EP0239433A1 - Cellule à cristal liquide utilisant l'effet de biréfringence contrôlée électriquement et procédé de fabrication de la cellule - Google Patents

Cellule à cristal liquide utilisant l'effet de biréfringence contrôlée électriquement et procédé de fabrication de la cellule Download PDF

Info

Publication number
EP0239433A1
EP0239433A1 EP87400362A EP87400362A EP0239433A1 EP 0239433 A1 EP0239433 A1 EP 0239433A1 EP 87400362 A EP87400362 A EP 87400362A EP 87400362 A EP87400362 A EP 87400362A EP 0239433 A1 EP0239433 A1 EP 0239433A1
Authority
EP
European Patent Office
Prior art keywords
layer
cell
medium
liquid crystal
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87400362A
Other languages
German (de)
English (en)
Other versions
EP0239433B1 (fr
Inventor
Jean-Frédéric Clerc
Jean-Claude Deutsch
Pierre Vaudaine
Sylvie Vey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9332652&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0239433(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0239433A1 publication Critical patent/EP0239433A1/fr
Application granted granted Critical
Publication of EP0239433B1 publication Critical patent/EP0239433B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment

Definitions

  • the present invention relates to a liquid crystal cell using the electrically controlled birefringence effect and methods of manufacturing the cell and a uniaxial medium of negative optical anisotropy, usable therein. It applies in particular to the production of data display devices such as matrix screens and in particular to the production of complex screens intended for color display.
  • Liquid crystal cells are already known using the electrically controlled birefringence effect. This effect has already made it possible to produce liquid crystal matrix screens and has already been the subject of publications such as the article by J.ROBERT entitled “TV image with LCD”, published in the journal IEEE Transactions on Electron Devices, vol .ED 26, No. 8, August 1979, and Article JF Clerc entitled “Electro-optical limits of the ECB effect in nematic liquid crystals”, published in the journal Display's, October 1981.
  • a liquid crystal cell using the electrically controlled birefringence effect comprises, for example, according to the prior art, a layer of nematic liquid crystal comprised between two glass plates provided with transparent electrodes.
  • Two polarization means for example two crossed rectilinear polarizers, are respectively arranged on either side of the assembly thus obtained.
  • the molecules of the liquid crystal layer are substantially parallel to a direction called "homeotropy direction" and perpendicular to the glass plates, and incident light cannot pass through the cell.
  • the molecules of the liquid crystal layer orient themselves substantially in a direction forming with the direction of homeotropy an angle which is a function of the applied voltage or excitation voltage. Incident light can then pass through the cell at least in part. It is therefore possible to electrically control the light intensity transmitted through this cell, this intensity being a function of said voltage.
  • Liquid crystal cells using the electrically controlled birefringence effect have the following drawback: the contrast of these cells, observed obliquely, degrades, all the more so when the angle of observation is large, this contrast being able to even reverse for certain observation angles.
  • the proposed cell itself has drawbacks: it requires a determined thickness of the liquid crystal layer, allows effective compensation of the birefringence of this layer only in two planes of incidence of light and in the vicinity of these planes , and has chromaticity defects, the extinction being less good for certain light wavelengths than for others.
  • the object of the present invention is to remedy the above drawbacks.
  • a liquid crystal cell using the electrically controlled birefringence effect comprising: an assembly, one of the sides of which is intended to be exposed to incident light and which comprises a nematic liquid crystal layer of positive optical anisotropy and at least two electrodes which are situated on either side of the layer and of which at least that which is situated on said side is transparent, and, at least on said side, - a means for polarizing the incident light, the molecules of the liquid crystal layer being substantially oriented in a direction of homeotropy, in the absence of electric voltage between the electrodes, the cell being characterized in that it further comprises at least one layer of a birefringence compensation medium, having three main optical indices, one of which is weaker than the other two, the axis corresponding to this index being parallel to the direction of homeotropy.
  • this layer of a birefringence compensation medium (of the nematic liquid crystal layer in its homeotropic structure, for an oblique observation of the cell) makes it possible to maintain a high contrast during observations of the cell under large angles of up to 70 degrees.
  • the cell which is the subject of the invention does not have the chromaticity defects mentioned above, allows effective compensation of the birefringence in any plane of incidence of light and can be produced with any thickness of liquid crystal, including very large thicknesses which are required for the manufacture of complex screens (the thickness of the layer of compensation medium being of course adjusted, with a view to optimal compensation, as a function of the thickness of the layer of liquid crystal) .
  • the object of the invention cell is advantageously compatible with any polarization means (straight, circular or elliptical).
  • the present invention thus makes it possible to produce display devices which have a high thickness of liquid crystal and can therefore have a high multiplexing rate, and which are achromatic, thus preserving the purity of the colors displayed and the stability of these colors under observation. oblique.
  • the two electrodes are transparent, the cell comprises two polarization means complementary to each other, located on either side of said assembly and each layer of compensation is between one of the biasing means and said assembly.
  • polarization means complementary to each other is meant for example two crossed rectilinear polarizers, or two circular or elliptical polarizers complementary to each other with respect to an incident plane light wave is propagating in the direction of homeotropy, or more briefly, respectively left and right with respect to this wave.
  • the two polarization means are crossed rectilinear polarizers and the compensation medium is a uniaxial medium of negative optical anisotropy, having an axis of symmetry parallel to the direction of homeotropy and an extraordinary axis parallel to this axis of symmetry.
  • the two polarization means are circular polarizers complementary to each other and the compensation medium is a uniaxial medium of negative optical anisotropy, having an axis of symmetry parallel to the direction of homeotropy and an extraordinary axis parallel to this axis of symmetry.
  • the compensation medium can be made from a polymer material.
  • this polymer is thermo-plastic.
  • Such a polymer makes it possible, in a fairly simple manner as will be seen below, to produce a layer which not only makes it possible to compensate for the birefringence but also to bond two components of the cell to each other, between which it is located.
  • this substrate can advantageously be held in place by the layer of this thermoplastic polymer.
  • the two polarization means are crossed rectilinear polarizers and the compensation medium is a biaxial medium whose axis of lowest index is parallel to the direction of homeotropy.
  • the product of the thickness of each layer of this medium by the absolute value of the difference between the two other main indices of this medium is of the order of 0.125 micrometer, which allows this layer to constitute in the visible range a plate with a quasi quarter wave delay.
  • said cell further comprises an optically reflective layer placed at one end of the cell, on the side opposite to that which is intended to be exposed to incident light.
  • the present invention also relates to a method of manufacturing a layer of a uniaxial medium of negative optical anisotropy, having an axis of symmetry perpendicular to said layer and an extraordinary axis parallel to this axis of symmetry, method characterized in that that it comprises the following successive stages: - each side is subjected to a layer (single or multiple) of a thermoplastic polymer material, kept flat, at a uniform pressure, heating of the layer maintained in this pressure state is carried out until it passes from its vitreous phase to its isotropic phase, - the heating is stopped and - the pressure is removed.
  • Such a method allows quite simply to obtain said layer of a uniaxial medium of negative optical anisotropy, which is usable in certain embodiments of the cell object of the invention.
  • This layer of uniaxial medium can be kept flat by means of two flat, transparent and rigid substrates between which it is placed.
  • the present invention also relates to a method for manufacturing a liquid crystal cell using the electrically controlled birefringence effect and comprising: - two flat and transparent substrates which have an interval between them, are fixed to each other, and are provided with electrodes, - at least one polarization means, the two substrates being placed on one side thereof, and possibly - a substrate provided with at least one color filter, process characterized in that at least one of the elements taken from the group comprising each polarization means and the substrate provided with at least one color filter are kept in place - by placing, between this element and an adjacent component of the cell, at least one layer of a thermoplastic polymer material, then - by subjecting the two sides of the assembly of the cell components to a uniform pressure, then - by heating this assembly maintained in this pressure state until each layer of material passes from its vitreous phase to its isotropic phase, then - by stopping the heating, and - by removing the pressure, a nematic liquid crystal layer being subsequently introduced between the substrates provided with electrodes.
  • This process advantageously makes it possible to integrate the production of one or more layers of uniaxial medium with negative optical anisotropy, which can be used in a cell according to the present invention, in the actual production of this cell. and more precisely at the sealing stage thereof.
  • FIG. 1 there is shown schematically, in exploded view, a liquid crystal cell corresponding to a first particular embodiment of the invention.
  • This cell comprises a layer 2 of liquid crystal between a lower plate 4 and an upper plate 6 parallel and transparent, for example made of glass.
  • Transparent electrodes 8 and 10 are respectively arranged on the faces of the plates 4 and 6, which are directly opposite one another.
  • First and second crossed rectilinear polarizers 12 and 14 frame the assembly constituted by layer 2 and by the two plates 4 and 6, the first polarizer 12 being on the side of plate 6 and the second polarizer 14 being on the side of plate 4.
  • the cell is intended to be lit by a light which falls on the first polarizer 12 and observed through the second polarizer 14.
  • These two polarizers are in the form of plates which are parallel to plates 4 and 6.
  • the cell further comprises a blade or sheet 16 of a compensation medium, which is disposed between the lower plate 4 and the second polarizer 14, parallel to these, and on which details will be given later.
  • the cell that has just been described operates in transmissive mode. It could operate in reflective mode by adding to it an optically reflective layer 18 disposed opposite the plate 16 relative to the second polarizer 14, parallel to the latter and then observing the cell through the first polarizer 12.
  • the liquid crystal layer used is a nematic liquid crystal layer of negative dielectric anisotropy, the molecules of which are substantially oriented in a direction D perpendicular to the plates 4 and 6, called the homeotropy direction, in the absence of electric voltage between the electrodes.
  • This nematic liquid crystal layer is also a uniaxial medium of positive optical anisotropy, the extraordinary index NeCl of this medium being greater than its ordinary index NoCl.
  • the ellipsoid of the indices of this medium has an axis of symmetry which is the axis of strong index (NeCl in the present case), and which is parallel to the main axes of the liquid crystal molecules, as well as to the direction of homeotropy in the absence of electrical voltage between the electrodes.
  • the compensating plate 16 is a uniaxial medium of negative optical anisotropy, the extraordinary index Ne1 of this medium being lower than its ordinary index No1.
  • the ellipsoid of the indices of this medium has an axis of symmetry which is the axis of low index (Ne1 in the present case) and which is parallel to the direction of homeotropy.
  • the optimal thickness of the blade 16 depends on the thickness of the liquid crystal layer (linear law) and this thickness of the blade 16 can be determined experimentally, by fixing the thickness of the liquid crystal layer and seeking the thickness of the blade 16 which leads to optimal contrast under a given angle of observation.
  • the blade 16 could be placed between the plate 6 and the polarizer 12 instead of being placed between the plate 4 and the polarizer 14.
  • the blade 16 With a plurality of layers arranged one between the plate 6 and the polarizer 12 and the others between the plate 4 and the polarizer 14, the total thickness of these layers being equal to l thickness determined for the blade 16.
  • FIG. 2 there is shown schematically, in exploded view, a second particular embodiment of the cell object of the invention.
  • the cell represented in FIG. 2 comprises a layer of liquid crystal 2 comprised between two glass plates 4 and 6 provided with transparent electrodes 8 and 10 as well as two crossed rectilinear polarizers 12 and 14 and possibly an optically reflective layer 18 (for a operating in reflective mode, the cell then being illuminated by light falling on the polarizer 12 and also observed through it), the relative arrangement of which has already been indicated in the description of FIG. 1.
  • the cell shown in FIG. 2 further comprises a blade 20 disposed between the plate 6 and the polarizer 12 and a blade 22 disposed between the plate 4 and the polarizer 14, these blades 20 and 22 being parallel to the plates 4 and 6.
  • the optical characteristics of the liquid crystal layer nematic 2 have already been indicated in the description of Figure 1.
  • Each plate 20 or 22 is a biaxial medium which has two main indices N1o and N2o having values close to each other and a third index N3e lower than N1o and N2o, the low index axis (N3e ) being parallel to the direction of homeotropy.
  • the blades 20 and 22 have substantially equal thicknesses and the product of the absolute value of (N1o-N2o) by one or other of these thicknesses is chosen so as to be little different from 0.125 micrometer (condition 1) for each of the plates 20 and 22 which then constitutes, in the visible range, an almost quarter-wave delay plate.
  • This value of 0.125 micrometer corresponds to the maximum brightness of the cell shown in FIG. 2, in the "white” state corresponding to the cell under excitation voltage.
  • each plate 20 or 22 can be determined experimentally as a function of the thickness chosen for the layer of liquid crystal.
  • the optimal compensation for the birefringence of the liquid crystal layer is determined by choosing a material constituting the blades 20 and 22 which has an extraordinary optimal N3e index for this compensation.
  • FIG. 3 there is shown a third particular embodiment of the cell object of the invention.
  • the cell represented in FIG. 3 comprises a layer of liquid crystal 2 comprised between two glass plates 4 and 6 provided respectively with transparent electrodes 8 and 10, the arrangement of these elements having been explained in the description of FIG. 1.
  • the optical characteristics of the liquid crystal layer 2 have also been given in the description of this figure 1.
  • the cell shown in FIG. 3 further comprises a first circular polarizer 24 and a second circular polarizer 26 which surround the assembly constituted by the plates 4 and 6 and the layer 2, the first polarizer 24 being on the side of the plate 6, so that this polarizer receives the incident light and the second polarizer 26 being on the side of the plate 4, these polarizer 24 and 26 being parallel to the plates 4 and 6 and the cell being observed through the polarizer 26.
  • the polarizers 24 and 26 are also complementary to each other, that is to say that for the incident light, one of the polarizers is left and the other polarizer is right.
  • an optically reflective layer 18 can be provided opposite the plate 4 relative to the polarizer 26, the cell then being observed through the polarizer 24.
  • This polarizer 24 consists of a rectilinear polarizer 28 associated with a quarter-wave plate 30 which is produced in a uniaxial medium of positive optical anisotropy, the major axis of this medium being included in the plane of polarizer 28 (that is to say perpendicular to the direction of homeotropy) and forming with the direction of polarization of this polarizer 28 an angle of 45 °.
  • the second circular polarizer 26 is identical to the first polarizer 24, the quarter-wave plates 30 of the polarizers 24 and 26 facing the plates 6 and 4 respectively.
  • the cell shown in FIG. 3 also comprises at least one blade of a uniaxial material of negative optical anisotropy, the optical characteristics of which are those of the blade 16 described with reference to FIG. 1 and which is arranged parallel to the plates 4 and 6 , between one of these plates and one of the circular polarizers.
  • the cell comprises two such blades 32 and 34, the blade 32 being disposed between the plate 6 and the polarizer 24 and the blade 34 being disposed between the plate 4 and the polarizer 26.
  • the optimal thickness (optimal contrast at a given viewing angle) of the single plate 32 or 34 is determined as a function of the thickness of the layer of liquid crystal 2
  • the use of one or more blades of uniaxial material of negative optical anisotropy in the cell of FIG. 3 makes it possible to control separately: the almost circular ellipticity, in all the visible range, of the wave which crosses the layer of liquid crystal (which leads to a better luminous efficiency in the white state of the cell), and the compensating behavior of the system comprising this plate of uniaxial material with negative optical anisotropy and the two circular polarizers, the compensation depending on the preparation of said plate.
  • Each compensation blade used in the cell of FIG. 3 is produced in the same way as each compensation blade used in the cell of FIG. 1 and its manufacturing (as well as that of each blade of the cell in FIG. 1) can be integrated into the step of sealing the cell which uses it, as will be seen later.
  • the thickness of uniaxial material of negative optical anisotropy, which is necessary to produce the cell in FIG. 3 is less than the thickness of said material which is necessary to produce the cell shown in FIG. Figure 1 given the use, in the cell of Figure 3, quarter-wave delay blades.
  • FIG. 4 schematically illustrates a method for manufacturing a layer of a uniaxial medium of negative optical anisotropy, having an axis of symmetry perpendicular to said layer, the axis of lower index of this layer being parallel to this axis of symmetry.
  • a layer can be used in the production of the cells shown in FIGS. 1 and 3.
  • thermoplastic material for example of the type sold by the Dupont de Nemours company under the brand SURLYN.
  • a thermoplastic material for example of the type sold by the Dupont de Nemours company under the brand SURLYN.
  • the material passes from the vitreous state to the isotropic state, state in which it does not present any more birefringence.
  • the substrates 36 and 38 are for example two glass plates of the type of plates 4 and 6 used in the cell described with reference to FIG. 1.
  • the sheet or sheets being arranged between the substrates, a uniform pressure is applied to each of said substrates (normally to these).
  • a uniform pressure is applied to each of said substrates (normally to these).
  • a uniform pressure equal to atmospheric pressure is then applied to each substrate.
  • the bag containing the assembly in question is then heated, for example in an oven, until the thermoplastic material reaches its transition temperature from glassy to isotropic state, after which the bag is removed from the oven and we open this bag.
  • FIG. 5 illustrates this integration: given two glass plates 4 and 6 which are provided with transparent electrodes not shown and with sealing means 44 and between which a layer of liquid crystal has to be introduced subsequently, it is possible to have a or several sheets of thermoplastic polymer 46 between one of the plates 4 and 6 and a transparent substrate 48 which may be one of the polarizers of the cell or a glass plate carrying colored filters when the cell is intended for display in colour.
  • the glass plate 6 and the substrate 48 then play the role of the substrates 36 and 38 mentioned in the description of FIG. 4.
  • the assembly constituted by the substrates 4, 6 and 48 and the layer or layers 46 is introduced into a steamable plastic bag, the vacuum is created in this bag and the latter is introduced into an oven. After the thermo-plastic material reaches its transition temperature (known for a given material) the bag is taken out of the oven and opened. As before, during the ensuing cooling, the sheet, or all of the sheets bonded by steaming to each other, becomes a layer of a uniaxial medium of negative optical anisotropy, having an axis of symmetry perpendicular to said layer and carrying the extraordinary middle axis.
  • the layer thus obtained makes it possible to bond the plate 6 and the substrate 48 to each other.
  • the uniform pressure applied is of the order of 105Pa to 2.105Pa and the heating is carried out at a temperature at least equal to 100 ° C, the transition temperature of this material being of the order of 90 ° C.
  • FIG. 6 also illustrates this possibility of integration: it is envisaged, for example, to produce a cell according to the invention, intended for color display.
  • a cell of the kind shown in FIG. 1 can be produced, further provided with a three-color filter 50 placed for example between the bottom plate 4 and the polarizer 14, parallel to these, the number and configuration of the electrodes which are on either side of the liquid crystal layer, being of course adapted to the filter.
  • the blade 16 of thermoplastic polymer which is shown in Figure 1 and whose optimal thickness has been determined, is replaced, in the case of the cell shown in Figure 6, by three layers 52 of the same nature as the blade 16 but whose sum of thicknesses is equal to that of this blade 16.
  • this cell successively comprises, from the side intended to be exposed to incident light, a circular polarizer, a plate of a medium a uniaxial negative optical anisotropy, a first glass plate, a nematic liquid crystal layer and a second glass plate, the first plate being provided with transparent electrodes facing the liquid crystal layer and the second plate being provided, opposite this layer, an optically reflective layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

Cellule à cristal liquide utilisant l'effet de biréfringence contrôlée électriquement et procédés de fabrication de la cellule et d'un milieu uniaxe d'anisotropie optique négative, utilisable dans celle-ci. La cellule peut comprendre deux polariseurs rectilignes croisés (12, 14), deux plaques de verre (4, 6) munies d'électrodes transparentes et placées entre ces polariseurs, une couche (2) du cristal liquide entre les plaques et, entre une plaque et un polariseur, une couche (16) d'un polymère thermoplastique uniaxe négatif ayant son axe extraordinaire perpendiculaire aux plaques. Cette couche peut être obtenue par chauffage du polymère jusqu'à l'état isotrope, sous pression uniforme sur les polariseurs, refroidissement et suppression de la pression. Application à la réalisation de dispositifs d'affichage de données.

Description

  • La présente invention concerne une cellule à cristal liquide utilisant l'effet de biréfringence contrôlée électriquement et des procédés de fabrication de la cellule et d'un milieu uniaxe d'anisotropie optique négative, utilisable dans celle-ci. Elle s'applique notamment à la réalisation de dispositifs d'affichage de données tels que des écrans matriciels et en particulier à la réalisation d'écrans complexes destinés à l'affichage en couleur.
  • On connaît déjà des cellules à cristal liquide utilisant l'effet de biréfringence contrôlée électriquement. Cet effet a déjà permis de réaliser des écrans matriciels à cristaux liquides et a déjà fait l'objet de publications telles que l'article de J.ROBERT intitulé "T.V. image with L.C.D.", publié dans la revue IEEE Transactions on Electron Devices, vol.Ed 26, no8, Août 1979, et l'article de J.F. Clerc intitulé "Electro-­optical limits of the E.C.B. effect in nematic liquid crystals", publié dans la revue Display's, octobre 1981.
  • Une cellule à cristal liquide utilisant l'effet de biréfringence contrôlée électriquement comprend par exemple, selon l'état de la technique, une couche de cristal liquide nématique comprise entre deux plaques de verre munies d'électrodes transparentes. Deux moyens de polarisation, par exemple deux polariseurs rectilignes croisés, sont respectivement disposés de part et d'autre de l'ensemble ainsi obtenu. Lorsqu'aucune tension électrique n'est appliquée entre les électrodes, les molécules de la couche de cristal liquide sont sensiblement parallèles à une direction appelée "direction d'homéotropie" et perpendiculaire aux plaques de verre, et une lumière incidente ne peut traverser la cellule. Lorsqu'une tension électrique appropriée est appliquée entre les électrodes, les molécules de la couche de cristal liquide s'orientent sensiblement suivant une direction faisant avec la direction d'homéotropie un angle qui est fonction de la tension appliquée ou tension d'excitation. Une lumière incidente peut alors traverser au moins en partie la cellule. Il est donc possible de commander électriquement l'intensité lumineuse transmise à travers cette cellule, cette intensité étant fonction de ladite tension.
  • Les cellules à cristal liquide utilisant l'effet de biréfringence contrôlée électriquement présentent l'inconvénient suivant : le contraste de ces cellules, observées obliquement, se dégrade, et ce d'autant plus que l'angle d'observation est important, ce contraste pouvant même s'inverser pour certains angles d'observation.
  • Dans la demande de brevet français no8407767 du 18 mai 1984 est proposée une cellule à cristal liquide utilisant l'effet de biréfringence contrôlée électriquement et visant à remédier à cet inconvénient.
  • Cependant, la cellule proposée présente elle-même des inconvénients : elle nécessite une épaisseur déterminée de la couche de cristal liquide, permet une compensation efficace de la biréfringence de cette couche seulement dans deux plans d'incidence de la lumière et au voisinage de ces plans, et présente des défauts de chromaticité, l'extinction étant moins bonne pour certaines longueurs d'onde lumineuses que pour d'autres.
  • La présente invention a pour but de remédier aux inconvénients précédents.
  • Elle a pour objet une cellule à cristal liquide utilisant l'effet de biréfringence contrôlée électriquement et comprenant :
    - un ensemble dont l'un des côtés est destiné à être exposé à une lumière incidente et qui comporte une couche de cristal liquide nématique d'anisotropie optique positive et au moins deux électrodes qui sont situées de part et d'autre de la couche et dont au moins celle qui est située dudit côté est transparente, et, au moins dudit côté,
    - un moyen de polarisation de la lumière incidente,
    les molécules de la couche de cristal liquide étant sensiblement orientées suivant une direction d'homéotropie, en l'absence de tension électrique entre les électrodes,
    la cellule étant caractérisée en ce qu'elle comprend en outre au moins une couche d'un milieu de compensation de la biréfringence, ayant trois indices optiques principaux dont l'un est plus faible que les deux autres, l'axe correspondant à cet indice étant parallèle à la direction d'homéotropie.
  • L'utilisation de cette couche d'un milieu de compensation de la biréfringence (de la couche de cristal liquide nématique dans sa structure homéotrope, pour une observation oblique de la cellule) permet de conserver un contraste élevé lors d'observations de la cellule sous des angles importants pouvant aller jusqu'à 70 degrés. De plus la cellule objet de l'invention ne présente pas les défauts de chromaticité mentionnés plus haut, permet une compensation efficace de la biréfringence dans tout plan d'incidence de la lumière et peut être réalisée avec toute épaisseur de cristal liquide, y compris des épaisseurs très importantes qui sont requises pour la fabrication d'écrans complexes (l'épaisseur de la couche de milieu de compensation étant bien entendu ajustée, en vue d'une compensation optimale, en fonction de l'épaisseur de la couche de cristal liquide).
  • En outre, la cellule objet de l'invention est avantageusement compatible avec tout moyen de polarisation (rectiligne, circulaire ou elliptique).
  • La présente invention permet ainsi de réaliser des dispositifs d'affichage qui comportent une forte épaisseur de cristal liquide et peuvent donc avoir un taux de multiplexage élevé, et qui sont achromatiques, préservant ainsi la pureté des couleurs affichées et la stabilité de ces couleurs sous observation oblique.
  • Dans une réalisation particulière de la cellule objet de l'invention, les deux électrodes sont transparentes, la cellule comprend deux moyens de polarisation complémentaires l'un de l'autre, situés de part et d'autre dudit ensemble et chaque couche de milieu de compensation est comprise entre l'un des moyens de polarisation et ledit ensemble.
  • Par "moyens de polarisation complémentaires l'un de l'autre" on entend par exemple deux polariseurs rectilignes croisés, ou deux polariseurs circulaires ou elliptiques complémentaires l'un de l'autre vis-à-vis d'une onde lumineuse plane incidente se propageant suivant la direction d'homéotropie, ou plus brièvement, respectivement gauche et droit vis-à-vis de cette onde.
  • Dans un mode de réalisation particulier, les deux moyens de polarisation sont des polariseurs rectilignes croisés et le milieu de compensation est un milieu uniaxe d'anisotropie optique négative, ayant un axe de symétrie parallèle à la direction d'homéotropie et un axe extraordinaire parallèle à cet axe de symétrie.
  • Dans un autre mode de réalisation particulier, les deux moyens de polarisation sont des polariseurs circulaires complémentaires l'un de l'autre et le milieu de compensation est un milieu uniaxe d'anisotropie optique négative, ayant un axe de symétrie parallèle la direction d'homéotropie et un axe extraordinaire parallèle à cet axe de symétrie.
  • Dans ces deux modes de réalisation particuliers, le milieu de compensation peut être fait à partir d'un matériau polymère.
  • De préférence, ce polymère est thermo-plastique. Un tel polymère permet en effet de réaliser, de façon assez simple comme on le verra par la suite, une couche qui permet non seulement de compenser la biréfringence mais encore de coller l'un à l'autre deux composants de la cellule entre lesquels elle se trouve.
  • Précisément, dans le cas où la cellule objet de l'invention est destinée à l'affichage en couleur et comprend à cet effet un substrat muni d'au moins un filtre coloré, ce substrat peut être avantageusement maintenu en place par la couche de ce polymère thermo-plastique.
  • Selon un autre mode de réalisation particulier, les deux moyens de polarisation sont des polariseurs rectilignes croisés et le milieu de compensation est un milieu biaxe dont l'axe de plus faible indice est parallèle à la direction d'homéotropie.
  • De préférence, le produit de l'épaisseur de chaque couche de ce milieu par la valeur absolue de la différence entre les deux autres indices principaux de ce milieu est de l'ordre de 0,125 micromètre, ce qui permet à cette couche de constituer dans le domaine visible une lame à retard quasi quart d'onde.
  • Dans une réalisation particulière de l'invention, correspondant à une cellule selon l'invention dont les électrodes sont transparentes, ladite cellule comprend en outre une couche optiquement réflectrice placée à une extrémité de la cellule, du côté opposé à celui qui est destiné à être exposé à une lumière incidente.
  • La présente invention a également pour objet un procédé de fabrication d'une couche d'un milieu uniaxe d'anisotropie optique négative, ayant un axe de symétrie perpendiculaire à ladite couche et un axe extraordinaire parallèle à cet axe de symétrie, procédé caractérisé en ce qu'il comprend les étapes successives suivantes :
    - on soumet chaque côté d'une couche (simple ou multiple) d'un matériau polymère thermoplastique, maintenue plane, à une pression uniforme,
    - on effectue un chauffage de la couche maintenue dans cet état de pression jusqu'à ce qu'elle passe de sa phase vitreuse à sa phase isotrope,
    - on cesse le chauffage et
    - l'on supprime la pression.
  • Un tel procédé permet d'obtenir assez simplement ladite couche d'un milieu uniaxe d'anisotropie optique négative, qui est utilisable dans certaines réalisations de la cellule objet de l'invention.
  • Cette couche de milieu uniaxe peut être maintenue plane au moyen de deux substrats plans, transparents et rigides entre lesquels elle est placée.
  • Enfin, la présente invention a également pour objet un procédé de fabrication d'une cellule à cristal liquide utilisant l'effet de biréfringence contrôlée électriquement et comprenant :
    - deux substrats plans et transparents qui présentent entre eux un intervalle, sont fixés l'un à l'autre, et sont munis d'électrodes,
    - au moins un moyen de polarisation, les deux substrats étant placés d'un côté de celui-ci, et éventuellement
    - un substrat muni d'au moins un filtre coloré,
    procédé caractérisé en ce que l'on maintient en place au moins l'un des éléments pris dans le groupe comprenant chaque moyen de polarisation et le substrat muni d'au moins un filtre coloré
    - en disposant, entre cet élément et un composant adjacent de la cellule, au moins une couche d'un matériau polymère thermoplastique, puis
    - en soumettant les deux côtés de l'assemblage des composants de la cellule à une pression uniforme, puis
    - en effectuant un chauffage de cet assemblage maintenu dans cet état de pression jusqu'à ce que chaque couche de matériau passe de sa phase vitreuse à sa phase isotrope, puis
    - en cessant le chauffage, et
    - en supprimant la pression,
    une couche de cristal liquide nématique étant ultérieurement introduite entre les substrats munis d'électrodes.
  • Ce procédé permet avantageusement d'intégrer la fabrication d'une ou de plusieurs couches de milieu uniaxe d'anisotropie optique négative, que l'on peut être amené à utiliser dans une cellule selon la présente invention, à la fabrication proprement dite de cette cellule et plus précisément à l'étape de scellement de celle-ci.
  • La présente invention sera mieux comprise à la lecture de la description qui suit, d'exemples de réalisation donnés à titre purement indicatif et nullement limitatif, en référence aux dessins annexés sur lesquels :
    • - la figure 1 est une vue éclatée schématique d'un premier mode de réalisation particulier de la cellule objet de l'invention,
    • - la figure 2 est une vue éclatée schématique d'un second mode de réalisation particulier de cette cellule,
    • - la figure 3 est une vue éclatée schématique d'un troisième mode de réalisation particulier de cette cellule,
    • - la figure 4 illustre schématiquement un mode de mise en oeuvre particulier du procédé objet de l'invention permettant la fabrication d'une couche d'un milieu uniaxe d'anisotropie optique négative, utilisable dans la présente invention,
    • - la figure 5 illustre schématiquement l'intégration de ce procédé à l'étape de scellement d'une cellule réalisée conformément à l'invention, et
    • - la figure 6 est une vue éclatée schématique d'une cellule selon la présente invention, illustrant également l'intégration de la fabrication de plusieurs couches de milieu uniaxe d'anisotropie optique négative, utilisées dans cette cellule, à l'étape de scellement de celle-ci.
  • Sur la figure 1, on a représenté schématiquement, en vue éclatée, une cellule à cristal liquide correspondant à un premier mode de réalisation particulier de l'invention. Cette cellule comprend une couche 2 de cristal liquide comprise entre une plaque inférieure 4 et une plaque supérieure 6 parallèles et transparentes, par exemple en verre. Des électrodes 8 et 10 transparentes sont respectivement disposées sur les faces des plaques 4 et 6, qui sont directement en regard l'une de l'autre.
  • Un premier et un second polariseurs rectilignes croisés 12 et 14 encadrent l'ensemble constitué par la couche 2 et par les deux plaques 4 et 6, le premier polariseur 12 étant du côté de la plaque 6 et le second polariseur 14 étant du côté de la plaque 4. La cellule est destinée à être éclairée par une lumière qui tombe sur le premier polariseur 12 et observée à travers le second polariseur 14. Ces deux polariseurs se présentent sous la forme de lames qui sont parallèles aux plaques 4 et 6.
  • La cellule comprend en outre une lame ou feuille 16 d'un milieu de compensation, qui est disposée entre la plaque inférieure 4 et le second polariseur 14, parallèlement à ceux-ci, et sur laquelle des précisions seront données par la suite.
  • La cellule que l'on vient de décrire fonctionne en mode transmissif. Elle pourrait fonctionner en mode réflectif en lui ajoutant une couche optiquement réflectrice 18 disposée à l'opposé de la lame 16 par rapport au second polariseur 14, parallèlement à celui-ci et en observant alors la cellule à travers le premier polariseur 12.
  • La couche de cristal liquide utilisée est une couche de cristal liquide nématique d'anisotropie diélectrique négative, dont les molécules sont sensiblement orientées suivant une direction D perpendiculaire aux plaques 4 et 6, appelée direction d'homéotropie, en l'absence de tension électrique entre les électrodes. Cette couche de cristal liquide nématique est en outre un milieu uniaxe d'anisotropie optique positive, l'indice extraordinaire NeCl de ce milieu étant supérieur à son indice ordinaire NoCl. L'ellipsoïde des indices de ce milieu a un axe de symétrie qui est l'axe de fort indice (NeCl dans le cas présent), et qui est parallèle aux grands axes des molécules de cristal liquide, ainsi qu'à la direction d'homéotropie en l'absence de tension électrique entre les électrodes.
  • La lame 16 de compensation est un milieu uniaxe d'anisotropie optique négative, l'indice extraordinaire Ne1 de ce milieu étant inférieur à son indice ordinaire No1. L'ellipsoïde des indices de ce milieu a un axe de symétrie qui est l'axe de faible indice (Ne1 dans le cas présent) et qui est parallèle à la direction d'homéotropie.
  • A titre purement indicatif et nullement limitatif, la couche 2 de cristal liquide est réalisée à partir du matériau commercialisé par la Société MERCK sous la référence ZLI 1936 (avec NeCl-NoCl=0,19) et a une épaisseur de 5 micromètres, et la lame 16 est un empilement de 15 feuilles de 50 micromètres d'épaisseur chacune, du polymère thermoplastique commercialisé par la Société Dupont de Nemours sous la marque SURLYN.
  • En fait, l'épaisseur optimale de la lame 16 dépend de l'épaisseur de la couche de cristal liquide (loi linéaire) et cette épaisseur de la lame 16 est déterminable expérimentalement, en fixant l'épaisseur de la couche de cristal liquide et en cherchant l'épaisseur de la lame 16 qui conduit à un contraste optimal sous un angle d'observation donné.
  • En outre, la lame 16 pourrait être disposée entre la plaque 6 et le polariseur 12 au lieu d'être disposée entre la plaque 4 et la polariseur 14.
  • Plus généralement, il est possible de remplacer la lame 16 par une pluralité de couches disposées les unes entre la plaque 6 et le polariseur 12 et les autres entre la plaque 4 et le polariseur 14, l'épaisseur totale de ces couches étant égale à l'épaisseur déterminée pour la lame 16.
  • Sur la figure 2, on a représenté schématiquement, en vue éclatée, un second mode de réalisation particulier de la cellule objet de l'invention. La cellule représentée sur la figure 2 comporte une couche de cristal liquide 2 comprise entre deux plaques de verre 4 et 6 munies d'électrodes transparentes 8 et 10 ainsi que deux polariseurs 12 et 14 rectilignes croisés et éventuellement une couche optiquement réflectrice 18 (pour un fonctionnement en mode réflectif, la cellule étant alors éclairée par une lumière tombant sur le polariseur 12 et également observée à travers celui-ci), dont la disposition relative a déjà été indiquée dans la description de la figure 1.
  • La cellule représentée sur la figure 2 comporte en outre une lame 20 disposée entre la plaque 6 et le polariseur 12 et une lame 22 disposée entre la plaque 4 et le polariseur 14, ces lames 20 et 22 étant parallèles aux plaques 4 et 6. Les caractéristiques optiques de la couche de cristal liquide nématique 2 ont déjà été indiquées dans la description de la figure 1.
  • Chaque lame 20 ou 22 est quant à elle un milieu biaxe qui a deux indices principaux N1o et N2o ayant des valeurs proches l'une de l'autre et un troisième indice N3e inférieur à N1o et N2o, l'axe de faible indice (N3e) étant parallèle à la direction d'homéotropie.
  • De préférence, les lames 20 et 22 ont des épaisseurs sensiblement égales et le produit de la valeur absolue de (N1o-­N2o) par l'une ou l'autre de ces épaisseurs est choisi de façon à être peu différent de 0,125 micromètre (condition 1) pour chacune des lames 20 et 22 qui constitue alors, dans le domaine visible, une lame à retard quasi quart d'onde.
  • Cette valeur de 0,125 micromètre correspond au maximum de brillance de la cellule représentée sur la figure 2, dans l'état "blanc" correspondant à la cellule sous tension d'excitation.
  • L'épaisseur optimale de chaque lame 20 ou 22 (conduisant à un contraste optimal pour un angle d'observation et une épaisseur de cristal liquide donnés) est déterminable expérimentalement en fonction de l'épaisseur choisie pour la couche de cristal liquide. On pourrait d'ailleurs n'utiliser qu'une lame de compensation disposée soit entre la plaque 6 et le polariseur 12, soit entre la plaque 4 et le polariseur 14, cette lame unique ayant alors une épaisseur égale à la somme des épaisseurs des lames 20 et 22, déterminées en fonction de l'épaisseur de la couche de cristal liquide.
  • Cependant, dans le mode de réalisation préférentiel indiqué plus haut, l'épaisseur des lames 20 et 22 étant déjà fixée par la condition 1, la compensation optimale de la biréfringence de la couche de cristal liquide est déterminée en choisissant un matériau constitutif des lames 20 et 22 qui a un indice extraordinaire N3e optimal pour cette compensation.
  • A titre purement indicatif et nullement limitatif, la couche de cristal liquide est réalisée à partir du matériau commercialisée par la Société MERCK sous la référence ZLI 1936, avec NeCl - NoCl = 0,19, et a une épaisseur comprise entre 4 et 6 micromètres, et chacune des lames 20 et 22 est réalisée à partir d'une feuille de cellophane qui est commercialisée par la Société Rhône Poulenc et qui a une épaisseur de l'ordre de 3,5 à 4 micromètres, l'indice N1o étant égal à 1,660, l'indice N2o étant égal à 1,6425 et l'indice N3e étant égal à 1,5000.
  • Sur la figure 3, on a représenté un troisième mode de réalisation particulier de la cellule objet de l'invention. La cellule représentée sur la figure 3 comprend une couche de cristal liquide 2 comprise entre deux plaques de verre 4 et 6 munies respectivement d'électrodes transparentes 8 et 10, la disposition de ces éléments ayant été expliquée dans la description de la figure 1. Les caractéristiques optiques de la couche de cristal liquide 2 ont également été données dans la description de cette figure 1.
  • La cellule représentée sur la figure 3 comprend en outre un premier polariseur circulaire 24 et un second polariseur circulaire 26 qui encadrent l'ensemble constitué par les plaques 4 et 6 et la couche 2, le premier polariseur 24 étant du côté de la plaque 6, de sorte que ce polariseur reçoit la lumière incidente et le second polariseur 26 étant du côté de la plaque 4, ces polariseur 24 et 26 étant parallèles aux plaques 4 et 6 et la cellule étant observée à travers le polariseur 26. Les polariseurs 24 et 26 sont en outre complémentaires l'un de l'autre c'est-à-dire que, pour la lumière incidente, l'un des polariseur est gauche et l'autre polariseur est droit.
  • Comme précédemment, pour un fonctionnement en mode réflectif, une couche optiquement réflectrice 18 peut être prévue à l'opposé de la plaque 4 par rapport au polariseur 26, la cellule étant alors observée à travers le polariseur 24.
  • Ce polariseur 24 est constitué d'un polariseur rectiligne 28 associé à une lame quart d'onde 30 qui est réalisée dans un milieu uniaxe d'anisotropie optique positive, le grand axe de ce milieu étant compris dans le plan du polariseur 28 (c'est-à-dire perpendiculaire à la direction d'homéotropie) et formant avec la direction de polarisation de ce polariseur 28 un angle de 45°.
  • De même, le second polariseur circulaire 26 est identique au premier polariseur 24, les lames quart d'onde 30 des polariseur 24 et 26 faisant respectivement face aux plaques 6 et 4.
  • La cellule représentée sur la figure 3 comprend également au moins une lame d'un matériau uniaxe d'anisotropie optique négative dont les caractéristiques optiques sont celles de la lame 16 décrite en référence à la figure 1 et qui est disposée parallèlement aux plaques 4 et 6, entre l'une de ces plaques et l'un des polariseurs circulaires.
  • Dans le cas de la figure 3, la cellule comporte deux telles lames 32 et 34, la lame 32 étant disposée entre la plaque 6 et le polariseur 24 et la lame 34 étant disposée entre la plaque 4 et le polariseur 26.
  • L'épaisseur optimale (contraste optimal sous un angle d'observation donné) de la lame unique 32 ou 34 (ou l'épaisseur optimale totale des lames 32 et 34) est déterminée en fonction de l'épaisseur de la couche de cristal liquide 2. L'utilisation d'une ou de plusieurs lames de matériau uniaxe d'anisotropie optique négative dans la cellule de la figure 3 permet de maîtriser séparément :
        l'ellipticité presque circulaire, dans tout le domaine visible, de l'onde qui traverse la couche de cristal liquide (ce qui conduit à un meilleur rendement lumineux dans l'état blanc de la cellule), et
        - le comportement compensateur du système comprenant cette lame de matériau uniaxe d'anisotropie optique négative et les deux polariseurs circulaires, la compensation dépendant de la préparation de ladite lame.
  • Chaque lame de compensation utilisée dans la cellule de la figure 3 est réalisée de la même manière que chaque lame de compensation utilisée dans la cellule de la figure 1 et sa fabrication (de même que celle de chaque lame de la cellule de la figure 1) peut être intégrée à l'étape de scellement de la cellule qui l'utilise, comme on le verra par la suite.
  • Pour une même épaisseur de cristal liquide, l'épaisseur de matériau uniaxe d'anisotropie optique négative, qui est nécessaire pour réaliser la cellule de la figure 3, est inférieure à l'épaisseur dudit matériau qui est nécessaire pour réaliser la cellule représentée sur la figure 1 étant donné l'utilisation, dans la cellule de la figure 3, de lames à retard quart d'onde.
  • A titre purement indicatif et nullement limitatif, la cellule représentée sur la figure 3 comporte une couche de cristal liquide de 5 micromètres d'épaisseur, réalisée à partir du matériau commercialisé par la Société MERCK sous la référence ZLI 1936, avec NeCl - NoCl = 0,19, chaque polariseur circulaire est du genre de celui-ci qui est commercialisé par la Société POLAROID sous la référence HCP 37 et chacune des lames 32 et 34 est constituée par un empilement de 5 feuilles du matériau commercialisé par la Société Dupont de Nemours sous la référence SURLYN, chaque feuille ou film ayant une épaisseur de 80 micromètres.
  • Sur la figure 4, on a illustré schématiquement un procédé de fabrication d'une couche d'un milieu uniaxe d'anisotropie optique négative, présentant un axe de symétrie perpendiculaire à ladite couche, l'axe de plus faible indice de cette couche étant parallèle à cet axe de symétrie. Une telle couche est utilisable dans la réalisation des cellules représentées sur les figures 1 et 3.
  • Le procédé est le suivant : on dispose entre deux substrat 36 et 38 transparents, plans et rigides, une ou plusieurs feuilles 40 d'un matériau thermoplastique par exemple du genre de celui qui est commercialisé par la Société Dupont de Nemours sous la marque SURLYN. A température ambiante, un tel matériau est à l'état vitreux mais présente une biréfringence qui dépend de son histoire antérieure. Par chauffage à une température appropriée, le matériau passe de l'état vitreux à l'état isotrope, état dans lequel il ne présente plus de biréfringence.
  • Les substrats 36 et 38 sont par exemple deux plaques de verre du genre des plaques 4 et 6 utilisées dans la cellule décrite en référence à la figure 1.
  • La ou les feuilles étant disposées entre les substrats, une pression uniforme est appliquée sur chacun desdits substrats (normalement à ceux-ci). Pour ce faire, on peut introduire l'ensemble constitué par la ou les feuilles et les substrats dans un sac en plastique 42 qui est en outre étuvable pour une raison indiquée par la suite, puis faire le vide dans ce sac et sceller thermiquement celui-ci.
  • Une pression uniforme égale à la pression atmosphérique est alors appliquée sur chaque substrat.
  • On chauffe ensuite le sac contenant l'ensemble en question, par exemple dans une étuve, jusqu'à ce que le matériau thermoplastique atteigne sa température de transition état vitreux-état isotrope, après quoi l'on sort le sac de l'étuve et l'on ouvre ce sac.
  • Le matériau se refroidit alors et se rétracte. Cette rétractation ne peut s'effectuer que dans une seule direction perpendiculaire aux deux substrats. Il apparaît ainsi un axe de symétrie S perpendiculaire à cette direction, dans ce matériau qui, retrouvant son état vitreux, repasse à l'état biréfringent. On obtient ainsi effectivement une couche d'un milieu uniaxe d'anisotropie optique négative, ayant un axe de symétrie qui est perpendiculaire à ladite couche et porte l'axe extraordinaire du milieu.
  • Le procédé que l'on vient de décrire en référence à la figure 4 s'intègre directement de façon avantageuse, à un procédé de fabrication d'une cellule à cristal liquide selon la présente invention, et plus précisément à l'étape de scellement de cette cellule, ce scellement s'effectuant à chaud et sous pression (avant l'introduction du cristal liquide dans ladite cellule).
  • La figure 5 illustre cette intégration : étant donné deux plaques de verre 4 et 6 qui sont munies d'électrodes transparentes non représentées et de moyens de scellement 44 et entre lesquelles doit être introduite ultérieurement une couche de cristal liquide, il est possible de disposer une ou plusieurs feuilles de polymère thermoplastique 46 entre l'une des plaques 4 et 6 et un substrat transparent 48 qui peut être l'un des polariseurs de la cellule ou une plaque de verre portant des filtres colorés lorsque la cellule est destinée à l'affichage en couleur.
  • La plaque de verre 6 et le substrat 48 jouent alors le rôle des substrats 36 et 38 mentionnés dans la description de la figure 4.
  • Plus précisément, l'ensemble constitué par les substrats 4, 6 et 48 et la ou les couches 46 est introduit dans un sac en plastique étuvable, le vide est fait dans ce sac et celui-ci est introduit dans une étuve. Après atteinte par le matériau thermo-plastique de sa température de transition (connue pour un matériau donné) le sac est sorti de l'étuve et ouvert. Comme précédemment, lors du refroidissement qui s'ensuit, la feuille, ou l'ensemble des feuilles collées par étuvage les unes aux autres, devient une couche d'un milieu uniaxe d'anisotropie optique négative, ayant un axe de symétrie perpendiculaire à ladite couche et portant l'axe extraordinaire du milieu.
  • En outre, du fait du chauffage et de la pression, la couche ainsi obtenue permet de coller l'un à l'autre la plaque 6 et le substrat 48.
  • A titre purement indicatif et nullement limitatif, pour un matériau du type SURLYN, la pression uniforme appliquée est de l'ordre de 10⁵Pa à 2.10⁵Pa et le chauffage est effectué à une température au moins égale à 100°C, la température de transition de ce matériau étant de l'ordre de 90°C.
  • On comprend donc bien la possibilité d'intégrer la formation d'une ou plusieurs couches de milieu uniaxe d'anisotropie optique négative à la fabrication d'une cellule selon l'invention, utilisant cette ou ces couches.
  • La figure 6 illustre également cette possibilité d'intégration : on envisage par exemple de réaliser une cellule selon l'invention, destinée à l'affichage en couleur. A cet effet, on peut réaliser une cellule du genre de celle qui est représentée sur la figure 1, munie en outre d'un filtre trichrome 50 placé par exemple entre la plaque inférieure 4 et le polariseur 14, parallèlement à ceux-ci, le nombre et la configuration des électrodes qui sont de part et d'autre de la couche de cristal liquide, étant bien entendu adaptés au filtre.
  • La lame 16 de polymère thermo-plastique qui est représentée sur la figure 1 et dont l'épaisseur optimale a été déterminée, est remplacée, dans le cas de la cellule représentée sur la figure 6, par trois couches 52 de même nature que la lame 16 mais dont la somme des épaisseurs est égale à celle de cette lame 16.
  • Par un procédé analogue à celui qui a été décrit en référence à la figure 5 (application d'une pression uniforme sur les polariseurs 12 et 14, chauffage dans cet état de pression jusqu'à la température de transition du polymère thermo-­plastique, suppression du chauffage puis de la pression), on obtient ainsi une cellule assemblée dans laquelle on introduit ensuite la couche de cristal liquide entre les plaques 4 et 6.
  • D'autres réalisations particulières de la cellule objet de l'invention sont possibles, et notamment une réalisation dans laquelle cette cellule comporte successivement, à partir du côté destiné a être exposé à une lumière incidente, un polariseur circulaire, une lame d'un milieu uniaxe d'anisotropie optique négative, une première plaque de verre, une couche de cristal liquide nématique et une seconde plaque de verre, la première plaque étant munie d'électrodes transparentes en regard de la couche de cristal liquide et la seconde plaque étant munie, en regard de cette couche, d'une couche optiquement réflectrice.

Claims (13)

1. Cellule à cristal liquide utilisant l'effet de biréfringence contrôlée électriquement et comprenant :
- un ensemble dont l'un des côtés est destiné à être exposé à une lumière incidente et qui comporte une couche (2) de cristal liquide nématique d'anisotropie optique positive et au moins deux électrodes (8, 10) qui sont situées de part et d'autre de la couche et dont au moins celle qui est située dudit côté est transparente, et, au moins dudit côté,
- un moyen (12, 14 ; 24, 26) de polarisation de la lumière incidente,
les molécules de la couche de cristal liquide étant sensiblement orientées suivant une direction d'homéotropie, en l'absence de tension électrique entre les électrodes,
la cellule étant caractérisée en ce qu'elle comprend en outre au moins une couche (16 ou 20, 22 ; 32, 34) d'un milieu de compensation de la biréfringence, ayant trois indices optiques principaux dont l'un est plus faible que les deux autres, l'axe correspondant à cet indice étant parallèle à la direction d'homéotropie.
2. Cellule selon la revendication 1, caractérisée en ce que les deux électrodes (8, 10) sont transparentes, en ce que la cellule comprend deux moyens de polarisation (12, 14 ; 24, 26) complémentaires l'un de l'autre, situés de part et d'autre dudit ensemble et en ce que chaque couche (16 ou 20, 22 ; 32, 34) de milieu de compensation est comprise entre l'un des moyens de polarisation et ledit ensemble.
3. Cellule selon la revendication 2, caractérisée en ce que les deux moyens de polarisation sont des polariseurs rectilignes croisés (12, 14) et en ce que le milieu de compensation est un milieu uniaxe d'anisotropie optique négative (16), ayant un axe de symétrie parallèle à la direction d'homéotropie et un axe extraordinaire parallèle à cet axe de symétrie.
4. Cellule selon la revendication 2, caractérisée en ce que les deux moyens de polarisation sont des polariseurs circulaires (24, 26) complémentaires l'un de l'autre et en ce que le milieu de compensation est un milieu uniaxe d'anisotropie optique négative (32, 34), ayant un axe de symétrie parallèle à la direction d'homéotropie et un axe extraordinaire parallèle à cet axe de symétrie.
5. Cellule selon l'une quelconque des revendications 3 et 4, caractérisée en ce que le milieu de compensation est fait à partir d'un matériau polymère.
6. Cellule selon la revendication 5, caractérisée en ce que ce polymère est thermoplastique.
7. Cellule selon la revendication 6, caractérisée en ce qu'elle comprend en outre un substrat (50) muni d'au moins un filtre coloré, qui est maintenu en place par la couche de ce polymère thermoplastique.
8. Cellule selon la revendication 2, caractérisée en ce que les deux moyens de polarisation sont des polariseurs rectilignes croisés (12, 14) et en ce que le milieu de compensation est un milieu biaxe (20, 22) dont l'axe de plus faible indice est parallèle à la direction d'homéotropie.
9. Cellule selon la revendication 8, caractérisée en ce que le produit de l'épaisseur de chaque couche (20, 22) de ce milieu par la valeur absolue de la différence entre les deux autres indices principaux de ce milieu est de l'ordre de 0,125 micromètre.
10. Cellule selon l'une quelconque des revendications 2 à 9, caractérisée en ce qu'elle comprend en outre une couche optiquement réflectrice (18) placée à une extrémité de la cellule, du côté opposé à celui qui est destiné à être exposé à une lumière incidente.
11. Procédé de fabrication d'une couche d'un milieu uniaxe d'anisotropie optique négative, ayant un axe de symétrie (S) perpendiculaire à ladite couche et un axe extraordinaire parallèle à cet axe de symétrie, procédé caractérisé en ce qu'il comprend les étapes successives suivantes :
- on soumet chaque côté d'une couche (40) d'un matériau polymère thermoplastique, maintenue plane, à une pression uniforme,
- on effectue un chauffage de la couche maintenue dans cet état de pression jusqu'à ce qu'elle passe de sa phase vitreuse à sa phase isotrope,
- on cesse le chauffage et
- l'on supprime la pression.
12. Procédé selon la revendication 11, caractérisé en ce que la couche (40) est maintenue plane au moyen de deux substrats (36, 38) plans transparents et rigides entre lesquels elle est placée.
13. Procédé de fabrication d'une cellule à cristal liquide utilisant l'effet de biréfringence contrôlée électriquement et comprenant :
- deux substrats (46) plans et transparents qui présentent entre eux un intervalle, sont fixés l'un à l'autre et sont munis d'électrodes,
- au moins un moyen de polarisation (12, 14), les deux substrats étant placés d'un côté de celui-ci, et éventuellement,
- un substrat (50) muni d'au moins un filtre coloré, procédé caractérisé en ce que l'on maintient en place au moins l'un des éléments pris dans le groupe comprenant chaque moyen de polarisation et le substrat muni d'au moins un filtre coloré
- en disposant, entre cet élément et un composant adjacent de la cellule, au moins une couche (52) d'un matériau polymère thermoplastique, puis
- en soumettant les deux côtés de l'assemblage des composants de la cellule à une pression uniforme, puis
- en effectuant un chauffage de cet assemblage maintenu dans cet état de pression jusqu'à ce que chaque couche de matériau passe de sa phase vitreuse à sa phase isotrope, puis
- en cessant le chauffage, et
- en supprimant la pression,
une couche de cristal liquide nématique étant ultérieurement introduite entre les substrats munis d'électrodes.
EP87400362A 1986-02-28 1987-02-19 Cellule à cristal liquide utilisant l'effet de biréfringence contrôlée électriquement et procédé de fabrication de la cellule Expired - Lifetime EP0239433B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8602855 1986-02-28
FR8602855A FR2595156B1 (fr) 1986-02-28 1986-02-28 Cellule a cristal liquide utilisant l'effet de birefringence controlee electriquement et procedes de fabrication de la cellule et d'un milieu uniaxe d'anisotropie optique negative, utilisable dans celle-ci

Publications (2)

Publication Number Publication Date
EP0239433A1 true EP0239433A1 (fr) 1987-09-30
EP0239433B1 EP0239433B1 (fr) 1994-05-18

Family

ID=9332652

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87400362A Expired - Lifetime EP0239433B1 (fr) 1986-02-28 1987-02-19 Cellule à cristal liquide utilisant l'effet de biréfringence contrôlée électriquement et procédé de fabrication de la cellule

Country Status (5)

Country Link
US (1) US4889412A (fr)
EP (1) EP0239433B1 (fr)
JP (1) JPH0769536B2 (fr)
DE (1) DE3789822T2 (fr)
FR (1) FR2595156B1 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194317A (ja) * 1987-10-07 1989-04-13 Matsushita Electric Ind Co Ltd 液晶表示装置
EP0350075A2 (fr) * 1988-07-08 1990-01-10 Kabushiki Kaisha Toshiba Dispositif d'affichage à cristal liquide
EP0350382A2 (fr) * 1988-07-04 1990-01-10 Stanley Electric Co., Ltd. Dispositif d'affichage à cristal liquide homéotrope
EP0350383A2 (fr) * 1988-07-04 1990-01-10 Stanley Electric Co., Ltd. Dispositif d'affichage comprenant un cristal liquide nématique twisté
JPH0210318A (ja) * 1988-06-29 1990-01-16 Sanyo Electric Co Ltd 液晶表示器
WO1990006534A1 (fr) * 1988-12-01 1990-06-14 MERCK Patent Gesellschaft mit beschränkter Haftung Agencement electro-optique
EP0379315A2 (fr) * 1989-01-19 1990-07-25 Seiko Epson Corporation Dispositif d'affichage électro-optique à cristal liquide
WO1990016005A1 (fr) * 1989-06-14 1990-12-27 MERCK Patent Gesellschaft mit beschränkter Haftung Systeme electro-optique avec film de compensation
EP0481489A2 (fr) * 1990-10-17 1992-04-22 Stanley Electric Co., Ltd. Compensateur optique de biréfringence adapté pour un L.C.D.
GB2255193A (en) * 1991-04-24 1992-10-28 Marconi Gec Ltd Electrically controllable waveplate.
US5171488A (en) * 1990-08-28 1992-12-15 Stanley Electric Co., Ltd. Method of manufacturing an optical compensator
US5179456A (en) * 1990-10-01 1993-01-12 Stanley Electric Co., Ltd. Optical birefringence compensator
EP0538796A1 (fr) * 1991-10-21 1993-04-28 Stanley Electric Co., Ltd. Dispositif à cristal liquide homéotrope
EP0541308A1 (fr) * 1991-11-08 1993-05-12 Sumitomo Chemical Company, Limited Retardeur de phase
US5344513A (en) * 1990-08-28 1994-09-06 Stanley Electric Co., Ltd. Method of manufacturing laminated transparent substrate having birefringence
EP0622656A1 (fr) * 1993-04-30 1994-11-02 Rockwell International Corporation Compensateur optique pour dispositif d'affichage à cristaux liquides
US5426009A (en) * 1992-09-19 1995-06-20 Merck Patent Gesellschaft Mit Beschrankter Haftung Polymeric composite material
US7330232B2 (en) 2003-01-28 2008-02-12 Lg.Chem, Ltd Vertically aligned liquid crystal display having negative compensation film
US7397524B2 (en) 2003-01-28 2008-07-08 Lg Chem, Ltd. Vertically aligned liquid crystal display having positive compensation film
US7782428B2 (en) 2003-01-28 2010-08-24 Lg Chem, Ltd Vertically aligned LCD using a bi-axial retardation compensation film

Families Citing this family (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061042A (en) * 1987-02-02 1991-10-29 Sumitomo Chemical Co., Ltd. Phase retarder and liquid crystal display using the same
DE3854491T2 (de) * 1987-10-07 1996-05-09 Matsushita Electric Ind Co Ltd Flüssigkristallanzeige.
JPH01188831A (ja) * 1988-01-22 1989-07-28 Matsushita Electric Ind Co Ltd 液晶表示装置
US5119220A (en) * 1988-01-28 1992-06-02 Sanyo Electric Co., Ltd. Liquid crystal display device with a phase plate for shadow compensation
JP2515141B2 (ja) * 1988-06-22 1996-07-10 同和鉱業株式会社 酸化物超伝導材の製造法
US5056896A (en) * 1988-08-29 1991-10-15 Ricoh Company, Ltd. Liquid crystal display device with dielectric anisotropy
JP2847187B2 (ja) * 1988-10-18 1999-01-13 株式会社リコー 液晶表示素子
JP2847186B2 (ja) * 1988-10-14 1999-01-13 株式会社リコー 液晶表示素子
DE68923929T2 (de) * 1988-11-04 1996-03-07 Fuji Photo Film Co Ltd Flüssigkristall-Anzeige.
JP2675158B2 (ja) * 1988-12-07 1997-11-12 シャープ株式会社 液晶表示装置
JP3071204B2 (ja) * 1989-02-10 2000-07-31 株式会社リコー 液晶表示素子
JP2565563B2 (ja) * 1989-03-18 1996-12-18 株式会社日立製作所 液晶表示装置の製法および液晶表示装置用位相板の製法
USRE36654E (en) 1989-03-28 2000-04-11 In Focus Systems, Inc. Stacked LCD color display
EP0425685B1 (fr) * 1989-03-28 1995-07-12 Asahi Glass Company Ltd. Dispositif d'affichage a cristaux liquides
US5093739A (en) * 1989-06-22 1992-03-03 Citizen Watch Co. Liquid crystal display device and retardation film
JPH0328822A (ja) * 1989-06-27 1991-02-07 Nippon Oil Co Ltd 液晶表示素子用補償板
US5126866A (en) * 1989-08-11 1992-06-30 Sharp Kabushiki Kaisha Liquid crystal display with a plurality of phase difference plates the slow axes of which form an angle of 20 to 40 degrees
JP2651026B2 (ja) * 1989-09-20 1997-09-10 株式会社日立製作所 液晶表示装置
EP0424951B1 (fr) * 1989-10-27 1995-01-25 Fuji Photo Film Co., Ltd. Dispositif d'affichage à cristal liquide
JPH0812360B2 (ja) * 1989-12-21 1996-02-07 スタンレー電気株式会社 液晶表示装置およびその駆動方法
JP3084724B2 (ja) * 1990-04-09 2000-09-04 セイコーエプソン株式会社 液晶表示装置
US5303075A (en) * 1990-04-09 1994-04-12 Seiko Epson Corporation Liquid crystal display with phase difference plate having particular .DELTA.Δnxd at 45° angle to surface
EP0470817A3 (en) * 1990-08-09 1992-11-25 Seiko Epson Corporation Liquid crystal electro-optical device
US5247378A (en) * 1991-06-07 1993-09-21 Peter Miller Optical retarder having means for determining the retardance of the cell corresponding to the sensed capacitance thereof
US5196953A (en) * 1991-11-01 1993-03-23 Rockwell International Corporation Compensator for liquid crystal display, having two types of layers with different refractive indices alternating
US5910854A (en) * 1993-02-26 1999-06-08 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
US5410422A (en) * 1993-03-03 1995-04-25 Tektronix, Inc. Gray scale liquid crystal display having a wide viewing angle
JP3144132B2 (ja) * 1993-03-22 2001-03-12 松下電器産業株式会社 液晶表示装置およびそれを用いた投写型表示装置
AU6711694A (en) * 1993-04-21 1994-11-08 University Of Akron, The Negative birefringent polyimide films
US5344916A (en) * 1993-04-21 1994-09-06 The University Of Akron Negative birefringent polyimide films
US5550661A (en) * 1993-11-15 1996-08-27 Alliedsignal Inc. Optical phase retardation film
US5499126A (en) * 1993-12-02 1996-03-12 Ois Optical Imaging Systems, Inc. Liquid crystal display with patterned retardation films
US6292242B1 (en) 1993-12-15 2001-09-18 Ois Optical Imaging Systems, Inc. Normally white twisted nematic LCD with positive uniaxial and negative biaxial retarders
US5570214A (en) * 1993-12-15 1996-10-29 Ois Optical Imaging Systems, Inc. Normally white twisted nematic LCD with retardation films on opposite sides of liquid crystal material for improved viewing zone
US5907378A (en) * 1993-12-15 1999-05-25 Ois Optical Imaging Systems, Inc. Normally white twisted nematic liquid crystal display including retardation films for improving viewing characteristics
US5594568A (en) * 1993-12-15 1997-01-14 Ois Optical Imaging Systems, Inc. LCD with a pair of retardation films on one side of normally white liquid crystal layer
US5576861A (en) * 1993-12-15 1996-11-19 Ois Optical Imaging Systems, Inc. Liquid crystal display having a retarder with 100-200nm retardation and having high contrast viewing zone centered in positive or negative vertical region
US5657140A (en) 1993-12-15 1997-08-12 Ois Optical Imaging Systems, Inc. Normally white twisted nematic LCD with positive and negative retarders
US5532852A (en) * 1994-02-23 1996-07-02 Kaiser Aerospace And Electronics Corporation High speed, high ambient viewability liquid crystal display assembly
US5986734A (en) 1994-04-04 1999-11-16 Rockwell International Corporation Organic polymer O-plate compensator for improved gray scale performance in twisted nematic liquid crystal displays
US5504603A (en) * 1994-04-04 1996-04-02 Rockwell International Corporation Optical compensator for improved gray scale performance in liquid crystal display
US5668663A (en) * 1994-05-05 1997-09-16 Donnelly Corporation Electrochromic mirrors and devices
US5638200A (en) * 1995-02-03 1997-06-10 Ois Optical Imaging Systems, Inc. Liquid crystal display with tilted retardation film
US6891563B2 (en) 1996-05-22 2005-05-10 Donnelly Corporation Vehicular vision system
JP3282986B2 (ja) * 1996-02-28 2002-05-20 富士通株式会社 液晶表示装置
US5644856A (en) * 1996-02-29 1997-07-08 R.G. Barry Corporation Wedge slipper
US6642981B1 (en) 1996-09-30 2003-11-04 Fujitsu Display Technologies Corporation Liquid crystal display device operating in a vertically aligned mode including at least one retardation film
JP3966614B2 (ja) 1997-05-29 2007-08-29 三星電子株式会社 広視野角液晶表示装置
US6774966B1 (en) 1997-06-10 2004-08-10 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
EP1930767B1 (fr) * 1997-06-12 2009-10-28 Sharp Kabushiki Kaisha Dispositif d'affichage à cristal liquide d'orientation verticale
US8294975B2 (en) 1997-08-25 2012-10-23 Donnelly Corporation Automotive rearview mirror assembly
US6326613B1 (en) * 1998-01-07 2001-12-04 Donnelly Corporation Vehicle interior mirror assembly adapted for containing a rain sensor
US6124886A (en) * 1997-08-25 2000-09-26 Donnelly Corporation Modular rearview mirror assembly
US6172613B1 (en) 1998-02-18 2001-01-09 Donnelly Corporation Rearview mirror assembly incorporating vehicle information display
EP2098906A1 (fr) 1997-08-29 2009-09-09 Sharp Kabushiki Kaisha Dispositif d'affichage à cristal liquide
JPH11109335A (ja) * 1997-09-30 1999-04-23 Sharp Corp 液晶表示装置
US6445287B1 (en) 2000-02-28 2002-09-03 Donnelly Corporation Tire inflation assistance monitoring system
US8288711B2 (en) 1998-01-07 2012-10-16 Donnelly Corporation Interior rearview mirror system with forwardly-viewing camera and a control
US6477464B2 (en) * 2000-03-09 2002-11-05 Donnelly Corporation Complete mirror-based global-positioning system (GPS) navigation solution
US6693517B2 (en) 2000-04-21 2004-02-17 Donnelly Corporation Vehicle mirror assembly communicating wirelessly with vehicle accessories and occupants
US6329925B1 (en) 1999-11-24 2001-12-11 Donnelly Corporation Rearview mirror assembly with added feature modular display
KR100309918B1 (ko) * 1998-05-16 2001-12-17 윤종용 광시야각액정표시장치및그제조방법
KR100283511B1 (ko) * 1998-05-20 2001-03-02 윤종용 광시야각 액정 표시장치
US6335776B1 (en) 1998-05-30 2002-01-01 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device having an auxiliary electrode formed on the same layer as the pixel electrode
KR100357213B1 (ko) 1998-07-23 2002-10-18 엘지.필립스 엘시디 주식회사 멀티도메인 액정표시소자
KR20000009518A (ko) 1998-07-25 2000-02-15 노봉규 광시야각을 갖는 수직배향 액정표시소자
WO2000008521A1 (fr) * 1998-08-06 2000-02-17 Konovalov Victor A Afficheurs a cristaux liquides et son procede de fabrication
KR100313952B1 (ko) * 1998-08-20 2002-11-23 엘지.필립스 엘시디 주식회사 멀티도메인 액정표시소자
US6654090B1 (en) 1998-09-18 2003-11-25 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of manufacturing thereof
US6933991B2 (en) * 1999-01-22 2005-08-23 White Electronic Designs Corp. Super bright low reflectance liquid crystal display
JP2002040428A (ja) * 1999-09-28 2002-02-06 Stanley Electric Co Ltd 液晶表示装置
KR100354906B1 (ko) * 1999-10-01 2002-09-30 삼성전자 주식회사 광시야각 액정 표시 장치
WO2007053710A2 (fr) 2005-11-01 2007-05-10 Donnelly Corporation Retroviseur interieur a affichage
WO2001064481A2 (fr) 2000-03-02 2001-09-07 Donnelly Corporation Systeme de miroir video integrant un module accessoire
US7370983B2 (en) 2000-03-02 2008-05-13 Donnelly Corporation Interior mirror assembly with display
US7167796B2 (en) 2000-03-09 2007-01-23 Donnelly Corporation Vehicle navigation system for use with a telematics system
US7077985B2 (en) 2000-05-30 2006-07-18 Vision-Ease Lens Injection molding of lens
KR100595296B1 (ko) 2000-06-27 2006-07-03 엘지.필립스 엘시디 주식회사 멀티 도메인 액정표시소자 및 그 제조방법
KR100595295B1 (ko) * 2000-06-27 2006-07-03 엘지.필립스 엘시디 주식회사 멀티 도메인 액정표시장치 및 그 제조방법
JP3957256B2 (ja) 2000-09-13 2007-08-15 日東電工株式会社 液晶表示装置
JP3957257B2 (ja) 2000-09-20 2007-08-15 日東電工株式会社 液晶表示装置
KR100595298B1 (ko) * 2000-09-23 2006-07-03 엘지.필립스 엘시디 주식회사 Htn모드 액정 디스플레이 장치
JP2002107541A (ja) 2000-10-02 2002-04-10 Nitto Denko Corp 光学シート、偏光板及び液晶表示装置
JP2002182212A (ja) 2000-12-11 2002-06-26 Nitto Denko Corp 光学素子及び液晶表示装置
US7255451B2 (en) 2002-09-20 2007-08-14 Donnelly Corporation Electro-optic mirror cell
US7581859B2 (en) 2005-09-14 2009-09-01 Donnelly Corp. Display device for exterior rearview mirror
ES2287266T3 (es) 2001-01-23 2007-12-16 Donnelly Corporation Sistema de iluminacion de vehiculos mejorado.
JP3970055B2 (ja) * 2002-02-28 2007-09-05 キヤノン株式会社 液晶表示装置
US6918674B2 (en) * 2002-05-03 2005-07-19 Donnelly Corporation Vehicle rearview mirror system
WO2003105099A1 (fr) 2002-06-06 2003-12-18 Donnelly Corporation Systeme de miroir de courtoisie interieur a boussole
US7329013B2 (en) 2002-06-06 2008-02-12 Donnelly Corporation Interior rearview mirror system with compass
WO2004026633A2 (fr) * 2002-09-20 2004-04-01 Donnelly Corporation Ensemble d'elements a reflexion speculaire
US7310177B2 (en) * 2002-09-20 2007-12-18 Donnelly Corporation Electro-optic reflective element assembly
WO2004103772A2 (fr) 2003-05-19 2004-12-02 Donnelly Corporation Assemblage de retroviseur pour vehicule
JP3778185B2 (ja) 2002-11-08 2006-05-24 セイコーエプソン株式会社 液晶表示装置及び電子機器
US7719646B2 (en) 2002-11-15 2010-05-18 Sharp Kabushiki Kaisha Liquid crystal display device
US20050128393A1 (en) * 2003-01-23 2005-06-16 Shuuji Yano Optical film, method for producing the same, and image display
SI21526A (sl) * 2003-05-16 2004-12-31 Institut "Jožef Stefan" Visoko kontrastni tekočekristalni svetlobno preklopni element s širokim vidnim kotom
KR100612086B1 (ko) * 2003-08-14 2006-08-14 주식회사 엘지화학 상이한 분산 비 값을 갖는 두 장 이상의 c 플레이트를포함하는 복합 광보상 c 플레이트 및 이를 사용한 액정표시 장치
US7858001B2 (en) 2003-09-09 2010-12-28 Insight Equity A.P.X., L.P. Photochromic lens
EP2955568A1 (fr) 2003-09-09 2015-12-16 Insight Equity A.P.X., LP Stratifié de polyuréthane photochrome
US7446924B2 (en) 2003-10-02 2008-11-04 Donnelly Corporation Mirror reflective element assembly including electronic component
US7308341B2 (en) 2003-10-14 2007-12-11 Donnelly Corporation Vehicle communication system
KR100561066B1 (ko) * 2004-01-08 2006-03-15 주식회사 엘지화학 시야각이 개선된 수직 배향 액정 표시장치
JP2005292225A (ja) * 2004-03-31 2005-10-20 Nitto Denko Corp 光学フィルムおよび画像表示装置
JP3901172B2 (ja) * 2004-05-28 2007-04-04 セイコーエプソン株式会社 液晶表示装置および電子機器
JP2006078637A (ja) 2004-09-08 2006-03-23 Seiko Epson Corp 液晶装置および投射型表示装置
KR100682230B1 (ko) * 2004-11-12 2007-02-12 주식회사 엘지화학 수직 배향 액정표시장치
US20060202118A1 (en) * 2005-02-25 2006-09-14 Axel Engel Standard for referencing luminescence signals
US8002935B2 (en) 2005-03-04 2011-08-23 Insight Equity A.P.X., L.P. Forming method for polymeric laminated wafers comprising different film materials
KR100789566B1 (ko) 2005-03-10 2007-12-28 주식회사 엘지화학 +a-필름과 +c-필름을 이용한 광시야각 보상 필름을 갖는수직 배향 액정표시장치
US7626749B2 (en) 2005-05-16 2009-12-01 Donnelly Corporation Vehicle mirror assembly with indicia at reflective element
US20070091229A1 (en) * 2005-06-09 2007-04-26 Jang Soo J Vertically aligned liquid crystal display
US20070013844A1 (en) * 2005-07-12 2007-01-18 Nitto Denko Corporation Liquid crystal panel and liquid crystal display using the same
US7995887B2 (en) * 2005-08-03 2011-08-09 Sharp Kabushiki Kaisha Liquid crystal display device and electronic device using the same
US7541074B2 (en) 2005-08-17 2009-06-02 Fujifilm Corporation Optical film and optical compensatory film, polarizing plate and liquid crystal display using same
JP2007079533A (ja) 2005-08-17 2007-03-29 Fujifilm Corp 光学樹脂フィルム、これを用いた偏光板および液晶表示装置
US20070076155A1 (en) 2005-09-09 2007-04-05 Fuji Photo Film Co., Ltd. Optical film, optical compensation film, polarizing plate and liquid crystal display
US7671946B2 (en) * 2005-10-18 2010-03-02 Jds Uniphase Corporation Electronically compensated LCD assembly
WO2007105371A1 (fr) * 2006-03-13 2007-09-20 Seiko Epson Corporation Dispositif a cristaux liquides et projecteur equipe de celui-ci
US7978298B2 (en) 2006-03-23 2011-07-12 Sharp Kabushiki Kaisha Liquid crystal display device
JP4894036B2 (ja) 2006-05-09 2012-03-07 スタンレー電気株式会社 液晶表示装置
JP4050778B2 (ja) * 2006-07-07 2008-02-20 日東電工株式会社 液晶パネルおよび液晶表示装置
WO2008032490A1 (fr) * 2006-09-12 2008-03-20 Sharp Kabushiki Kaisha Panneau d'affichage à cristaux liquides muni d'une matrice de microlentilles, procédé de fabrication du panneau d'affichage à cristaux liquides, et dispositif d'affichage à cristaux liquides
ATE490488T1 (de) * 2006-09-27 2010-12-15 Sharp Kk Flüssigkristallanzeigegerät mit mikrolinsenarray und verfahren zu seiner herstellung.
US8269929B2 (en) * 2006-09-28 2012-09-18 Stanley Electric Co., Ltd. Vertically aligned liquid crystal display device with visual angle compensation
JP4865801B2 (ja) * 2006-09-28 2012-02-01 シャープ株式会社 マイクロレンズアレイ付き液晶表示パネル、その製造方法、および液晶表示装置
US7995167B2 (en) * 2006-10-18 2011-08-09 Sharp Kabushiki Kaisha Liquid crystal display device and method for manufacturing liquid crystal display device
CN101529318B (zh) 2006-10-18 2011-10-12 夏普株式会社 液晶显示装置和液晶显示装置的制造方法
WO2008075549A1 (fr) 2006-12-18 2008-06-26 Sharp Kabushiki Kaisha Dispositif d'affichage à cristaux liquides
CN101578549B (zh) 2007-01-11 2011-08-17 夏普株式会社 带微透镜阵列的液晶显示面板和液晶显示装置
JP2007233407A (ja) * 2007-04-23 2007-09-13 Canon Inc 液晶表示装置
JP2009025780A (ja) * 2007-06-18 2009-02-05 Nitto Denko Corp 液晶パネルおよび液晶表示装置
TW200912484A (en) * 2007-07-30 2009-03-16 Fujifilm Corp Retardation film, polarizing plate, and liquid-crystal display device comprising it
JP4420091B2 (ja) * 2007-09-12 2010-02-24 セイコーエプソン株式会社 光学装置及びプロジェクタ
US20090161044A1 (en) * 2007-12-21 2009-06-25 Zhibing Ge Wide viewing angle circular polarizers
US8199283B2 (en) * 2008-02-27 2012-06-12 Stanley Electric Co., Ltd. Vertical alignment type liquid crystal display device with viewing angle characteristics improved by disposing optical plates
US8154418B2 (en) 2008-03-31 2012-04-10 Magna Mirrors Of America, Inc. Interior rearview mirror system
JP5129682B2 (ja) * 2008-08-04 2013-01-30 スタンレー電気株式会社 液晶表示素子
JP5301927B2 (ja) * 2008-09-01 2013-09-25 スタンレー電気株式会社 液晶表示素子
JP2010243858A (ja) * 2009-04-07 2010-10-28 Nitto Denko Corp 偏光板、液晶パネルおよび液晶表示装置
JP2011202129A (ja) 2010-03-26 2011-10-13 Fujifilm Corp ポリエステル樹脂、並びに、これを用いた光学材料、フィルムおよび画像表示装置
JP5437210B2 (ja) 2010-09-22 2014-03-12 スタンレー電気株式会社 液晶表示素子
JP5756306B2 (ja) * 2011-03-11 2015-07-29 スタンレー電気株式会社 表示システム
JP5898492B2 (ja) 2011-12-28 2016-04-06 スタンレー電気株式会社 液晶表示素子及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065321A (en) * 1979-11-13 1981-06-24 Sharp Kk Two-layer liquid crystal display panel
WO1982003467A1 (fr) * 1981-04-01 1982-10-14 Aircraft Co Hughes Vanne de lumiere a cristaux liquides avec compensation de birefringence
EP0162775A2 (fr) * 1984-05-18 1985-11-27 Commissariat A L'energie Atomique Cellule à cristal liquide susceptible de présenter une structure homéotrope, à biréfringence compensée pour cette structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694053A (en) * 1971-06-22 1972-09-26 Bell Telephone Labor Inc Nematic liquid crystal device
FR2180448B2 (fr) * 1972-04-17 1974-12-20 Thomson Csf
JPS5646131B2 (fr) * 1973-12-15 1981-10-31
GB2028527B (en) * 1978-06-08 1982-11-24 American Liquid Xtal Chem Liquid crystal displays
JPS6246622A (ja) * 1985-08-26 1987-02-28 Daido Kako Kk 遮水テ−プの接続方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065321A (en) * 1979-11-13 1981-06-24 Sharp Kk Two-layer liquid crystal display panel
WO1982003467A1 (fr) * 1981-04-01 1982-10-14 Aircraft Co Hughes Vanne de lumiere a cristaux liquides avec compensation de birefringence
EP0162775A2 (fr) * 1984-05-18 1985-11-27 Commissariat A L'energie Atomique Cellule à cristal liquide susceptible de présenter une structure homéotrope, à biréfringence compensée pour cette structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTRONICS LETTERS, vol. 10, no. 7, 4 avril 1974, pages 90-91, New York, US; I.A. SHANKS: "Electro-optical colour effects by twisted nematic liquid crystal" *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194317A (ja) * 1987-10-07 1989-04-13 Matsushita Electric Ind Co Ltd 液晶表示装置
JPH0210318A (ja) * 1988-06-29 1990-01-16 Sanyo Electric Co Ltd 液晶表示器
EP0350382A3 (fr) * 1988-07-04 1991-04-03 Stanley Electric Co., Ltd. Dispositif d'affichage à cristal liquide homéotrope
EP0350382A2 (fr) * 1988-07-04 1990-01-10 Stanley Electric Co., Ltd. Dispositif d'affichage à cristal liquide homéotrope
EP0350383A2 (fr) * 1988-07-04 1990-01-10 Stanley Electric Co., Ltd. Dispositif d'affichage comprenant un cristal liquide nématique twisté
EP0350383A3 (fr) * 1988-07-04 1990-12-12 Stanley Electric Co., Ltd. Dispositif d'affichage comprenant un cristal liquide nématique twisté
US5039185A (en) * 1988-07-04 1991-08-13 Stanley Electric Co., Ltd. Homeotropic liquid crystal display device
EP0350075A2 (fr) * 1988-07-08 1990-01-10 Kabushiki Kaisha Toshiba Dispositif d'affichage à cristal liquide
EP0350075A3 (fr) * 1988-07-08 1990-09-05 Kabushiki Kaisha Toshiba Dispositif d'affichage à cristal liquide
US4984874A (en) * 1988-07-08 1991-01-15 Kabushiki Kaisha Toshiba Liquid crystal display device having retardation films
WO1990006534A1 (fr) * 1988-12-01 1990-06-14 MERCK Patent Gesellschaft mit beschränkter Haftung Agencement electro-optique
EP0379315A2 (fr) * 1989-01-19 1990-07-25 Seiko Epson Corporation Dispositif d'affichage électro-optique à cristal liquide
EP0379315A3 (fr) * 1989-01-19 1991-04-24 Seiko Epson Corporation Dispositif d'affichage électro-optique à cristal liquide
WO1990016005A1 (fr) * 1989-06-14 1990-12-27 MERCK Patent Gesellschaft mit beschränkter Haftung Systeme electro-optique avec film de compensation
US5308535A (en) * 1989-06-14 1994-05-03 Merck Patent Gesellschaft Mit Beschrankter Haftung Electro-optical system containing a compensating film
US5344513A (en) * 1990-08-28 1994-09-06 Stanley Electric Co., Ltd. Method of manufacturing laminated transparent substrate having birefringence
US5171488A (en) * 1990-08-28 1992-12-15 Stanley Electric Co., Ltd. Method of manufacturing an optical compensator
US5179456A (en) * 1990-10-01 1993-01-12 Stanley Electric Co., Ltd. Optical birefringence compensator
EP0481489A3 (en) * 1990-10-17 1992-12-02 Stanley Electric Co., Ltd. Optical birefringence compensator adapted for l.c.d
US5298199A (en) * 1990-10-17 1994-03-29 Stanley Electric Co., Ltd. Optical birefringence compensator adapted for LCD
EP0481489A2 (fr) * 1990-10-17 1992-04-22 Stanley Electric Co., Ltd. Compensateur optique de biréfringence adapté pour un L.C.D.
GB2255193B (en) * 1991-04-24 1994-10-12 Marconi Gec Ltd Optical device
GB2255193A (en) * 1991-04-24 1992-10-28 Marconi Gec Ltd Electrically controllable waveplate.
US5313562A (en) * 1991-04-24 1994-05-17 Gec-Marconi Limited Optical device with electrodes end-to-end with electric field causing homeotropic alignment of liquid crystal in space between ends
EP0538796A1 (fr) * 1991-10-21 1993-04-28 Stanley Electric Co., Ltd. Dispositif à cristal liquide homéotrope
EP0541308A1 (fr) * 1991-11-08 1993-05-12 Sumitomo Chemical Company, Limited Retardeur de phase
US5430566A (en) * 1991-11-08 1995-07-04 Sumitomo Chemical Company, Limited Liquid crystal device with phase retarder having layered inorganic compound
US5631755A (en) * 1991-11-08 1997-05-20 Sumitomo Chemical Company, Limited Layered inorganic compound-containing phase retarder
US5426009A (en) * 1992-09-19 1995-06-20 Merck Patent Gesellschaft Mit Beschrankter Haftung Polymeric composite material
EP0622656A1 (fr) * 1993-04-30 1994-11-02 Rockwell International Corporation Compensateur optique pour dispositif d'affichage à cristaux liquides
US5986733A (en) * 1993-04-30 1999-11-16 Rockwell International Corporation Negative optical compensator tilted in respect to liquid crystal cell for liquid crystal display
US7330232B2 (en) 2003-01-28 2008-02-12 Lg.Chem, Ltd Vertically aligned liquid crystal display having negative compensation film
US7397524B2 (en) 2003-01-28 2008-07-08 Lg Chem, Ltd. Vertically aligned liquid crystal display having positive compensation film
US7782428B2 (en) 2003-01-28 2010-08-24 Lg Chem, Ltd Vertically aligned LCD using a bi-axial retardation compensation film
US8237898B2 (en) 2003-01-28 2012-08-07 Lg Chem, Ltd. Bi-axial retardation compensation film and vertically aligned liquid crystal display using the same

Also Published As

Publication number Publication date
DE3789822T2 (de) 1994-12-08
FR2595156A1 (fr) 1987-09-04
DE3789822D1 (de) 1994-06-23
FR2595156B1 (fr) 1988-04-29
US4889412A (en) 1989-12-26
JPS62210423A (ja) 1987-09-16
EP0239433B1 (fr) 1994-05-18
JPH0769536B2 (ja) 1995-07-31

Similar Documents

Publication Publication Date Title
EP0239433B1 (fr) Cellule à cristal liquide utilisant l'effet de biréfringence contrôlée électriquement et procédé de fabrication de la cellule
EP0240379A1 (fr) Cellule à double couche de cristal liquide, utilisant l'effet de biréfringence controlée électriquement
EP0290301B1 (fr) Ecran à matrice active pour affichage en couleur d'images de télévision, système de commande et procédé de fabrication dudit écran
EP0547949B1 (fr) Séparateur de polarisation optique et application à un système de visualisation
EP0872759B1 (fr) Dispositif d'affichage à cristaux liquides destiné notamment à former un écran d'affichage d'images en couleur
US6954240B2 (en) Method of producing polarizing plate, and liquid crystal display comprising the polarizing plate
EP0778700B1 (fr) Perfectionnement au système de projection
FR2760542A1 (fr) Affichage a cristaux liquides a cavite fermee
EP0191661A1 (fr) Procédé de dépôt et de cristallisation d'une couche mince de matériau organique au moyen d'un faisceau d'énergie
EP0235634A1 (fr) Cellule d'affichage
EP1074863B1 (fr) Dispositif optique à réflexion de Bragg et procédés pour sa fabrication
FR2793566A1 (fr) Separateur de polarisations
EP0756192A1 (fr) Ecran de visualisation à cristal liquide
EP0549406A1 (fr) Séparateur optique de polarisation et application à un système de visualisation
FR2667166A1 (fr) Cellule a cristal liquide comprenant une plaque munie d'une couche d'alignement thermosensible.
Pelletier et al. Synthèse d'empilements de couches minces
FR2608791A1 (fr) Dispositif d'affichage a cristaux liquides, du type a affichage negatif
EP2574977B1 (fr) Procédé d'encapsulation d'un dispositif électro-optique
FR2869117A1 (fr) Dispositif de modulation spatiale d'un faisceau lumineux et applications correspondantes
EP0209439A1 (fr) Dispositif d'affichage électro-optique à cristal liquide
WO2002014940A1 (fr) Dispositif de visualisation a cristal liquide a compensateur de birefringence
EP1435018A1 (fr) Ecran plat a cristal liquide fonctionnant en mode reflectif et son procede de realisation
FR2714489A1 (fr) Dispositif optique sensible à la polarisation.
JP2002055227A (ja) 偏光板及びそれを用いた液晶表示装置
FR2813127A1 (fr) Compensateur pour dispositif a ecran a cristal liquide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI NL

17P Request for examination filed

Effective date: 19880303

17Q First examination report despatched

Effective date: 19910612

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL

REF Corresponds to:

Ref document number: 3789822

Country of ref document: DE

Date of ref document: 19940623

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060205

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060215

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060223

Year of fee payment: 20

Ref country code: CH

Payment date: 20060223

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060228

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070219

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20070219