahren zum Betreiben einer solchen
ES1063361Y (es) * 2006-06-30 2007-01-16 Torrente Ind Funda para piscinas
JP4987428B2 (ja) * 2006-11-06 2012-07-25 住友大阪セメント株式会社 高含水率有機系廃棄物の処理方法及び処理装置
US8789363B2 (en) 2007-06-13 2014-07-29 Faurecia Emissions Control Technologies, Usa, Llc Emission abatement assembly having a mixing baffle and associated method
US20090178391A1 (en) * 2008-01-15 2009-07-16 Parrish Tony R Method and apparatus for operating an emission abatement assembly
US20090178395A1 (en) * 2008-01-15 2009-07-16 Huffmeyer Christopher R Method and Apparatus for Regenerating a Particulate Filter of an Emission Abatement Assembly
US20090178389A1 (en) * 2008-01-15 2009-07-16 Crane Jr Samuel N Method and Apparatus for Controlling a Fuel-Fired Burner of an Emission Abatement Assembly
US20090180937A1 (en) * 2008-01-15 2009-07-16 Nohl John P Apparatus for Directing Exhaust Flow through a Fuel-Fired Burner of an Emission Abatement Assembly
US9194582B2 (en) * 2008-07-14 2015-11-24 Cake Energy, Llc Energy recovery and transfer system and process
DE102008037418B3 (de) 2008-10-07 2010-02-18 Reicat Gmbh Verfahren zur Reinigung von Abgasen durch generative Nachverbrennung
CA2721990A1 (fr) * 2009-11-23 2011-05-23 Green Roads Recycling Ltd. Systeme de chauffage a combustion directe, a flux axial et a co- courant pour recyclage de l'asphalte chaud sur place
DE102010012005A1 (de) * 2010-03-15 2011-09-15 Dürr Systems GmbH Thermische Abluftreinigungsanlage
US9513003B2 (en) * 2010-08-16 2016-12-06 Purpose Company Limited Combustion apparatus, method for combustion control, board, combustion control system and water heater
US11391458B2 (en) * 2016-06-27 2022-07-19 Combustion Systems Company, Inc. Thermal oxidization systems and methods
US20190368729A1 (en) 2017-01-16 2019-12-05 Energy2Cleanair Holdings Pty Ltd As Trustee For Energy2Cleanair Unit Trust Post-combustion device and method

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1881206A (en) * 1928-01-11 1932-10-04 Superheater Co Ltd Boiler
US2905523A (en) * 1955-12-19 1959-09-22 Oxy Catalyst Inc Method for the elimination of finely divided carbonaceous material from gas streams
US4199549A (en) * 1964-05-07 1980-04-22 Salem Corporation Method of operating an incinerator
US3549333A (en) * 1968-07-23 1970-12-22 Universal Oil Prod Co Recuperative form of direct thermal incinerator
DE2026237A1 (de) * 1970-05-29 1971-12-09 Zenker K Verfahren zum thermischen Nachverbrennen von Abluft aus Industrieanlagen und Vorrichtung zur Durchführung des Verfahrens
DE2134634A1 (de) * 1970-05-29 1973-01-25 Kurt Dr Ing Zenker Vorrichtung zum thermischen nachverbrennen von abluft aus industrieanlagen
US3754869A (en) * 1971-08-19 1973-08-28 Mahon Ind Corp Fume incinerator
DE2254848B2 (de) * 1972-11-09 1976-08-05 Böhler-Zenkner GmbH & Co KG Strömungstechnik, 4005 Meerbusch Anordnung zur thermischen nachverbrennung
US3827867A (en) * 1972-11-16 1974-08-06 Mobil Oil Corp Production of methane and aromatics
DE2352204B2 (de) * 1973-10-18 1976-01-22 Katec Katalytische Lufttechnik Betz & Co, 6461 Neuenhaßlau Verbrennungseinrichtung zur verbrennung von stoerstoffen in abgasen
DE2452418B2 (de) * 1973-11-05 1977-01-20 Böhler-Zenkner GmbH & Co KG Strömungstechnik, 4005 Meerbusch Anordnung zur thermischen nachverbrennung
GB1419903A (en) * 1974-01-22 1975-12-31 Hunter Eng Co Paint line oven assemblies
US3909953A (en) * 1974-02-28 1975-10-07 Midland Ross Corp Paint drying method and apparatus
DE2538413A1 (de) * 1975-08-29 1977-03-10 Duerr O Fa Anlage zur verbrennung von schadstoffe enthaltender abluft, z.b. aus einer trocknungskammer o.dgl.
CH587444A5 (fr) * 1975-12-15 1977-04-29 Fascione Pietro
US4135874A (en) * 1976-03-31 1979-01-23 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Two stage combustion furnace
DE2643732C3 (de) * 1976-09-29 1981-02-19 Bayer Ag, 5090 Leverkusen Verfahren und Vorrichtung zur Verbrennung von Abgasen
JPS55149633A (en) * 1979-05-10 1980-11-21 Osaka Oxgen Ind Ltd Automatic regulating method of waste gas amount at drying-deodorizing apparatus
US4255132A (en) * 1979-09-12 1981-03-10 Schweitzer Industrial Corp. Incinerator-heater system
DE3014269C2 (de) * 1980-04-14 1982-11-25 Katec, Katalytische Lufttechnik Betz Gmbh & Co, 6467 Hasselroth Verbrennungseinrichtung zur Verbrennung von Störstoffen in Abluft- und Abfallsubstanzen
DE3043286C2 (de) * 1980-04-14 1982-06-16 Katec, Katalytische Lufttechnik Betz Gmbh & Co, 6467 Hasselroth Verbrennungseinrichtung zur Verbrennung von Störstoffen in Abgasen
US4317417A (en) * 1981-01-02 1982-03-02 Samuel Foresto Incinerator apparatus and method of utilizing the cleaned waste gases thereof
US4499055A (en) * 1981-09-14 1985-02-12 Exxon Research & Engineering Co. Furnace having bent/single-pass tubes
FR2556446B1 (fr) * 1983-12-13 1989-03-03 Heckmann Emile Procede de desodorisation d'effluents gazeux par oxydation thermique dans un generateur a pre-pyrolyse et a recuperation de chaleur, et generateur pour la mise en oeuvre de ce procede
DE3532232A1 (de) * 1985-09-10 1987-03-19 Katec Betz Gmbh & Co Vorrichtung zum verbrennen oxidierbarer bestandteile in einem traegergas

Also Published As

Publication number Publication date
DE3761706D1 (de) 1990-03-15
WO1987005090A1 (fr) 1987-08-27
CA1305041C (fr) 1992-07-14
AU7122487A (en) 1987-09-09
EP0258348A1 (fr) 1988-03-09
DE3605415A1 (de) 1987-08-27
ES2004102A6 (es) 1988-12-01
US4983362A (en) 1991-01-08
AU592634B2 (en) 1990-01-18
US4820500A (en) 1989-04-11

Similar Documents

Publication Publication Date Title
EP0258348B1 (fr) Procede et dispositif de post-combustion des gaz d'echappement de processus industriels
EP0714428B1 (fr) Installation d'elimination thermique de dechets et procede permettant le fonctionnement d'une installation de ce type
DE2656840C2 (de) Verfahren und Vorrichtung zur Regelung der Energiezufuhr zu einer Heizvorrichtung für den Verbrennungsraum einer Veraschungseinheit
DE2154062A1 (de) Verfahren und Einrichtung zum Trocknen von ein Lösungsmittel enthaltenden Schichten
DE2120022B2 (de) Verbrennungseinrichtung mit einer behandlungszone zur thermischen behandlung von gegenstaenden
DE2819814B2 (de) Verfahren und Einrichtung zur Entfernung von Lösungsmitteln aus den insbesondere von einer mit Tiefdruckzylindern arbeitenden Druck- oder Verpackungspresse in einen Maschinenraum abgegebenen Abgasen
DE3441475A1 (de) Verfahren zur steuerung eines heisslufterzeugers fuer einen kessel mit kohlefeuerung
DE8413119U1 (de) Rauchgasverbrennungsofen fuer eine brennbare abgase produzierende verarbeitungsanlage
DE69716595T2 (de) Kontrollvorrichtung für den wirkungsgrad von wärmetauschern mittels temperaturüberwachung
DE2716409A1 (de) Verfahren zum vorwaermen von einer verbrennungsanlage zuzufuehrender verbrennungsluft sowie anlage zu dessen durchfuehrung
EP0132584A2 (fr) Procédé et installation pour diminuer l'émission de la matière nocive dans les gaz d'échappement des installations de combustion
CH651375A5 (de) Verbrennungsanlage zur reinigung von industrieabgasen.
DE1813012B1 (de) Verfahren zum Verbrennen von organischen Substanzen in Abwaessern
CH643346A5 (de) Verfahren und heizungsanlage zur nutzung der heissen abgase eines waermeerzeugers.
CH653434A5 (de) Vorrichtung zur thermischen reinigung von abgasen und verfahren zu deren betrieb.
EP2044368B1 (fr) Dispositif thermique de purification des gaz d'échappement et procédé pour la purification thermique des gaz d'échappement
DE2528334A1 (de) Verfahren und ofenanlage fuer die waermebehandlung von werkstuecken
DE102015003856A1 (de) Vorrichtung zur Temperierung von Gegenständen
DE102006040207A1 (de) Energierückgewinnungssystem für brennbare Dämpfe
DE2241891C3 (de) Verfahren und Vorrichtung zur Verbrennung von bei der Reinigung von Koksofengasen anfallenden Ammoniakschwaden
DE3212279C2 (de) Verfahren und Vorrichtung zur Verbrennung H↓2↓S-haltiger Gase
DE3344712C1 (de) Dampferzeuger
DE2621340B2 (de) Abhitzedampferzeuger
EP0049328A1 (fr) Dispositif de récupération de chaleur des gaz d'échappement de plusieurs installations
DE4218016A1 (de) Verfahren und Vorrichtung zur Regelung der Rauchgastemperatur am Austritt eines Dampferzeugers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19880222

17Q First examination report despatched

Effective date: 19880705

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GRACE GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 50353

Country of ref document: AT

Date of ref document: 19900215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3761706

Country of ref document: DE

Date of ref document: 19900315

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 87901447.0

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: PUE

Owner name: GRACE GMBH TRANSFER- SEQUA GMBH & CO. MEGTEC SYSTE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: SEQUA GMBH & CO. MEGTEC SYSTEMS KG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000207

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000210

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000211

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000228

Year of fee payment: 14

Ref country code: NL

Payment date: 20000228

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000412

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

BERE Be: lapsed

Owner name: SEQUA G.M.B.H. & CO. MEGTEC SYSTEMS K.G.

Effective date: 20010228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 87901447.0

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060209

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060215

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070216

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20