EP0224510B1 - Verfahren zur dekontamination von radioaktiv kontaminierten gegenständen aus metall oder aus zementhaltigem material - Google Patents

Verfahren zur dekontamination von radioaktiv kontaminierten gegenständen aus metall oder aus zementhaltigem material Download PDF

Info

Publication number
EP0224510B1
EP0224510B1 EP86903176A EP86903176A EP0224510B1 EP 0224510 B1 EP0224510 B1 EP 0224510B1 EP 86903176 A EP86903176 A EP 86903176A EP 86903176 A EP86903176 A EP 86903176A EP 0224510 B1 EP0224510 B1 EP 0224510B1
Authority
EP
European Patent Office
Prior art keywords
decontamination
process according
acid
solution
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86903176A
Other languages
English (en)
French (fr)
Other versions
EP0224510A1 (de
Inventor
Jozef Hanulik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Recytec SA
Original Assignee
Recytec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Recytec SA filed Critical Recytec SA
Priority to AT86903176T priority Critical patent/ATE60160T1/de
Publication of EP0224510A1 publication Critical patent/EP0224510A1/de
Application granted granted Critical
Publication of EP0224510B1 publication Critical patent/EP0224510B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes

Definitions

  • US Pat. No. 3,873,362 describes a similar two-stage decontamination process in which hydrogen peroxide is preferably used in the first stage for oxidation and aqueous solutions of mixtures of mineral acids (sulfuric acid and / or nitric acid) and complex-forming substances such as oxalic acid in the reducing second stage of the process , Citric acid or formic acid can be used.
  • the contaminated metal surface is treated with a cerium salt solution containing at least one cerium IV salt and a water-containing solvent.
  • a cerium salt solution containing at least one cerium IV salt and a water-containing solvent.
  • Another decontamination process is described in EP application, publication no. 00 73 366, in which an aqueous solution of formic acid and / or acetic acid and a reducing agent, in particular formaldehyde and / or acetyldehyde, is used as the decontamination agent.
  • This method has a particular advantage in that there is a comparatively low need for chemicals and in the disposal of the used decontamination solution, an amount of radioactive substances corresponding to the volume of the removed surface layers.
  • the basic concept is based on the fact that the activity in the contaminated surface layer decreases with the extent to which the surface layer itself is detached by the decontamination solution.
  • the depth of penetration of active material into the surface layer can be determined or measured before decontamination, which then results in the thickness of the surface layer to be removed in order to achieve a certain final decontamination state.
  • GB-A-891'670 decontamination is carried out using hydrofluoric acid.
  • a rolled layer is to be removed from a metal, in particular silicon iron.
  • the contaminated metal is added to an aqueous solution of fluoroborate, so that hydrolysis produces hydrofluoric acid to remove the layer and volatile boric acid.
  • hydrofluoric acid is very aggressive, so a neutral salt is added to reduce the attack on the metal.
  • boric acid In the primary water circuit of pressurized water reactors there is a concentration of boric acid of up to 3000 ppm. During the operation of such reactors, smaller amounts of the liquid mentioned fall than Waste. In addition to boric acid, this waste also contains contaminants such as cobalt compounds, as well as solid contaminants such as rust residues, fabric fibers, dust, etc. In certain cases, this waste can even be treated to the extent that it is in the form of a solid material.
  • the device for performing the present method ( Figure 1) has a container for holding the objects to be decontaminated.
  • the duration of treatment of objects in the receptacle 1 is chosen so that the objects are free of radioactivity after the end of the process. Such objects are then removed from the receptacle 1 and can then either be reused or sent to the scrap.
  • a decontamination solution is introduced into the receptacle 1, which acts on the surface of the objects in such a way that the contaminated surface layer is dissolved and removed.
  • the decontamination solution in container 1 can form a bath in which the objects are located, or the decontamination solution is sprayed into container 1.
  • a circulating device 2 with a pump can be assigned to the receiving container 1. This makes it possible to achieve a long treatment time for the objects with a relatively small amount of the decontamination solution.
  • An evaporator 3 is connected to the receptacle 1 via a line 4. In the evaporator 3, more volatile components of a concentrated solution are separated from less volatile components thereof. Vaporizable components are fed to an absorber 6 through a further line 5.
  • the bottom products from the evaporator 3 are transferred to a reduction device 7, in which they are reduced to metallic iron, chromium, nickel, lead, etc. However, there is also the possibility of feeding the solid, evaporated products to the chemical industry or the scrap without reducing them for further use as chemical metal compounds.
  • the reduction device 7 is connected via a line 9 to the absorber 6, through which HF is led from the reduction device 7 to the absorber 6.
  • the hydrogen required for the reduction of metal compounds can be fed to the reduction device 7 through a line 10 from the dissolver 1.
  • An electrolytic cell 12 can be connected to the receptacle 1 via a line 13, through which the concentrated solution is pumped out of the receptacle 1 into the cell 12.
  • BF 4 ions are recombined to HBF 4 at the anode.
  • HBF 4 is fed to the receptacle 1 through a further line 14.
  • HBF 4 which is fed to the receptacle 1 via a line 15, likewise arises in the already mentioned absorber 6.
  • the quality of the surface of the treated objects can be influenced during and / or after decontamination by surface-active substances. Wetting agents such as soaps, water permeability inhibitors such as formaldehyde, etc. come into consideration as such substances.
  • the high absorption capacity of the decontamination agent or the decontamination solution - 1 liter can dissolve up to 220 grams of stainless steel at 90 ° C - allows high area-related decontamination performance. Such a high absorption capacity allows to decontaminate approx. 30 m 2 of the surface with only 1 liter of decontamination solution with a removal of 1 micrometer. In the dissolver 1 you can reach a concentration of up to 220 grams of stainless steel per liter at 90 ° C. This concentrated solution is pumped into the electrolytic cell 12, where metal is on the cathode is excreted, while at the anode BF 4 ions recombine to HBF 4 . This solution is returned to the decontamination process.
  • iron-containing Fe (BF 4 ) 2 concentrate is discussed as an example. This concentrate also contains radioactivity, but this does not affect the chemical balance. Detached stainless steel, nickel-based alloys and other contaminated materials are to be treated analogously. The following equation applies to the direct disposal of iron concentrates:
  • Iron, chromium, nickel or copper is removed electrolytically from the iron-containing concentrate and then mixed with cement.
  • the electrolysis proceeds as follows:
  • the object of the present invention is to eliminate the mentioned but also further disadvantages of the prior art in the field of decontamination. This object is achieved according to the invention in the method of the type mentioned at the outset, as defined in the characterizing part of claim 1.
  • the masonry surface is misted / moistened with HBF 4 ⁇ and / or H 2 SiF 6 ⁇ acid.
  • the chemical reaction between the carbonates in the masonry and the acids produces gaseous C0 2 .
  • the gas bubbles form a foam with the acid, which is an excellent flotation agent for the contaminants.
  • the foam is then suctioned off with the activity.
  • Fluorine ions from the fluorocomplexes of the acids react with the calcium present and form an insoluble, voluminous precipitate of CaF 2 , which clogs the pores on the surface.
  • the impregnation of the masonry described massively impedes the transport of activity into the interior of the material. With radium-contaminated concrete, decofactors between 10 and 15 were achieved during decontamination.
  • the device for carrying out the present method contains a reaction container 1, in which contaminated boric acid is converted into an easily evaporable boron compound ( Figure 2).
  • Contaminated boric acid is introduced into the reaction vessel 1 through a first line 2. It is usually a liquid that, in addition to boric acid, also water, contaminants such as Cobalt compounds, as well as impurities, e.g. Contains rust, fabric fibers, dust, etc.
  • a chemical substance is supplied to the reaction vessel 1, which causes the conversion mentioned. It can be gaseous fluorine or hydrofluoric acid. Hydrofluoric acid can be used either in the form of liquid or in the form of gas.
  • a pump 4 is connected to the reaction container 2 and conveys the reaction product from the reaction vessel 1 into a distillation device 5 of a type known per se.
  • the speed of the introduction of the two components mentioned through lines 2 and 3 in the Reaction container 1 and the rate at which the reaction product is withdrawn from the reaction container 1 are selected such that the material supplied is given sufficient time for the reaction to proceed to completion.
  • the sump that remains in the distillation device 5 is removed from it and conditioned for disposal.
  • the sump is first neutralized in a further vessel 6, for example with calcium hydroxide.
  • the neutralized sump material can only be dried and then immediately deposited. However, it can also be solidified with cement or bitumen and only then deposited.
  • the thermal energy required for the distillation in the device 5 is advantageously taken from liquid or gaseous media.
  • the distillation is advantageously carried out under reduced pressure because the temperatures in the device 5 are then relatively low and at such temperatures virtually no pyrolysis can take place.
  • the HBF 4 acid obtained during the distillation is led out of the distillation device 5 through a line 6.
  • This acid can be used as a fully regenerable decontamination agent as described in a Swiss patent application no. 2238/85 by the same applicant, or the acid can be sold to the chemical industry, where it can be used, for example, in electroplating.
  • the borofluoric acid which is obtained during the distillation, does not end up in the repository for radioactive material, but can be sold to the chemical industry, for example, and thus can be used further.
  • the swamp because it now has a smaller volume, can be disposed of without incurring great costs.
  • the present process is based on the knowledge that, in contrast to H 3 B0 3 , borofluoric acid HBF 4 can be distilled and can thus be separated from the contaminants, such as, for example, from Co-60 Cs nuclides.
  • the borofluoric acid can be separated into fractions of different densities during distillation.
  • the principle reactions on which the present method is based are as follows:
  • the HBF 4 acid obtained may also contain traces of activity (in single-stage distillation) because it can be used as a completely regenerable decontamination agent for components made from DWR and SWR.
  • the option for an inactive use is when carrying out a multi-stage distillation.
  • Contaminated surface layers are decontaminated by treatment with an aqueous fluorobase-containing decontamination solution.
  • the aqueous solution contains 0.05 to 50 moles of decontamination agent per liter, the decontamination agent preferably being at least one substance from the group of hexafluorosilicate acids, fluoroboric acid and their salts.
  • the decontamination solution provides the necessary decontamination factors, particularly on DWR, SWR, high-temperature alloys and masonry.
  • the used decontamination solution can be recycled into the decontamination process after regeneration.
  • the decontamination agent (HBF 4 acid) is advantageously produced from contaminated boric acid from DWR waste with the help of fluoric or hydrofluoric acid.
  • the HBF 4 acid thus produced is separated from the contaminants and impurities by the distillation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

  • Früher wurden die radioaktive kontaminierten Oberflächenschichten von Reaktor-Kühlkreisläufen häufig mittels wässriger Mineralsäurelösungen abgetragen. Eine solche Dekontaminationslösung mit 20% Salpetersäure und 3% Fluorwasserstoffsäure ist beispielsweise in "Kernenergie", 11. Jhg. 1968, pp. 285 angegeben. Da wegen der Aggressivität solcher Mineralsäurelösungen der Abtragungsvorgang nur schwer zu steuern ist, besteht die Gefahr, dass das reine Metall unterhalb der kontaminierten Oberflächenschicht korrodiert und so Schwachstellen entstehen können, die zu Leckbildung neigen, was unter allen Umständen ausgeschlossen sein muss. Von den zur Behebung solcher und anderer Mängel später entwickelten Dekontaminationsverfahren dürfte das bekannteste das sogenannte "AP-Citrox"-Verfahren sein ("Kernenergie", 11. Jh. 1968, pp. 285), bei dem die kontaminierte Oberfläche zuerst mit einer oxidierenden alkalischen Permanganatlösung zur Vorbereitung der Auflösung und danach mit einer reduzierenden wässrigen Lösung von dibasischen Ammoniumcitrat behandelt wird.
  • In der US-PS 3 873 362 ist ein ähnliches zweistufiges Dekontaminationsverfahren beschrieben, bei dem zum Oxydieren in der ersten Stufe vorzugsweise Wasserstoffperoxid und in der reduzierenden zweiten Prozessstufe wässrige Lösungen von Mischungen aus Mineralsäuren (Schwefelsäure und/oder Salpetersäure) und komplexbildenden Stoffen, wie Oxalsäure, Zitronensäure oder Ameisensäure, verwendet werden.
  • Nach einem anderen bekannten Dekontaminationsverfahren (DE-PS 27 14 245) wird die kontaminierte Metalloberfläche mit einer mindestens ein Cer-IV-Salz und ein wasserhaltiges Lösungsmittel enthaltenden Cersalzlösung behandelt. Ein weiteres Dekontaminationsverfahren ist in der EP-Anmeldung, Veröffentlichungs Nr. 00 73 366, beschrieben, bei dem als Dekontaminationsmittel eine wässrige Lösung aus Ameisensäure und/oder Essigsäure und aus einem Reduktionsmittel, insbesondere Formaldehyd und/ oder Acetyldehyd, zum Einsatz kommt. Bei diesem Verfahren sind von besonderem Vorteil ein verhältnismässig geringer Bedarf an Chemikalien und bei der Entsorgung der gebrauchten Dekontaminationslösung eine etwa dem Volumen der abgetragenen Oberflächenschichten entsprechende Menge anfallender radioaktiver Stoffe.
  • Bei den naßchemischen Dekontaminationsverfahren, von denen oben einige kurz beschrieben sind, beruht das Grundkonzept darauf, dass die Aktivität in der kontaminierten Oberflächenschicht mit dem Maße abnimmt, wie die Oberflächenschicht selbst durch die Dekontaminationslösung abgelöst wird. Die Eindringtiefe von aktivem Material in die Oberflächenschicht kann vor der Dekontamination bestimmt oder gemessen werden, woraus sich dann die für die Erreichung eines bestimmten Dekontaminations-Endzustandes die Dicke der jeweils abzutragenden Oberflächenschicht ergibt.
  • In der GB-A-891'670 wird eine Dekontamination mittels Flußsäure durchgeführt. Gemäss jener Erfindung soll von einem Metall, insbesondere Siliziumeisen eine Walzschicht entfernt werden. Hierzu wird das kontaminierte Metall einer wässrigen Lösung von Fluorborat zugegeben, so dass bei der Hydrolyse Flusssäure zur Entfernung der Schicht, sowie flüchtige Borsäure entsteht. Da Flußsäure bekanntlich sehr aggressiv ist, wird zusätzlich ein neutrales Salz beigegeben, um den Angriff auf das Metall zu verringern.
  • Der Angriff von Flußsäure auf eine Metalloberfläche ist unregelmässig. Damit verbleiben bei der Dekontamination nicht dekontaminierte Inseln, die nach wie vor radioaktiv sind.
  • Flußsäure hat jedoch noch weiter wesentliche Nachteile:
    • a) HF gehört der Giftklasse 1 an und die geforderte Arbeitshygiene kann bei den hier erforderlichen Arbeitsprozessen kaum eingehalten werden.
    • b) Bezüglich der Löslichkeit von Metallen hat die Flußsäure eine Kapazität von cirka 10-20 g/I, während die Fluoroborsäure eine Kapazität von cirka 200-300 g/I aufweist.
    • c) Die Regeneration von HF ist schwieriger als diejenige von Fluoroborsäure, weil die elektrische Leitfähigkeit von HF niedriger ist und somit ein größerer Energieaufwand erforderlich ist als bei Fluoroborsäure. Die Regeneration des Dekontaminationsmittels ist jedoch für die Entsorgung von radioaktiven Abfällen eine wichtige Voraussetzung um die Abfallmenge zu reduzieren.
  • Dekontaminationstests an verschiedenen metallischen Reaktorbaustoffen haben nun einen Wiederspruch zur obigen Annahme, dass der Betrag der Restaktivität allein eine Funktion der Dicke der abgetragenen Oberflächenschicht ist, aufgezeigt. Für verschiedene Dekontaminationslösungen ergaben sich bei gleichem, gravimetrisch bestimmtem Schichtabtrag unterschiedliche Dekontaminationsfaktoren. Untersuchungen mit einem Raster-Elektromikroskop haben gezeigt, dass sich auf der dekontaminierten Metalloberfläche Feststoffschichten oder Feststoffinseln gebildet haben, in denen aktives Material angereichert ist, und die als unerwünschte Beiprodukte der jeweiligen Abtragungsreaktionen anzusehen sind. solche Abweichungen sind insbesondere bei silicium- und gegebenenfalls aluminiumhaltigen Werkstoffen zu beobachten, also etwa bei rostfreien Stählen und Hochtemperatur-Werkstoffen, wie sie z.B. bei heliumgekühlten Hochtemperaturreaktoren Verwendung finden, und auch niedrig legierten Stählen. Abgesehen von einer unerwünschte hohen Restaktivität wird durch die unregelmässige Abtragung derartiger Oberflächenschichten auch die Ueberwachung und Steuerung des Dekontaminationsprozesses selbst schwierig, so dass eine zuverlässige Dekontamination nicht mehr gewährleistet ist und auch mit den eingangs erwähnten Korrosionsschäden zu rechnen ist.
  • Im Primärwasserkreislauf von Druckwasserreaktoren befindet sich Borsäure in Konzentration bis zu 3000 ppm. Während des Betriebes solcher Reaktoren fallen kleinere Mengen der genannten Flüssigkeit als Abfall an. Dieser Abfall enthält neben Borsäure noch Kontaminanten wie z.B. Kobaltverbindungen, sowie feste Verunreinigungen, wie z.B. Rostreste, Stofffasern, Staub, usw. Dieser Abfall kann in bestimmten Fällen sogar so weit behandelt werden, dass.er in Form eines festen Materials vorliegt.
  • Meistens wurde der Abfall bisher auf ca. 16 Gew.% durch Eindampfen aufkonzentriert, wobei dieser Konzentrat dann eine Aktivität von 0,1 bis 3 Ci/m3 und bis zu 1 g/I an Feststoffen (28'000 ppm Bor) aufweist. Ein solches Konzentrat wird mit Zement verfestigt (siehe z.B. Nagra: Technischer Bericht 84-09). Eine Menge von 123 kg Konzentratlösung/200 Liter Matrix, mit einem Raumgewicht 1.89 Mg/m3 d.h. 123 kg (=114 Liter mit einer Dichte von 1,08 Mg/m3) wird in 378 kg schwerer Matrix verfestigt. Die Konzentratmengen können in einem Jahr bis zu 10 m3 pro Kernkraftwerk erreichen. Zur Aufnahme dieser Menge von Konzentrat benötigt man, gemäss obigen Annahmen, etwa 88 Fässer, wobei das Volumen des jeweiligen Fasses etwa 200 Liter beträgt. Bei einem Preis von sFr. 5'000.- je Faß, inklusiv Entsorgung, ergibt sich ein Betrag von sFr. 440'000.- für die Entsorgung der jährlich anfallenden Menge von Abfall.
  • Es ist die Aufgabe der vorliegenden Erfindung ein Verfahren zur Dekontamination radioaktiv kontaminierter, metallischer oder zementhaltiger Werkstoffe zu schaffen, welches geschilderte Nachteile meidet, wirtschaftlicher arbeitet und die Menge der nuklear zu entsorgenden Abfälle reduziert. Gelöst wird diese Aufgabe durch das Verfahren gemäß Anspruch 1.
  • Die Einrichtung zur Durchführung des vorliegenden Verfahrens (Bild 1) weist einen Behälter zur Aufnahme der zu dekontaminierenden Gegenstände auf. Die Behandlungsdauer von Gegenständen im Aufnahmebehälter 1 wird so gewählt, daß die Gegenstände nach der Beendigung des Verfahrens von Radioaktivität frei sind. Solche Gegenstände werden dann dem Aufnahmebehälter 1 entnommen und sie können anschliessend entweder wiederverwendet oder dem Schrott zugeführt werden.
  • In den Aufnahmebehälter 1 wird eine Dekontaminationslösung eingeführt, welche auf die Oberfläche der Gegenstände derart einwirkt, daß die kontaminierte Oberflächenschicht aufgelöst und abgetragen wird. Die Dekontaminationslösung im Behälter 1 kann ein Bad bilden, in welchem sich die Gegenstände befinden, oder die Dekontaminationslösung wird in den Behälter 1 eingesprüht.
  • Dem Aufnahmebehälter 1 kann eine Umwälzvorrichtung 2 mit einer Pumpe zugeordnet sein. Dies ermöglicht, mit einer verhältnissmässig kleinen Menge der Dekontaminationslösung eine lange Behandlungsdauer der Gegenstände zu erreichen. An den Aufnahmebehälter 1 ist ein Verdampfer 3 über eine Leitung 4 angeschlossen. Im Verdampfer 3 werden flüchtiqere Komponenten einer konzentrierten Lösung von weniger flüchtigen Komponenten derselben getrennt. Verdampfbare Komponenten werden durch eine weitere Leitung 5 einem Absorber 6 zugeführt. Die Sumfpprodukte aud dem Verdampfer 3 werden in eine Reduktionsvorrichtung 7 übergeführt, in welcher sie zu metallischem Eisen, Chrom, Nickel, Blei usw. reduziert werden. Es besteht jedoch auch die Möglichkeit, die festen, eingedampften Produkte ohne Reduktion derselben zur Weiterverwendung als chemische Metallverbindungen der chemischen Industrie oder dem Schrott zuzuführen. Die Reduktionsvorrichtung 7 ist über eine Leitung 9 an den Absorber 6 angeschlossen, durch welche HF von der Reduktionsvorrichtung 7 zum Absorber 6 geführt wird. Den für die Reduktion von Metallverbindungen erforderlichen Wasserstoff kann man der Reduktionsvorrichtung 7 durch eine Leitung 10 aus dem Auflöser 1 zuführen.
  • An den Aufnahmebehälter 1 kann eine elektrolytische Zelle 12 über eine Leitung 13 angeschlossen sein, durch welche die konzentrierte Lösung aus dem Aufnahmebehälter 1 in die Zelle 12 umgepumpt wird. Während des Betriebes dieser Zelle 12 wird an der Anode BF4- Ionen zu HBF4 rekombinieren. HBF4 wird durch eine weitere Leitung 14 dem Aufnahmebehälter 1 zugeführt. Im bereits erwähnten Absorber 6 entsteht ebenfalls HBF4, welche über eine Leitung 15 dem Aufnahmebehälter 1 zugeführt wird. Die Qualität der Oberfläche der behandelten Gegenstände kann während und/oder nach der Dekontamination durch oberflächenwirksame Stoffe beeinflusst werden. Als solche Stoffe kommen Netzmittel, wie z.B. Seifen, Wasserpermeabilitätsinhibitoren, wie z.B. Formaldehyd, usw. in Frage.
  • Die starke Ueberlegenheit des hier beschriebenen Verfahrens gegenüber den Verfahren des Standes der Technik beruht in beinahe universaller Verwendbarkeit dieses Verfahrens, in ausserordentlich grosser Aufnahmekapazität von HBF4 für die behandelten Materialien und in der totalen Regenerierbarkeit der Dekontaminationslösung, so daß eine ausserordentlich kleine Menge von sekundären Anfällen entsteht.
  • Dekomtinationswirkung (Tabelle 1)
  • Es wurden Versuche durchgeführt mit Materialien des Primärkreislaufes von Siedewasserreaktoren und mit Dampferzeugermaterial aus einem Druckwasserreaktor mit jeweils starker Magnetschicht. Die Materialien hatten Aktivitäten von ca. 10 IlCi/cm2 Cobalt-60.
    Figure imgb0001
  • Korrosionsverhalten (Tabelle 2)
  • Die Abtragungskinetik von rostfreiem Stahl und Nickelbasislegierungen wurde bei 80, 90 und 100°C untersucht.
    Figure imgb0002
  • Am Prozeßanfang steht der Auflöser 1 (Berieselunganlage), in welchen die zu dekontaminierenden Gegenstände zur Freidekontamination oder zur Freimessung in ein Bad gelegt oder durch ein Sprühverfahren besprüht werden. Der zweite Teil des Prozesses besteht aus Verdampfen in einem Verdampfer 3. Im Verdampfer 3 werden konzentrierte Lösungen mit ca. 200 Gramm rostfreiem Stahl pro Liter, bei erhöhten Temperaturen, bei Normaldruck oder unter Druck eingeengt und bis auf feste FeF2 bzw. analoge Fluoride anderer Metalle getrocknet. BF3, B2O3 · BF3, HBF4, H20 und Dehydrate der Borsäure werden abgedampft, abgesaugt und im nächsten Teil der Anlage, dem Absorber 6, in der flüssigen Phase gelöst. Im Absorber 6 wird die erhaltene Lösung mit Flußsäure oder mit Flußsäuredämpfen zur Herstellung von frischer HBF4-Säure versetzt, welche dem Auflöser 1 zugeführt wird. Die Supfprodukte aus dem Verdampfer 3 werden in den Reduktionsteil 7 der Anlage überführt, in welchem sie zu metallischem Eisen, Chrom oder Nickel (u.a.) reduziert werden können. Je nach dem, ob es sich um eine Freidekontamination oder Freimessung handelt, erhalten wir entweder inaktive Produkte aus dem Verdampfer 3, bzw. aus dem Reduktionsanlage-Teil 7, oder aktive, feste Produkte, welche der Entsorgung zugeführt werden. Je nach der vorhandenen Entsorgungs-Infrastruktur kann man mehrere Entsorgungsweisen anwenden:
    • a) Die direkte Entsorgung des Dekontaminationsmittels aus dem Auflöser 1,
    • b) die Entsorgung von Fluorirden in eingedampfter Form,
    • c) die Entsorgung von metallischen Komponenten nach Reduktionen,
    • d) oder deren Kombinationen.
  • Anstatt die zu dekontaminierenden Gegenstände in ein Dekontaminationsbad einzutauchen und eine mehrstündige oder sogar mehrmalige Dekontamination durchzuführen, genügt es nunmehr, die kontaminierten Gegenstände bei erhöhter Temperatur mit einer duschähnlichen Vorrichtung berieseln zu lassen. Diese Behandlung ist an keine bestimmte Gegenständsgeometrie gebunden. Jeder Gegenstand kann in eine Plastikhülle eingepackt werden, die als Behälter der Anlage dient. Durch das Auffangen der abfliessenden Flüssigkeit im untersten Bereich, kann man das gleiche Dekontaminationsmittel mittels einer Pumpe 2 im Kreislauf wieder verwenden. Die minimale Menge an Dekontaminationsmittein, die zur Aufrechterhaltung des Kreislaufes und für die Benetzung des Systems benötigt wird, bestimmt sich nach den Benetzbarkeitseigenschaften des Dekontaminationsmittels und den Eigenschaften der Materialoberfläche. Aus praktischer Erfahrung haben sich Werte zwischen 0,5 bis 1,5 Liter pro m2 der behandelten Oberfläche ergeben. Die hohe Aufnahmefähigkeit des Dekontaminationsmittels bzw. der Dekontaminationslösung- 1 Liter kann bei 90°C bis zu 220 Gramm rostfreien Stahl auflösen- erlaubt hohe flächenbezogene Dekontaminationsleistungen. Eine so hohe Aufnahmekapazität erlaubt mit nur 1 Liter Dekontaminationslösung bei einem Abtrag von 1 Micrometer ca. 30 m2 der Oberfläche zu dekontaminieren. Im Auflöser 1 kann man eine Konzentration bis zu 220 Gramm rostfreien Stahl pro Liter bei 90°C erreichen. Diese konzentrierte Lösung wird in die elektrolytische Zelle 12 umgepumpt, wo an der Kathode Metall ausgeschieden wierd, während an der Anode BF4―Ionen rekombinieren zu HBF4. Diese Lösung wird dem Dekontaminationsprozess wieder zugeführt.
  • Entsorgung der sekundären Abfälle
  • Als Beispiel wird ein eisenhaltiges Fe (BF4)2-Konzentrat diskutiert. Dieses Konzentrat beinhaltet auch Radioaktivität, was jedoch die chemische Bilanz nicht beeinflusst. Abgelöster rostfreier Stahl, Nickelbasislegierungen und andere kontaminierte Materialien sind analog zu behandeln. Zur direkten Entsorgung von Eisenkonzentraten gilt folgende Gleichung:
    Figure imgb0003
  • Entsorgung nach elektrochemischer Regeneratiom (minimale Variante):
  • Aus dem eisenhaltigen Konzentrat wird Eisen, Chrom, Nickel bzw. Kupfer elektrolytisch entnommen umd anschliessend mit Zement vermischt. Die Elektrolyse läuft folgendermassen ab:
    Figure imgb0004
    Figure imgb0005
  • Die Reaktionen für andere Metalle aus dekontaminierten Legierungen laufen analog ab. Es ist vorteilhaft, als Anode ein korrosionsfestes Material, wie z.B. Grafit, zu verwenden, oder als Opferanode auch das kontaminierte Objekt zu verwenden, was die chemische Auflösung beschleunigt und gleichzeitig die Säure regeneriert.
  • Entsorgungsvariante nach Abdampfung der HBF4-Säure:
    • Bei normalem Druck, bei Temperaturen bis zu 170°C, oder bei herabgesetzttem Dampfdruck und tieferen Temperaturen, erhält man nach dem Abdampfungsprozeß feste, rötliche Reste von FeF2, Aktivität beinhaltend. Diese ergeben nach der Vermischung mit Wasser und Ca(OH)2 CaF2+Fe(OH)2. Diese festen Produkte sind mit Zement gut verträglich und das Gewicht der Zementmatrix könnte man nach folgende Formel ermitteln:
    • Anzahl Gramm aufgelösten Eisens im Konzentratx12,5=Gewicht der Zementmatrix in Gramm. Das Destillat beinhaltet Dämpfe aus HBF4, BF3, H20, Borsäure und deren Dehydrate. Nach der Kondensation und dem Auffangen der Dämpfe im Wasser, kann man durch Hinzufügen von HF die erwünschte Konzentration von HBF4 einstellen.
    Reaktionen:
  • Auflöser 1:
    • Fe+2 HBF4→Fe (BF4)2+H2
  • Verdampfer 3:
    • a) H20 abdestillieren
    • b) abdestillieren von unreag. HBF4
    • c) Pyrolyse
      Figure imgb0006
      BF3 (g)+B2O3→BF3· B2O3 (g) H3B03 (aus HBF4 Hydrolyse)→B2O3+H2O
  • Absorber 6:
    • BF3+HF→HBF4
  • Reduktion 7:
    • H2+Fe F2→2 HF+Fe.
    Reaktionen HBF4-Metalle:
  • Auflöser: 2 HBF4+Ni=Ni (BF4)2+H2
    • 3 HBF4+Cr=Cr (BF4)3+3/2 H2
    • 2 HBF4+Cu=Cu (BF4)2+H2
    • 2 HBF4+Pb=Pb (BF4)2+H2 in allgem. n HBF4+Me=Me (BF4)n+n/2-H2 Verdampfer: (Pyrolyse) Ni (BF4)2=NiF2+2 BF3
    • Cr (BF4)3=CrF3+3 BF3
    • Cu (BF4)2=CuF2+2 BF3
    • Pb (BF4)2=PbF2+2 BF3
    • Reduktion: Ni F2+H2=Ni+2 HF
    • Cr F3+-3/2 H2=Cr+3 HF
    • Cu F2+H2=Cu+2 HF
    • Pb F2+H2=PbF2+2 HF
  • Entsorgung mit Ca (OH)2:
    • Ni (BF4)2+4 Ca (OH)2=Ni (OH)2+4 CaF2+2 H3B03
    • Cr (BF4)3+6 Ca (OH)2=Cr (OH)3+6 CaF2+3 H3BO3
    • Cu (BF4)2+4 Ca (OH)2=Cu (OH)2+4 CaF2+2 H3B03
    • Pb (BF4)2+4 Ca (OH)2=Pb (OH)2+4 CaF2+2 H3B03
    • Ni F2+Ca (OH)2=CaF2+Ni (OH)2
    • Cr F3+3/2-Ca (OH)2=Cr (OH)3+3/2-CaF2
    • Cu F2+Ca (OH)2=CaF2+Cu (OH)2
    • Pb F2+Ca (OH)2=Pb (OH)2+CaF2
    Reaktionen H2 Si F6-Metalle:
    • Auflöser: Fe+2 H2Si F6=Fe (Si F6)2+2 H2
    • in allgem. Me+n H2Si F6=Men+ (Si F6)n+n H2
    • Verdampfer: (Pyrolyse) Fe (Si F6)2=Fe F2+2 Si F4
    • in allgem. Men+ (Si F6)n=Me Fn+n Si F4
    • Absorber: Si F4+2 HF=H2 Si F6
    • Reduktion: Men+ F"+-n/2 H2=Me+n HF
    Entsorgung mit Ca (OH)2:
  • Figure imgb0007
  • in allqem.
  • Figure imgb0008
  • Reaktionen HF-Metalle
  • ergeben Fluoride, deren Entsorgung mit Ca (OH)2 bereits skizziert wurde.
  • Dekontamination von Mauerwerk und zementhaltigen Oberflächen
  • Bei der Dekontamination von porösem Material wird die Aktivität durch die mobile, flüssige Phase ins Material transportiert, was die nasse Dekontamination erschwert bis verunmöglicht. Deshalb wird man oft einen mechanischen Abtrag der kontaminierten Schicht vornehmen müssen. Dieses Verfahren ist teuer, verunstaltet die Oberfläche und verursacht viele sekundäre Abfälle.
  • Die Aufgabe der vorliegenden Erfindung ist, die genannten aber auch noch weitere Nachteile des Standes der Technik auf dem Gebiet der Dekontamination zu beseitigen. Diese Aufgabe wird beim Verfahren der eingangs genannten Art erfindungsgemäß so gelöst, wie dies im kennzeichnenden Teil des Anspruchs 1 definiert ist.
  • Anwendungsbeispiel und Mechanismus.
  • Die Mauerwerkoberfläche wird mit HBF4―und/oder H2SiF6―Säure benebelt/befeuchtet. Durch die chemische Reaktion zwischen den Carbonaten im Mauerwerk und den Säuren entsteht gasförmiges C02. Die Gasbläschen bilden mit der Säure einen Schaum, welcher ein hervorragendes Flotationsmittel für die Kontaminanten ist. Anschliessend wird der Schaum mit der Aktivität abgesaugt. Fluor- Ionen aus den Fluorokomplexen der Säuren reagieren mit dem anwesenden Calcium und bilden einen unlöslichen, voluminösen Niederschlag von CaF2, welcher die an der Oberfläche vorhandenen Poren verstopft. Durch die beschriebene Imprägnierung des Mauerwerkes wird der Aktivitätstransport ins Materialinnere massiv behindert. Bei Radium-kontaminiertem Beton wurden bei der Dekontamination Dekofaktoren zwischen 10 und 15 erreicht.
  • Neuer Eis-abrasive-Dekontaminationsnachbehandlung-Prozeß.
  • In der Dekontaminationslösung entstehen an der Gegenstandoberfläche unerwünschte, feste Reaktionsnebenprodukte, welche auf den Gegenstandoberfläche haften bleiben und welche unter Umständen die Dekontaminationsergebnisse deutlich verschlectern. Diese Schicht ist relativ leicht abwischbar, solange sie nicht eingetrocknet und mit der Oberfläche verkrustet ist. Nach Abschluß der vorausberechneten (bzw. abgeschätzten) Dekobehandlung wird das gesamte System mit Feststoff-Eispartikeln abrasiv behandelt. Die abwischbaren und kontaminierten Teile der Ablagerungsschicht werden entfernt und mobilisiert.
  • Die Einrichtung zur Durchführung des vorliegenden Verfahrens enthält einen Reaktionsbehälter 1, in dem kontaminierte Borsäure in eine leicht verdampfbare Borverbindung umgewandelt wird (Bild 2). Durch eine erste Leitung 2 wird kontaminierte Borsäure in den Reaktionsbehälter 1 eingeführt. Es handelt sich in der Regel um eine Flüssigkeit, die neben Borsäure auch Wasser, Kontaminanden, wie z.B. Kobaltverbindungen, sowie Verunreinigungen, wie z.B. Rostreste, Stofffasern, Staub usw. enthält. Durch eine weitere Leitung 3 wird dem Reaktionsgefäss 1 ein chemischer Stoff zugeführt, der die genannte Umwandlung verursacht. Es kann sich um gasförmiges Fluor oder um Flußsäure handeln. Flußsäure kann entweder in Form von Flüssigkeit oder in Form von Gas angewendet werden.
  • An den Reaktionsbehälter 2 ist eine Pumpe 4 angeschlossen, welche des Reaktionsprodukt aus dem Reaktionsgefäss 1 in eine Destillationsvorrichtung 5 einer an sich bekannten Art fördert. Die Geschwindigkeit der Einführung der zwei genannten Komponenten durch die Leitungen 2 und 3 in den Reaktionsbehälter 1 und die Geschwindigkeit des Abzuges des Reaktionsproduktes aus dem Reaktionsbehälter 1 wird so gewählt, dass dem zugeführten Material genügend Zeit für den vollständigen Verlauf der genannten Reaktion gewährt wird. Der Sumpf, der in der Destillationsvorrichtung 5 zurückbleibt, wird dieser entnommen und zur Entsorgung konditioniert. Zu diesem Zweck wird der Sumpf zunächst in einem weiteren Gefäss 6 beispielsweise mit Kalziumhydroxid neutralisiert. Das neutralisierte Sumpfmaterial kann nur noch bloss getrocknet und danach gleich abgelagert werden. Es kann jedoch auch mit Zement oder Bitumen verfestigt und erst dann abgelagert werden. Die für die Destillation in der Vorrichtung 5 erforderliche Wärmeenergie wird vorteilhaft flüssigen oder gasförmigen Medien entnommen. Vorteilhaft wird die Destillation bei Unterdruck durchgeführt, weil die Temperaturen in der Vorrichtung 5 dann verhältnismässig niedrig sind und bei solchen Temperaturen kann praktisch keine Pyrolyse stattfinden.
  • Die bei der Destillation anfallende HBF4-Säure wird aus der Destillationvorrichtung 5 durch eine Leitung 6 herausgeführt. Diese Säure kann als völlig regeneierbares Dekontaminationsmittel verwendet werden, wie dies in einer schweizerischen Patentanmeldung Nr. 2238/85 desselben Anmelders beschrieben ist, oder die Säure kann der chemischen Industrie verkauft werden, wo sie beispielsweise in der Galvanotechnik verwendet werden kann.
  • Die wesentlichen Vorteile des vorliegenden Verfahrens sind darin zu sehen, dass die Borfluorosäure, die bei der Destillation anfällt, nicht in das Endlager für radioaktives Material gelangt, sondern beispielsweise an die chemische Industrie verkauft und somit weiter verwendet werden kann. Der Sumpf, weil er nunmehr ein kleineres Volumen aufweist, kann entsorgt werden, ohne grosse Kosten zu verursachen. Dem vorliegenden Verfahren liegt die Erkenntnis zugrunde, daß Borfluorosäure HBF4, im Unterschied zu H3B03, destillierbar und somit von den Kontaminanden, wie z.B. von Co-60 Cs-Nukliden, trennbar ist. Zudem lässt sich die Borfluorosäure bei der Destillation in Fraktionen verschiedener Dichte trennen. Die Prinzipreaktionen, die dem vorliegenden Verfahren zugrunde liegen sind wie folgt:
    Figure imgb0009
  • In einem praktischen Fall wurden 15,46 g H3B03 binnen etwa 20 Min. zu 20 g HF zugegeben.
  • Zahlenbeispiel
  • 10 m3 borhaltiges Konzentrat (16% H3B03) beinhaltet 1600 kg Borsäure (ca. 26'000 Mol). Nach dem Eindampfen wird zur Borsäure der vierfache Mol-überschuss von HF beigemischt (104'000 Mol HF) d.h., z.B. 2457 Liter 70% HF, 1 Liter zu Sfr. 12.- (=Sfr. 29'500.-). Das Destillat ergibt ca. 26'00 Mol HBF4, was Sfr. 24.700.- entspricht (1 Liter=8 Mol-50%)=Sfr. 7,6). Wir erhalten je nach der Prozessführung 4500 kg von ca. 57%-HBF4-Säure oder die entsprechende Verdünnung je nach der Anfangskonzentration der Borsäure. Die erhaltene HBF4-Säure darf auch Spuren von Aktivität beinhalten (bei der Einstufen-Destillation), weil sie als völlig regenerierbares Dekontaminationsmittel für Komponenten aus DWR und SWR verwendet werden kann. Die Option für eine inaktive Verwendung (z.B. in der Galvanotechnik) besteht bei der Durchführung einer mehrstufigen Destillation.
  • Zusammenfassung
  • Kontaminierte Oberflächenschichten werden durch Behandlung mit einer wässrigen fluorobasishaltigen Dekontaminationslösung dekontaminiert. Die wässrige Lösung enthält 0,05 bis 50 Mol Dekontaminationsmittel je Liter, wobei das Dekontaminationsmittel vorzugsweise wenigstens ein Stoff der Stoffgruppe Hexafluorosilikatsäure, Fluoroborsäure und deren beider Salze ist. Die Dekontaminationslösung erbringt insbesondere auch an DWR, SWR, Hochtemperaturlegierungen und Mauerwerke notwendighohe Dekontaminationsfaktoren. Die gebrauchte Dekontaminationslösung kann nach der Regeneration in den Dekontaminationsprozess rezykliert werden.
  • Durch die Auflösung der dekontaminierten Gegenstände mit komplizierter und schwer messbarer Geometrie erhält man eine homogene, messbare Geometrie, wodurch die Freigabe ermöglicht wird.
  • Das Dekontaminationsmittel (HBF4-Säure) wird vorteilhaft aus kontaminierter Borsäure aus DWR-Abfällen mit Hilfe von Fluor- oder Flusssäure hergestellt. Die so hergestellte HBF4-Säure wird durch die Destillation von den Kontaminanten und Verunreinigungen getrennt.

Claims (13)

1. Verfahren zur Dekontaminierung radioaktiv kontaminierter Gegenstände aus Metall oder aus zementhaltigem Material, dadurch gekennzeichnet, daß die zu dekontaminierenden Gegenstände mit einem Dekontaminationsmittel, enths!ter:d Fluoroborsäure in wässriger Lösung mit einer Konzentration von 0,05 bis etwa 50 Mol/Liter in Kontakt gebracht werden, daß die kontaminierten Gegenstände oder zumindest deren Oberflächen vom Dekontaminationsmittel aufgelöst werden und die damit in einer messbaren Geometrie verwendelten kontaminierten Materialien bezüglich ihrer Radioaktivität gemessen werden, und daß die einen Sumpf bildenden radioaktiven Kontaminate und Unreinheiten durch Destillation vom Dekontaminationsmittel getrennt werden und das Dekontaminationsmittel wieder verwendet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Oberflächenschicht der radioaktiv kontaminierten Gegenstände durch Tauchen oder Besprühen derselben in das beziehungsweise mit dem Dekontaminationsmittel gelöst werden, und dass der nach der Destillation verbleibende Sumpf zur Entsorgung konditioniert wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Sumpf mit Kalziumhydroxid neutralisiert, getrocknet und abgelagert wird.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Sumpf mit Kalziumhydroxid neutralisiert wird, und dass dieses Gemisch anschliessend mit Zement oder Bitumen verfestigt wird.
5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das gelöste Material während und/oder nach der Abtragung der Oberflächenschicht aus der Dekontaminationslösung ausgeschieden wird, daß die Dekontaminationslösung in den Dekontaminationsprozess wieder eingeführt wird, und daß zur Wiederverwendung des Dekontaminationsmittel Wasser zugegeben wird.
6. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das in der gebrauchten Dekontaminationslösung gelöste Material chemisch, insbesondere in Form von Hydroxiden, ausgefällt oder durch Elektrolyse ausgeschieden wird.
7. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Aktivitäts-, Oxid-, Grafit-, Carbid-, Farb- oder Mischoxidinseln, die nach dem Entfernen des kontaminierten Materials auf der Oberfläche des Gegenstandes zurückgeblieben sind, mechanisch, insbesondere durch Abstrahlen mit Eiskristallen und/ oder durch Abbürsten, vom Gegenstand entfernt werden.
8. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß pH-, und/oder Kolorimetrie-, und/oder Dichte-, und/oder Radioaktivitätsmessungen an der gebrauchten Dekontaminationslösung während der Abtragung der Oberflächenschicht durchgeführt werden, um die Zusammensetzung der Dekontaminationslösung, insbesondere die in dieser gelösten Metalle und/oder die Radioaktivität derselben festzustellen.
9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die gelösten Metallen durch Elektrolyse aus der verbrauchten Dekontaminationslösung ausgeschieden werden, daß das Dekontaminationsmittel chemisch ausgefällt wird, und daß die Metallablagerung und das von der Flüssigkeit getrennte Präzipitat nuklear entsorgt werden, falls die Radioaktivität derselben den maximalen für die Freigabe solcher Materialien zulässigen Wert überschreitet.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß Kationen, insbesondere Ca2+-lonen in Form von Ca(OH)2 der Restflüssigkeit zugegeben werden, um das Dekontaminationsmittel auszufällen, und daß das separierte Präzipitat durch Mischen mit Zement nur nuklearen Entsorgung konditioniert wird.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Dekontaminationsmittel und die gelösten Materialteilchen aus der verbrauchten Dekontaminationslösung chemisch ausgefällt werden, wobei die Präzipitate alle oder nahezu alle radioaktiven Stoffe aus dem abgetragenen Material enthalten könne, und daß die von der Flüssigkeit separierten Präzipitate nuklear entsorgt werden.
12. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die gelösten Werkstoffteile in Form von Hydroxiden aus der verbrauchten Dekontaminationslösung ausgefällt werden, und daß der Dekontaminationslösung Kationen, insbesondere Ca2+-lonen zugegeben werden, um das darin enthaltene Dekontaminationsmittel in eine in Wasser schwer oder nicht lösliche Verbindung zu überführen.
13. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die verbrauchte Dekontaminationslösung bis zur Eintrocknung destilliert wird und das Sumpfprodukt pyrolysiert wird.
EP86903176A 1985-05-28 1986-05-27 Verfahren zur dekontamination von radioaktiv kontaminierten gegenständen aus metall oder aus zementhaltigem material Expired - Lifetime EP0224510B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86903176T ATE60160T1 (de) 1985-05-28 1986-05-27 Verfahren zur dekontamination von radioaktiv kontaminierten gegenstaenden aus metall oder aus zementhaltigem material.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CH2238/85 1985-05-28
CH223985 1985-05-28
CH223885 1985-05-28
CH2239/85 1985-05-28
CH2328/85 1985-06-03
CH232885 1985-06-03

Publications (2)

Publication Number Publication Date
EP0224510A1 EP0224510A1 (de) 1987-06-10
EP0224510B1 true EP0224510B1 (de) 1991-01-16

Family

ID=27173548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86903176A Expired - Lifetime EP0224510B1 (de) 1985-05-28 1986-05-27 Verfahren zur dekontamination von radioaktiv kontaminierten gegenständen aus metall oder aus zementhaltigem material

Country Status (4)

Country Link
US (3) US4828759A (de)
EP (1) EP0224510B1 (de)
DE (1) DE3676962D1 (de)
WO (1) WO1986007184A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4235001A1 (de) * 1991-10-18 1993-04-22 British Nuclear Fuels Plc Verfahren zum dekontaminieren einer zementhaltigen oberflaeche

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432197A (en) * 1987-07-29 1989-02-02 Hitachi Ltd Plant for retreatment of nuclear fuel
ES2042895T3 (es) * 1988-07-28 1993-12-16 Siemens Ag Procedimiento de electropulido para fines de descontaminacion.
CH678767A5 (de) * 1989-06-30 1991-10-31 Jozef Hanulik Dipl Chem
CH682023A5 (de) * 1990-10-26 1993-06-30 Recytec Sa
US5154899A (en) * 1991-06-28 1992-10-13 Sturcken Edward F Metal recovery from porous materials
US5205999A (en) * 1991-09-18 1993-04-27 British Nuclear Fuels Plc Actinide dissolution
DE4216383A1 (de) * 1992-05-18 1993-11-25 Siemens Ag Verfahren zum Reinigen eines geschlossenen Behälters
US5545795A (en) * 1993-02-01 1996-08-13 Deco-Hanulik Ag Method for decontaminating radioactive metal surfaces
EP0610153B1 (de) * 1993-02-01 1996-09-25 Deco-Hanulik Ag Verfahren zur Dekontamination von radioaktiven Metalloberflächen
EP0614196A1 (de) * 1993-03-01 1994-09-07 Deco-Hanulik Ag Verfahren zur Reinigung kontaminierter Oberflächen aus mineralischen Materialien, sowie Vorrichtung zur Durchführung des Verfahrens
TW288145B (de) * 1994-02-01 1996-10-11 Toshiba Co Ltd
DE4420139C1 (de) * 1994-06-09 1995-12-07 Kraftanlagen En Und Industriea Verfahren zur elektrochemischen Dekontamination von radioaktiv belasteten Oberflächen von Metallkomponenten aus kerntechnischen Anlagen
US5635143A (en) * 1994-09-30 1997-06-03 Martin Marietta Energy Systems, Inc. Mobile system for microwave removal of concrete surfaces
GB9422539D0 (en) * 1994-11-04 1995-01-04 British Nuclear Fuels Plc Decontamination processes
US5525236A (en) * 1995-04-12 1996-06-11 Wilkinson; Kenneth Reverse osmosis purification of water
US5724668A (en) * 1995-11-07 1998-03-03 Electronic Power Research Institute Method for decontamination of nuclear plant components
US5752206A (en) * 1996-04-04 1998-05-12 Frink; Neal A. In-situ decontamination and recovery of metal from process equipment
US6147274A (en) * 1996-11-05 2000-11-14 Electric Power Research Insitute Method for decontamination of nuclear plant components
US5901368A (en) * 1997-06-04 1999-05-04 Electric Power Research Institute Radiolysis-assisted decontamination process
US6682646B2 (en) 2002-03-25 2004-01-27 Electric Power Research Institute Electrochemical process for decontamination of radioactive materials
US8165261B2 (en) * 2008-01-22 2012-04-24 Electric Power Research Institute, Inc. Chemical enhancement of ultrasonic fuel cleaning
US20100072059A1 (en) * 2008-09-25 2010-03-25 Peters Michael J Electrolytic System and Method for Enhanced Radiological, Nuclear, and Industrial Decontamination
GB2499025A (en) * 2012-02-03 2013-08-07 Nat Nuclear Lab Ltd Decontamination of a system and treatment of the spent decontamination fluid
TWI525048B (zh) * 2013-04-26 2016-03-11 行政院原子能委員會核能研究所 放射性廢酸液之回收方法
DE102016208202A1 (de) * 2016-05-12 2017-11-16 Rwe Power Aktiengesellschaft Chemische Dekontamination von radioaktiven Metalloberflächen
RU2671243C1 (ru) * 2017-10-30 2018-10-30 Акционерное общество "Радиевый институт им. В.Г. Хлопина" Способ переработки битумно-солевых радиоактивных компаундов

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB891670A (en) * 1957-09-04 1962-03-14 English Electric Co Ltd Improvements in and relating to the removing of scale from silicon iron and other metals
BE670521A (de) * 1964-10-05 1900-01-01
US3341304A (en) * 1966-04-08 1967-09-12 Billie J Newby Separation of uranium from uranium dioxide-zirconium dioxide mixtures
US3409413A (en) * 1967-08-11 1968-11-05 Atomic Energy Commission Usa Method of dissolving aluminum-clad thoria target elements
US3565707A (en) * 1969-03-03 1971-02-23 Fmc Corp Metal dissolution
DE2058766A1 (de) * 1970-11-30 1972-05-31 Siemens Ag Verfahren zur Reinigung von metallischen Oberflaechen,insbesondere radioaktiv verseuchten Oberflaechen
US3891741A (en) * 1972-11-24 1975-06-24 Ppg Industries Inc Recovery of fission products from acidic waste solutions thereof
US3986970A (en) * 1973-05-02 1976-10-19 The Furukawa Electric Co., Ltd. Solution for chemical dissolution treatment of tin or alloys thereof
US3873362A (en) * 1973-05-29 1975-03-25 Halliburton Co Process for cleaning radioactively contaminated metal surfaces
US3965237A (en) * 1975-04-11 1976-06-22 The United States Of America As Repesented By The United States Energy Research And Development Administration Dissolution process for ZrO2 -UO2 -CaO fuels
DE2553569C2 (de) * 1975-11-28 1985-09-12 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur Verfestigung von radioaktiven wäßrigen Abfallstoffen durch Sprühkalzinierung und anschließende Einbettung in eine Matrix aus Glas oder Glaskeramik
BE838533A (fr) * 1976-02-13 1976-05-28 Procede de sechage des solutions contenant de l'acide borique
CH619807A5 (de) * 1976-04-07 1980-10-15 Foerderung Forschung Gmbh
DE2910677C2 (de) * 1979-03-19 1983-12-22 Kraftwerk Union AG, 4330 Mülheim Verfahren zur Behandlung von borhaltigen radioaktiven Konzentraten aus Abwässern von Druckwasserreaktoren
US4217192A (en) * 1979-06-11 1980-08-12 The United States Of America As Represented By The United States Department Of Energy Decontamination of metals using chemical etching
US4443269A (en) * 1979-10-01 1984-04-17 Health Physics Systems, Inc. Tool decontamination method
CH653466A5 (de) * 1981-09-01 1985-12-31 Industrieorientierte Forsch Verfahren zur dekontamination von stahloberflaechen und entsorgung der radioaktiven stoffe.
US4686019A (en) * 1982-03-11 1987-08-11 Exxon Research And Engineering Company Dissolution of PuO2 or NpO2 using electrolytically regenerated reagents
US4530723A (en) * 1983-03-07 1985-07-23 Westinghouse Electric Corp. Encapsulation of ion exchange resins
US4620947A (en) * 1983-10-17 1986-11-04 Chem-Nuclear Systems, Inc. Solidification of aqueous radioactive waste using insoluble compounds of magnesium oxide
US4537666A (en) * 1984-03-01 1985-08-27 Westinghouse Electric Corp. Decontamination using electrolysis
US4701246A (en) * 1985-03-07 1987-10-20 Kabushiki Kaisha Toshiba Method for production of decontaminating liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4235001A1 (de) * 1991-10-18 1993-04-22 British Nuclear Fuels Plc Verfahren zum dekontaminieren einer zementhaltigen oberflaeche

Also Published As

Publication number Publication date
US4933113A (en) 1990-06-12
US4828759A (en) 1989-05-09
DE3676962D1 (de) 1991-02-21
WO1986007184A1 (en) 1986-12-04
EP0224510A1 (de) 1987-06-10
US5008044A (en) 1991-04-16

Similar Documents

Publication Publication Date Title
EP0224510B1 (de) Verfahren zur dekontamination von radioaktiv kontaminierten gegenständen aus metall oder aus zementhaltigem material
US3873362A (en) Process for cleaning radioactively contaminated metal surfaces
DE69312966T2 (de) Verfahren zum auflösung von auf einem metallsubstrat aufgeschiedenen oxyde
DE69130019T2 (de) Neuartige zusammensetzungen zur auflösung von eisenoxiden
DE3586295T2 (de) Verfahren zum verhindern der deponierung von radioaktiven stoffen auf die bestandteile einer kernkraftanlage.
DE3013551A1 (de) Dekontamination von kernreaktoren
DE2449588A1 (de) Verfahren zum vorbereiten waessriger, radioaktiver abfall-loesungen aus kerntechnischen anlagen zur verfestigung
DE2714245A1 (de) Dekontaminationsverfahren
DE69507709T2 (de) Dekontaminierungsverfahren
CH673545A5 (de)
EP0483053B1 (de) Dekontaminationsmittel und Verfahren zur Lösung von radioaktiv kontaminierten Oberflächen von Komponenten aus Metall
DE3143440A1 (de) Verfahren zur dekontamination von radioaktiv kontaminierten oberflaechen metallischer werkstoffe
EP0610153B1 (de) Verfahren zur Dekontamination von radioaktiven Metalloberflächen
DE69701135T2 (de) Elektropolierelektrolyt und seine verwendungen zum elektropolieren von rostfreiem stahl oder nickellegierungen sowie zur dekontanimierung
DE69012677T2 (de) Verfahren zur Auflösung von auf einem Substrat deponierten Oxiden und Verwendung zur Dekontaminierung.
DE2333516C3 (de) Dekontaminationsmittel für metallische Oberflächen und Verfahren zum Dekontaminieren unter Verwendung derselben
CN112176393B (zh) 一种电化学去污电解液及其制备方法和应用
EP0261255B1 (de) Verfahren zum Aufbereiten einer wässrigen Phosphorsäurelösung
DE69613496T2 (de) Ozon enthaltender Schaum zur Dekontamination und Verfahren zur Dekontamination mit diesem Schaum
EP1141445A1 (de) Verfahren zur dekontamination einer oberfläche eines bauteiles
CH631745A5 (en) Process for cleaning objects after surface treatment by electroplating and/or chemical means
USRE34613E (en) Process for decontaminating radioactively contaminated metal or cement-containing materials
EP0047857A2 (de) Verfahren zur Dekontamination radioaktiv verunreinigter Oberflächen
DE2511112C3 (de) Verfahren zum Dekontaminieren von Oberflächen metallischer Werkstoffe
DE4420139C1 (de) Verfahren zur elektrochemischen Dekontamination von radioaktiv belasteten Oberflächen von Metallkomponenten aus kerntechnischen Anlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB LI SE

17Q First examination report despatched

Effective date: 19881003

DIN1 Information on inventor provided before grant (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: HANULIK, JOZEF

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RECYTEC S.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 60160

Country of ref document: AT

Date of ref document: 19910215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3676962

Country of ref document: DE

Date of ref document: 19910221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910513

Year of fee payment: 6

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920527

EAL Se: european patent in force in sweden

Ref document number: 86903176.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960528

Year of fee payment: 11

Ref country code: GB

Payment date: 19960528

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960529

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960531

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960613

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960828

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970531

Ref country code: BE

Effective date: 19970531

BERE Be: lapsed

Owner name: S.A. RECYTEC

Effective date: 19970531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980130

EUG Se: european patent has lapsed

Ref document number: 86903176.5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST