EP0230411A1 - Procede de production de calcium ou d'alliages de calcium de haute purete - Google Patents

Procede de production de calcium ou d'alliages de calcium de haute purete

Info

Publication number
EP0230411A1
EP0230411A1 EP85904824A EP85904824A EP0230411A1 EP 0230411 A1 EP0230411 A1 EP 0230411A1 EP 85904824 A EP85904824 A EP 85904824A EP 85904824 A EP85904824 A EP 85904824A EP 0230411 A1 EP0230411 A1 EP 0230411A1
Authority
EP
European Patent Office
Prior art keywords
calcium
alloy
cathode
high purity
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP85904824A
Other languages
German (de)
English (en)
Inventor
Gérard Bienvenu
Dominique Dubruque
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EXTRAMET SA
Original Assignee
EXTRAMET SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8415506A external-priority patent/FR2571353B1/fr
Priority claimed from FR8417941A external-priority patent/FR2573442B1/fr
Application filed by EXTRAMET SA filed Critical EXTRAMET SA
Publication of EP0230411A1 publication Critical patent/EP0230411A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/33Silicon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/36Alloys obtained by cathodic reduction of all their ions

Definitions

  • the present invention relates to a process for the production of high purity calcium or calcium alloys, by electrolysis of a calcium derivative in a bath of molten salts, the derivative being in solution in the bath in ionic form.
  • liquid cathode the process consisting in using as a cathode a liquid or molten metal, generally deposited at the bottom of the electrolysis tank.
  • the invention aims precisely to obtain high purities, both for calcium and for its partner in the derivative. It consists in causing the deposition of calcium or of the alloy on a cathode by electrolysis of a calcium derivative in a bath of molten salts based on calcium halides, the calcium derivative being in solution in the salt bath. fused in ionic form.
  • the metal constituting the liquid cathode one can choose for example aluminum, tin, copper, lead, bismuth, nickel, etc.
  • the metal constituting the cathode is for example in the molten state. These metals can be used pure or as a mixture. To lower their melting point, they can also be pre ⁇ combined with calcium.
  • the metal cathode is liquid proper, that is to say that the cathode is liquid from the start, even before the start of electrolysis.
  • the cathode can be solid at the start and gradually change to the liquid state during the electrolysis process, as the Ca / Ni alloy is formed. .
  • calcium derivative in ionic solution in molten calcium halides there may be mentioned calcium nitride, calcium hydride, calcium carbide, calcium silicide or if 1 ico-ca 1 cium, calcium boride , calcium cyanide and calcium cyanamide.
  • CaC2 which make it possible to produce, at the anode, silicon, respectively, graphite carbon of high purity, alongside of course calcium or calcium alloys of high purity at the cathode.
  • the calcium halides are chosen from the group comprising chloride, calcium fluoride and their mixtures.
  • eutectic mixtures are preferably chosen.
  • the bath may contain other halides, for example alkali halides, chlorides or fluorides in particular.
  • the process is carried out at molten salt bath temperatures of between 650 and 1100 ° C., depending on the electrolysis conditions and on the calcium derivative treated.
  • concentrations of these derivatives in the bath obviously depend on the nature of this derivative and on its solubility in the molten halide.
  • the concentration of CaC2 in the bath is generally between 5 and 14% by weight, at the aforementioned temperatures.
  • the concentration of CaS.i2 (ico-calcium silica is a relatively common metallurgical product) is generally between 1 and 2% by weight, also at the aforementioned temperatures.
  • the calcium alloy obtained as a liquid cathode, is characterized by a high degree of purity and gives easy access to calcium which is also of high purity.
  • distillation in fact, in particular under vacuum, it is easy to decompose the alloy and recover the calcium and the metal.
  • reduced pressure 5 x 10 "2 to 10 HPa
  • the silicon being obtained in an anodic manner is characterized by a high degree of purity and it is impossible to detect there by the traditional analytical means traces of conventional metallic contaminants, such as Fe, Al, Ca, Cu, Mg.
  • the bath is regenerated to remove CaO (notably from technical CaC2) and the other impurities which have accumulated there.
  • CaO notably from technical CaC2
  • Cl 2 gas optionally in the presence of C in suspension or a reducing gas such as methane.
  • the cell After fusion (772 ° C) the cell is closed and pumping is carried out using a vacuum line comprising a liquid nitrogen trap and one. primary pump.
  • the calcium chloride is brought to 950 ° C. under a vacuum of 10 "" * HPa for 2 hours. After this treatment, the chloride is completely anhydrous (% H2O ⁇ 0.01 *).
  • the cathodic current density is between 0.6 and 1.2 A / m 2 , ie electrolysis conditions corresponding on average to 120 A and 1 V.
  • the electrolysis time is 5 hours.
  • the metal alloy located at the bottom of the crucible is drawn off and analyzed.
  • the alloy has a 10.8% calcium content and its melting point measured by thermal analysis is located at 625 ° C., that is to say very close to the compound CaSn3 "
  • the anode was covered with a relatively dense graphite sponge of about 400 cm ⁇ containing about 210 g of graphite.
  • the calcium alloy is then distilled in vacuo at 1000 ° C under ÎO- * HPa with a condenser temperature of 500 ° C.
  • the metal obtained counts 99.2% calcium.
  • the salt bath maintained in the graphite crucible has about 3% CaO or equivalent which are eliminated by adding to the bath about 200 g of anodic carbon sponge powder, finely ground and redispersed in the bath by stirring and by injection. and cladding of 300 g of chlorine gas diluted in argon.
  • the bath also regenerated, is filtered on a porous nickel filter and reused for subsequent productions. .
  • Example 2 The same procedure as that of Example 1 is used, except that only 310 g of technical C C2 is dissolved and that the electrolysis is carried out only at 700 ° C.
  • the electrolysis was conducted in the same way, that is to say on average under 1 V practical and 120 A.
  • the metal is recovered by vacuum distillation at 700 ° C under 10 ⁇ 2 HPa with a condenser at 500 ° C.
  • the calcium obtained is of quality comparable to that of Example 1: 99.3% purity.
  • the bath containing approximately 1% of CaO is regenerated by chlorination after dispersion of 100 g of sponge powder and passage of 150 g of chlorine gas, the titration of the bath is carried out by adding approximately 25 g of
  • the calcium is then extracted by vacuum distillation of the calcium / tin alloy.
  • the silicon formed a compact deposit on the anode. At the interface between the anode and the deposit, the presence of silicon carbide can be detected.
  • the deposit of silicon is recovered on the anode and it is found that this metal is in a state of high purity. Indeed, no metal impurity is detectable with the analysis means available.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Le procédé consiste à provoquer le dépôt de calcium ou d'un alliage de calcium sur une cathode par électrolyse d'un dérivé de calcium dans un bain de sels fondus à bases d'halogénures de calcium. Le dérivé de calcium est en solution dans le bain de sels fondus sous forme ionique. Pour la production d'alliage de calcium, on provoque le dépôt du calcium sur une cathode métallique liquide et le calcium s'allie in situ avec le métal constituant la cathode pour former l'alliage. Le procédé permet la production à l'anode de métaux de haute pureté tels que le carbone graphite ou du silicium, à partir de carbure de calcium, respectivement de siliciure de calcium ou silico-calcium. On peut également obtenir du calcium de haute pureté par décomposition de l'alliage obtenu par distillation sous vide.

Description

PROCEDE DE PRODUCTION DE CALCIUM OU D'ALLIAGES DE CALCIUM DE HAUTE PURETE
La présente invention se rapporte à un procédé de production de calcium ou d'alliages de calcium de haute pureté, par électrolyse d'un dérivé de calcium dans un bain de sels fondus, le dérivé étant en solution dans le bain sous forme ionique.
On connaît de nombreux procédés d'êlectrolyse en sels fondus qui permettent d'obtenir divers métaux tels que le calcium, le silicium, le magnésium et le sodium^ etc, qui se déposent à la cathode.
Ces procédés ne permettent pas toujours d'obtenir des puretés suffisantes sauf au prix d'étapes de purification délicates et coûteuses.
On sait également travailler en "cathode liquide", processus consistant à utiliser comme cathode un métal liquide ou fondu, généralement déposé au fond du bac d'êlectrolyse.
Dans le même ordre d'idées, on connaît également des procédés de production de silicium par électrolyse ou par électro-raffinage, un bon exemple de ces procédés étant décrit dans l'exposé d'invention français n° 2 480 796. Dans ce procédé, qui s'applique au raffinage du silicium, du silicium est dissous dans un bain de sels fondus à base d'ha 1 ogénures et de nitrures d'alcalins et/ou d'al cal ino-terreux à partir d'une anode de silicium. Le silicium ainsi dissous se dépose sur la cathode en sorte que, même si cette opération de raffinage conduit à du silicium de haute pureté, on ne peut garantir qu'il soit exempt de traces de métaux, qui eux aussi se déposent à la cathode.
Il n'est pas besoin d'insister sur l'intérêt d'obtenir du silicium de haute pureté, exempt de métaux, quand on sait que cet élément est un des constituants principaux de certaines mémoires et circuits électroniques.
L'invention vise précisément à obtenir de hautes puretés, tant pour le calcium que pour son partenaire dans le dérivé. Elle consiste à provoquer le dépôt du calcium ou de l'alliage sur une cathode par électrolyse d'un dérivé du calcium dans un bain de sels fondus à base d'halogénures de calcium, le dérivé de calcium étant en solution dans le bain de sels fondus sous forme ionique.
On a remarqué que le dépôt du calcium pur, c'est-à-dire non allié, nécessitait la mise en oeuvre de puissances électriques importantes. En outre, le calcium métal est soluble dans le bain d'halogénures et doit être sorti de ce bain avant de s'y dissoudre. Sinon, la conductibilité électrique du bain devient trop grande et la cellule d'êlectrolyse se met en court-circuit après un certain temps de fonctionnement.
Avantageusement donc, on travaille donc en cathode métallique liquide et le calcium formé in situ s'allie avec le métal constituant la cathode. Comme métal constituant la cathode liquide, on peut choisir par exemple l'aluminium, l'êtain, le cuivre, le plomb, le bismuth, le nickel, etc. Le métal constituant la cathode est par exemple à l'état fondu, Ces métaux peuvent être utilisés purs ou en mélange. Pour abaisser leur point de fusion, on peut aussi les pré¬ allier avec du calcium.
Dans une première variante, la cathode métallique est liquide proprement dit, c'est-à-dire que la cathode est liquide dès le départ, avant même la mise en route de 1 'électrolyse .
Dans une seconde variante, pour une cathode en nickel par exemple, la cathode peut être solide au départ et passer progressivement à l'état liquide pendant le processus d'êlectrolyse, au fur et à mesure de la formation de l'alliage Ca/Ni.
Comme dérivé de calcium en solution ionique dans des halogénures de calcium fondus, on peut citer le nitrure de calcium, l'hydrure de calcium, le carbure de calcium, le siliciure de calcium ou si 1 ico-ca 1 cium, le borure de calcium, le cyanure de calcium et la cyanamide calcique .
D'un intérêt tout particulier sont CaSi2 et
CaC2 qui permettent de produire à l'anode du silicium, respectivement du carbone graphite de haute pureté, à côté bien entendu de calcium ou d'alliages de calcium de haute pureté à la cathode. Pour le bain d'êlectrolyse, on choisit les halogénures de calcium dans le groupe comprenant le chlorure, le fluorure de calcium et leurs mélanges. On pourra par exemple utiliser du CaCl2 technique déshydraté. En cas de mélanges, on choisira de préférence des mélanges eutectiques. En outre, le bain peut contenir d'autres halogénures, par exemple des halogénures alcalins, chlorures ou fluorures notamment.
On travaille à des températures de bain de sels fondus comprises entre 650 et 1 100° C, dépendant des conditions d'êlectrolyse et du dérivé de calcium traité.
Les concentrations de ces dérivés dans le bain dépendent évidemment de la nature de ce dérivé et de sa solubilité dans l'halogénure fondu.
Ainsi, la concentration de CaC2 dans le bain est généralement comprise entre 5 et 14 % en poids, aux températures précitées.
Ainsi encore, la concentration de CaS.i2 (le sil ico-calcium est un produit métallurgique relativement courant) est généralement comprise entre 1 et 2 % en poids, aux températures précitées également.
Pour fixer les idées, il faut mettre en oeuvre 0,36 V théorique pour préparer directement le calcium métal par électrolyse d'un bain de sels fondus à 800° C. En cathode liquide, pour la préparation de l'alliage de
Ca avec le métal de la cathode, il faut une tension moindre, par exemple 0,19 V théorique pour l'alliage plomb/calcium dans les mêmes conditions. Ces valeurs sont des valeurs électro-chimiques théoriques et, en pratique, on applique, toujours pour les mêmes températures et pour des bains consistant en des mélanges de chlorure et de fluorure de calcium, une tension comprise entre 0,5 et 5 V.
L'alliage de calcium obtenu, comme cathode liquide, se caractérise par un haut degré de pureté et donne accès facilement à du calcium lui aussi de haute pureté. Par distillation en effet, notamment sous vide, il est aisé de décomposer l'alliage et de récupérer le calcium et le métal. On procède par exemple sous pression réduite (5 x 10"2 à 10 HPa) à des températures comprises entre 700 et 1 000° C.
Le silicium étant obtenu de façon anodique, se caractérise par un haut degré de pureté et il est impossible d'y déceler par les voies analytiques traditionnelles des traces de contaminants métalliques classiques, tels que Fe, Al, Ca, Cu, Mg.
S'il s'agit de carbone, celui-ci se dépose sous forme de graphite, qui entoure l'anode en formant une éponge. Sa pureté est également remarquable.
Avantageusement, on régénère le bain pour y élimier CaO (provenant de CaC2 technique notamment) et les autres impuretés qui s'y sont accumulées. On peut procéder par exemple par injection de Cl2 gazeux, éventuellement en présence de C en suspension ou d'un gaz réducteur tel que le méthane. L'invention sera illustrée dans les exemples ci-dessous, donnés à titre d'exemple.
Exemple 1
On place dans une cellule en Iconel 5 kg de chlorure de calcium contenu dans un creuset de graphite qu'on chauffe sous courant d'azote pendant 2 heures jusqu'à la fusion.
Après la fusion (772° C) la cellule est fermée et on procède à un pompage à l'aide d'une ligne de vide comportant un piège à azote liquide et une. pompe primaire. Le chlorure de calcium est porté à 950° C sous un vide de 10""* HPa pendant 2 heures. Après ce traitement le chlorure se révèle totalement anhydre (% H2O < 0,01 *).
. On place ensuite la cellule sous atmosphère d'argon et on ajoute 800 g de carbure de calcium technique à 80 % de carbure pur. Préalablement on avait placé au fond du creuset de graphite une quantité d'étain de 4 kg représentant une couche d'étain liquide de 3 cm d'épaisseur (creuset de graphite 0 = 15 cm, h = 25 cm).
Après dissolution du carbure technique sous agitation pendant 2 heures on procède à l'êlectrolyse en immergeant dans le bain une anode de graphite isolée de la cellule et du creuset de 0 = 5 cm située à 4 cm de la cathode d'étain liquide, le creuset de graphite étant polarisé négativement de telle sorte que la tension entre les électrodes soit maintenue entre 0,5 et 1,5 V pratique (correspondant à une intensité théorique de 0,2 à 0,25 V environ). La densité de courant cathodique est comprise entre 0,6 et 1,2 A/m2, soit des conditions d'êlectrolyse correspondant en moyenne à 120 A et 1 V. Le temps d'êlectrolyse est de 5 heures.
Après 1 'é1ectrolyse, on soutire l'alliage métallique situé au fond du creuset et on l'analyse. L'alliage titre 10,8 % de calcium et son point de fusion mesuré par analyse thermique se situe à 625° C, c'est-à- dire très proche du composé CaSn3«
L'anode s'est recouverte d'une éponge de graphite relativement dense de 400 cm^ environ contenant environ 210 g de graphite.
L'alliage de calcium est ensuite distillé sous vide à 1 000° C sous ÎO-* HPa avec une température de condenseur de 500° C. Le métal obtenu titre 99,2 % de calcium.
Le bain de sels maintenu dans le creuset de graphite titre environ 3 % de CaO ou équivalent qui sont éliminés par addition au bain d'environ 200 g de poudre d'épongé de carbone anodique finement broyé et redispersé dans le bain par agitation et par injection et bardotage de 300 g de chlore gazeux dilué dans de l'argon.
Le bain aussi régénéré est filtré sur filtre poreux en nickel et réutilisé pour des productions ultérieures. .
Exemple 2
On place dans le même appareillage que précédemment 5 kg de mélange eutectique CaF2 CaCl2 à environ 15 % de CaF2 en poids fondant à 650° C.
La même procédure que celle de l'exemple 1 est employé, à ceci près qu'on ne dissout que 310 g de C C2 technique et que l'on a fait l'êlectrolyse qu'a 700° C. L'êlectrolyse a été conduite de la même façon, c'est-à- dire en moyenne sous 1 V pratique et 120 A.
A la fin de l'êlectrolyse la cathode titre
4,7 % de calcium, c'est-à-dire un alliage fondant à 480° C environ. Le rendement faradique a donc été de 95 % environ.
Le métal est récupéré par distillation sous vide à 700° C sous 10~2 HPa avec un condenseur à 500° C. Le calcium obtenu est de qualité comparable à celui de l'exemple 1 : 99,3 % de pureté.
Le bain contenant environ 1 % de CaO est régénéré par chloration après dispersion de 100 g de poudre d'êponge et passage de 150 g de chlore gazeux, le titrage du bain s'effectue en rajoutant 25 g environ de
CaF2.
Exemple 3
On fond dans un creuset de graphite d'un diamètre de 10 cm et de hauteur de 30 cm, 2 kg d'un mélange de CaCl2 anhydre et CaF2 à 18 % de CaF2. Le mélange après fusion est porté à 700° C, et on ajoute de l'étain qui constitue une cathode fondue dans la partie inférieure du creuset. On ajoute ensuite en agitant du C Si2 à raison de 2 % en poids. Puis on polarise le creuset négativement et on place une autre électrode en graphite à 3 cm environ de la cathode d'étain liquide. La différence de potentiel entre les électrodes est maintenue à 2,5 V pour une intensité totale de 200 A.
Au cours de l'êlectrolyse, on ajoute environ 360 g de CaSi2 à l'heure à raison de 30 g toutes les 5 minutes. La masse d'étain liquide était au départ de
1 200 g et à la fin de l'opération on a retiré un alliage de calcium et d'étain à 10,3 % de calcium.
Le calcium est ensuite extrait par distillation sous vide de l'alliage calcium/êtain.
Le silicium a formé un dépôt compact sur l'anode. A l'interface entre l'anode et le dépôt, on peut détecter la présence de carbure de silicium.
On récupère le dépôt de silicium sur l'anode et on constate que ce métal se trouve dans un état de pureté élevé. En effet, aucune impureté métal lique n'est décelable avec les moyens d'analyse à disposition.
Dans les conditions indiquées ci-dessus, le rendement faradique est de 81 . Exemple 4
On procède comme décrit à l'exemple 1, mais en utilisant du CaCl2 Pur à 800° C.
On obtient ainsi du silicium de haute pureté, comme précédemment, et un alliage de calcium et d'étain à
12,45 * de calcium, d'où le calcium peut être extrait par distillation sous vide.

Claims

REVENDICATIONS
1. Procédé de production du calcium ou d'alliages de calcium de haute pureté, caractérisé en ce qu'on provoque le dépôt du calcium ou de l'alliage sur une cathode par électrolyse d'un dérivé du calcium dans un- bain de sels fondus à base d'halogénures de calcium, le dérivé de calcium étant en solution dans le bain de sels fondus sous forme ionique.
2. Procédé selon la revendication 1 pour la production d'alliage de calcium, caractérisé en ce qu'on provoque le dépôt du calcium sur une cathode métallique liquide, le calcium s'alliant in situ avec le métal constituant la cathode pour former l'alliage.
3. Procédé selon la revendication 1 pour la prodμction de calcium ou d'alliage de calcium et à l'anode, de silicium de haute pureté, caractérisé en ce que le dérivé du calcium est du siliciure de calcium ou silico-calcium.
4. Procédé selon la revendication 1 pour la production de calcium ou d'alliage de calcium et, à l'anode, de carbone graphite de haute pureté, caractérisé en ce que le dérivé du calcium est du carbure de calcium.
5. Procédé selon la revendication 1, caractérisé en ce que les halogénures de calcium sont choisis dans le groupe comprenant le chlorure de calcium, le fluorure de calcium et leurs mélanges.
6. Procédé selon la revendication 1, caractérisé en ce que le bain de sels fondus est maintenu à une température comprise entre 650 et 1 100° C.
7. Procédé selon la revendication 2, caractérisé en ce que la cathode est liquide au départ, avant même la mise en route de l'êlectrolyse, et en ce qu'elle est à base d'aluminium, êtain, cuivre, plomb ou bismuth.
8. Procédé selon la revendication 2, caractérisé en ce que la cathode est solide au départ et passe progressi ement à l'état liquide pendant le processus d'êlectrolyse, au fur et à mesure de la formation de l'alliage.
9. Procédé selon la revendication 8, caractérisé en ce que la cathode est en nickel.
10. Application du procédé selon la revendication 1 à la production de calcium de haute pureté à partir de son alliage, caractérisé en ce qu'on décompose l'alliage par distillation sous vide.
EP85904824A 1984-10-05 1985-09-27 Procede de production de calcium ou d'alliages de calcium de haute purete Withdrawn EP0230411A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8415506 1984-10-05
FR8415506A FR2571353B1 (fr) 1984-10-05 1984-10-05 Procede de production du silicium
FR8417941A FR2573442B1 (fr) 1984-11-21 1984-11-21 Procede de production d'alliages de calcium de haute purete
FR8417941 1984-11-21

Publications (1)

Publication Number Publication Date
EP0230411A1 true EP0230411A1 (fr) 1987-08-05

Family

ID=26224194

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85904824A Withdrawn EP0230411A1 (fr) 1984-10-05 1985-09-27 Procede de production de calcium ou d'alliages de calcium de haute purete

Country Status (9)

Country Link
US (1) US4738759A (fr)
EP (1) EP0230411A1 (fr)
AU (1) AU5011085A (fr)
BR (1) BR8507254A (fr)
ES (1) ES8608449A1 (fr)
FI (1) FI871421A0 (fr)
NO (1) NO862234L (fr)
PT (1) PT81241B (fr)
WO (1) WO1986002108A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8707781D0 (en) * 1987-04-01 1987-05-07 Shell Int Research Electrolytic production of metals
US5024737A (en) * 1989-06-09 1991-06-18 The Dow Chemical Company Process for producing a reactive metal-magnesium alloy
US5131988A (en) * 1991-04-12 1992-07-21 Reynolds Metals Company Method of extracting lithium from aluminum-lithium alloys
WO1994028201A1 (fr) * 1993-05-24 1994-12-08 Maloe Nauchno-Proizvodstvennoe Predpriyatie 'mms' Procede de production d'un alliage d'aluminium-strontium
AP9901496A0 (en) * 1996-09-30 1999-06-30 Claude Fortin Process for obtaining titanium or other metals using shuttle alloys.
FR2797891A1 (fr) * 1999-08-26 2001-03-02 Ind Des Poudres Spheriques Procede de production de calcium et d'alliages de calcium a partir de carbure de calcium
US6272768B1 (en) 1999-11-12 2001-08-14 Michael J. Danese Apparatus for treating an object using ultra-violet light
US6457478B1 (en) 1999-11-12 2002-10-01 Michael J. Danese Method for treating an object using ultra-violet light
NO317073B1 (no) * 2001-06-05 2004-08-02 Sintef Elektrolytt samt fremgangsmate ved fremstilling eller raffinering av silisium
US20040182718A1 (en) * 2003-03-21 2004-09-23 Mcwhorter Edward Milton Consumable electrode
US8951401B2 (en) * 2010-05-28 2015-02-10 Toyota Boshoku Kabushiki Kaisha Method for electrochemically depositing carbon film on a substrate
CN102071434B (zh) * 2010-12-08 2012-11-14 华东理工大学 一种去除锂电解质KCl-LiCl中杂质CaCl2的方法
CN102002730A (zh) * 2010-12-08 2011-04-06 华东理工大学 一种去除锂电解质KCl-LiCl中杂质MgCl2的方法
CA2905499C (fr) 2013-03-15 2018-06-26 West Virginia University Research Corporation Procede pour la production de carbone pur, compositions et procedes pour ceci
PE20170819A1 (es) 2014-10-21 2017-07-04 West Virginia Univ Res Corp Metodos y aparatos para la produccion de carbono, electrodos de carburo, y composiciones de carbono
CN109312479B (zh) 2016-04-20 2021-07-13 西弗吉尼亚大学研究公司 用纳米结构化的碳化物化合物进行碳化物-至-碳转化的方法、设备及电极
CN107385474B (zh) * 2017-08-04 2018-10-12 中南大学 一种氯化钙熔盐电解制钙用电解质及使用该电解质的电解方法
CN111321425B (zh) * 2020-03-19 2021-04-20 东北大学 一种熔盐氯化生产TiCl4所排放废盐的综合回收利用方法
CN111304696B (zh) * 2020-03-19 2021-04-20 东北大学 电化学法净化再生失活熔盐并回收其中有价金属的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA639728A (en) * 1962-04-10 Van Diest Jacques Process and apparatus for the electrolysis of baths of fused salts
DE458493C (de) * 1926-02-05 1928-04-12 Wilhelm Kroll Dr Ing Verfahren zur Gewinnung von metallischem Calcium
ES257371A1 (es) * 1959-05-13 1960-11-16 Solvay Procedimiento para la preparaciën de un metal alcalino-terreo por electrëlisis de banos de cloruros fundidos
BE624084A (fr) * 1961-10-25
US4028582A (en) * 1975-09-22 1977-06-07 Rca Corporation Guided beam flat display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8602108A1 *

Also Published As

Publication number Publication date
NO862234D0 (no) 1986-06-04
FI871421A (fi) 1987-04-01
PT81241A (fr) 1985-11-01
FI871421A0 (fi) 1987-04-01
AU5011085A (en) 1986-04-17
NO862234L (no) 1986-06-04
PT81241B (fr) 1987-04-28
US4738759A (en) 1988-04-19
ES547525A0 (es) 1986-07-16
BR8507254A (pt) 1987-10-27
ES8608449A1 (es) 1986-07-16
WO1986002108A1 (fr) 1986-04-10

Similar Documents

Publication Publication Date Title
EP0230411A1 (fr) Procede de production de calcium ou d&#39;alliages de calcium de haute purete
CH643000A5 (fr) Procede de production d&#39;aluminium d&#39;extreme purete.
CA1186156A (fr) Procede de purification de metaux par segregation
FR2547571A1 (fr) Procede et appareil pour produire du silicium de haute purete
EP0408468B1 (fr) Procédé d&#39;obtention d&#39;uranium à partir d&#39;oxyde et utilisant une voie chlorure
CH410441A (fr) Procédé d&#39;affinage du silicium et du germanium
CA1255689A (fr) Preparation d&#39;une poudre de difluorure de dibutyl etain destinee a la formation d&#39;un revetement sur un substrat, notamment en verre
FR2514786A1 (fr) Procede de debismuthage du plomb
FR2636939A1 (fr) Procede perfectionne d&#39;obtention de composes de ta et (ou) nb exempts d&#39;impuretes a partir de materiaux contenant ces metaux
FR2573442A1 (fr) Procede de production d&#39;alliages de calcium de haute purete
JP3543898B2 (ja) エッチング用ガスおよびその製造方法
FR2708000A1 (fr) Aluminium électroraffiné à basse teneur en uranium, thorium et terres rares.
WO1987004193A1 (fr) Procede d&#39;elaboration de poudres de metaux de transition par electrolyse en bains de sels fondus
FR2559473A1 (fr) Procede de production de silicium purifieÿa
RU2281979C2 (ru) Способ очистки висмута
EP0118352B1 (fr) Procédé de préparation d&#39;iodure mercurique alpha de haute pureté destiné à être utilisé comme source de matière première pour la croissance de monocristaux pour la détection nucléaire
FR2571353A1 (fr) Procede de production du silicium
EP0024987A1 (fr) Procédé de traitement des solutions de chlorure de plomb
CA1268446A (fr) Procede d&#39;amelioration de la purete des metaux de transition obtenus par electrolyse de leurs halogenures en bain de sels fondus
EP0090750B1 (fr) Procédé d&#39;obtention d&#39;aluminium de très haute pureté en éléments eutectiques
JPH10324930A (ja) 高純度カドミウムの製造方法及び製造装置
BE521185A (fr)
CH385497A (fr) Procédé d&#39;obtention électrolytique de tantale ou de niobium
Yatsenko et al. Synthesis of compounds of impurities with chemically active additives in liquid aluminum and gallium
JPS59169908A (ja) テルルの精製方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900402

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BIENVENU, GERARD

Inventor name: DUBRUQUE, DOMINIQUE