EP0221386B1 - Procédé et dispositif d'adaptation de la commande du mélange dans un moteur à combustion - Google Patents

Procédé et dispositif d'adaptation de la commande du mélange dans un moteur à combustion Download PDF

Info

Publication number
EP0221386B1
EP0221386B1 EP19860113946 EP86113946A EP0221386B1 EP 0221386 B1 EP0221386 B1 EP 0221386B1 EP 19860113946 EP19860113946 EP 19860113946 EP 86113946 A EP86113946 A EP 86113946A EP 0221386 B1 EP0221386 B1 EP 0221386B1
Authority
EP
European Patent Office
Prior art keywords
adaptation
correction
factor
structural
global
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19860113946
Other languages
German (de)
English (en)
Other versions
EP0221386A2 (fr
EP0221386A3 (en
Inventor
Rüdiger Jautelat
Rolf Kohler
Günther Dipl.-Ing. Plapp
Botho Zichner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0221386A2 publication Critical patent/EP0221386A2/fr
Publication of EP0221386A3 publication Critical patent/EP0221386A3/de
Application granted granted Critical
Publication of EP0221386B1 publication Critical patent/EP0221386B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning
    • F02D41/248Methods of calibrating or learning characterised by the method used for learning using a plurality of learned values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Definitions

  • the invention is based on a method according to the type of the main claim and a device according to the type of the claim.
  • the invention is a further development of the applicant's earlier application EP-A-191 923, in which the adaptive feedforward control influences both structurally determined areas of a basic map and, via a global factor, multiply each control value obtained from the map in the sense of a shift of all map support points .
  • EP-A-152 604 which also goes back to the applicant, it is proposed that stored in a map and depending on To change the operating parameters of the internal combustion engine selected values in accordance with a learning process in such a way that not only a single predetermined map value, but also the respective map values located in its environment are additionally modified as a function of the change in the value concerned.
  • an actual value specification about the actual operating state of the internal combustion engine is required, the control factor or the manipulated variable of a lambda controller usually being evaluated as the actual value.
  • EP-A-0 145 992 discloses a method for fuel metering which, in addition to a pilot control and a lambda control of the fuel / air ratio, has an adaptation option.
  • a lambda control factor influences an injection time predetermined from operating parameters so that the actual fuel / air ratio approaches the stoichiometric value. Longer-term deviations of this control factor from a target value are recorded by arithmetically averaging the values of this control factor when the probe signal changes from the rich to the lean signal and when the corresponding change from the lean to the fat signal occurs.
  • a difference between this mean value and a target value leads to the formation of a correction factor which is multiplied in the calculation of the fuel metering signal and which is ideally dimensioned such that it eliminates the longer-term deviation of the control factor.
  • Values of this adaptive correction are stored in a memory for a large number of operating states, so that a suitable correction factor is available as quickly as possible when changing between two operating states.
  • the specified method still allows improvements in the actual adaptation, ie in eliminating the longer-term deviations of the average control factor from an ideal value.
  • the invention is therefore based on the object of adaptive learning methods in the event of changing external conditions Improve fuel supply in internal combustion engines and ensure that the corrective action is distributed in the desired manner to the structural and global adaptation and includes a reference to the actual operating behavior of the internal combustion engine (frequency of the manipulated variable vibrations) also in the course of the adaptive learning process.
  • the invention solves this problem with the characterizing features of main claims 1 and 7 and has the advantage that the learning ability is divided by different quantization of the factors for structural adaptation and global adaptation in such a way that external, slow-running operating change conditions (assuming a stable structure in the engine area) For example, changing air pressure) are essentially compensated for by the global factor and do not affect the structural area.
  • the invention enables a division by means of a different weighting between global and structural adaptation such that where a structural correction is effectively required, this is also carried out by the structural factor in the respective map area and to a lesser extent is added to the global factor.
  • the averaging of the manipulated variable of the lambda controller, the formation of the structural and global factor as well as other work processes in the grid of jumps in the manipulated variable of the lambda controller, that is to say related to the number of probe passes, is switched off, so that the adaptation is dynamically adapted to the operating variable ⁇ and does not run asynchronously in any time grid.
  • the factors can therefore be optimally determined.
  • FIG. 1 schematically shows a block diagram of the active learning area with evaluation of the manipulated variable curve of the lambda controller and division into structure and global adaptation
  • FIG. 2 shows the area of an adaptation area with the entry and exit time of the operating parameters
  • FIG. 3 in the form a diagram the time sequence of the lambda controller manipulated variable.
  • Injection time map is used as a basis, which may be dependent on the speed throttle valve position and, for example, via a predefined one Number of speed and throttle valve signal points is spanned. For example, 15 speed and 15 throttle valve signal support points can be provided in numerical values.
  • This basic injection map can then be designed, for example, for a special vehicle of a particular vehicle type. For example, to adapt to other vehicles with deviations such as in the engine area, throttle valve supports and. The same is superimposed on this basic map a structural map, which, expressed in numerical values, can have, for example, 8 speed and 8 throttle valve support points. These represent a subset of the 15x15 grid points of the injection time map.
  • a so-called global factor also serves to adapt boundary conditions that have a multiplicative effect on the mixture formation as a whole (here, for example, ambient pressure differences due to height, temperature, aging of aggregates or the like come into question).
  • the respective adaptation area for the learning process here first the structural adaptation in the map, is shown in FIG. 2 and results from the agreement that, as already mentioned above, the 8x8 support points of the structural adaptation map of a subset from the 15x15 support points of the reason Map, which can also be referred to as the injection time map, when the fuel is supplied to the internal combustion engine via electromagnetically actuated injection valves.
  • These 8 basic support points span the adaptation surface 10.
  • the limited manipulated variable issued by the lambda controller 11 (see FIG. 1) is limited and without taking into account the respective one "History" divided into global and structural parts.
  • the learning process therefore proceeds as follows.
  • the output of the lambda probe is fed to the lambda controller 11 at its input;
  • a normalized lambda manipulated variable Xr which, after passing through a limiting block 12 for limiting the actuating stroke with the limit values Xr'max and Xr'min, reaches the low-pass filter 13 as a limited, standardized manipulated variable Xr ', which is the limited manipulated variable Xr 'of the lambda controller is subjected to averaging.
  • FSA (t ⁇ T1) is the factor stored for the structural area FSA during the last learning process.
  • An essential inventive measure in this context is that an adjustment of the factor for the structural area per learning cycle is only permissible by a predetermined percentage value, specifically only 3% in the preferred exemplary embodiment, ie the ⁇ value of the FSA is relative Coarse gradation only at 0.03 and therefore, as will be explained further below, significantly different from the ⁇ value of the factor for the global adaptation FGA. Attention is drawn overall to the illustration in FIG. 1, switches or function blocks which have not been explained so far being specified further below in connection with supplementary aspects in the present invention.
  • FGA (T2) FGA (T ⁇ T1) + Zg (T2), where Zg (T2) is the value of the lambda controller manipulated variable pending at the time T2 at the output of the second filter.
  • the total injection time t i output during normal operation is made up as follows:
  • the factors are not interpolated.
  • the manipulated variable of the lambda control becomes the opposite percentage changed by the same amount by which the factors stored at the two bases differ.
  • a further embodiment of the present invention is based on the knowledge that, if the learning process assumes convergence per learning step (learning cycle), the full deviation is adopted as a correction value in the learning factors.
  • the deviation is divided in such a way, namely above the low-pass filter 13 in the parallel branch for structural and global adaptation, weighting elements 16a, 16b, that the greater part of the deviation is added to the structural factor FSA and the smaller part to the global factor FGA.
  • the weaker weighting (k) of the global factor means that corrections for structural reasons, if (inevitably) they are also taken up by the global factor, do not radiate too strongly to the other map points (structure).
  • the different distribution of the correction value caused by the weighting blocks 16a, 16b therefore ensures the tendency to make structurally-related corrections in the factor for the structural correction (and therefore only in a certain map area) adaptively and to have an effect (multiplicative) on the entire map in the same way Capture changes through the global factor.
  • This tendency is further reinforced and supported by the different grading ( ⁇ value for FSA and FGA per learning cycle) mentioned above, based on the assumption that global changes are relativized by the gross grading in the ability of the structural factor to be adopted and be suppressed.
  • the circuit breaker 17 provided in FIG. 1 at the output of the low pass 13 serves to implement the general prohibition on adaption.
  • a further, particularly advantageous embodiment of the invention consists in dynamically improving the adaptation of the mixture control, specifically in that, for example, the averaging (via the low-pass filter 13) of the manipulated variable X'r of the lambda controller 11, the formation of structural and global Factors FSA and FGA as well as, for example, the counting of the settling delay and the minimum averaging time in the steps of the steps of the manipulated variable of the lambda controller (see FIG. 3), where the number of these passes is the number of probe passes which is an operating parameter (actual value) Internal combustion engine is, corresponds.
  • the adaptation does not run asynchronously in a time grid.
  • the respective factors can be optimally determined by the dynamic adaptation - this also results in a self-locking design of the adaptation, because if the controller runs against one of its actuating stops, no further adaptation takes place because the manipulated variable no longer performs jumps and in this case is implausible is seen.
  • the recursion takes place after each manipulated variable jump.
  • the adoption of the correction value for the adaptation factor (formation of FSA and FGA) determined with the above equations is only permitted when at least m s recursion steps of the filter 13 have been completed.
  • the adaptation By switching off (counting) probe passes or jumps at the manipulated variable of the lambda controller, the adaptation automatically becomes self-locking when the controller runs against one of its actuating stops. It makes sense to evaluate this case as implausible due to the large selectable adjustment and adaptation range and, at least as a first option, not to adapt any further.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Feedback Control In General (AREA)
  • Exhaust Gas After Treatment (AREA)

Claims (10)

  1. Procédé pour l'adaptation de la commande du mélange dans des moteurs à combustion interne, procédé dans lequel une grandeur de précommande, dépendant de la charge et de la vitesse de rotation du moteur à combustion interne, est influencée pour le dosage du carburant par au moins une grandeur de correction susceptible d'être modifiée de façon adaptative (adaptation structurelle, adaptation globale), tandis que la formation des grandeurs de correction s'effectue à partir du signal de sortie d'un régulateur lambda (11), procédé caractérisé en ce que :
    - pour l'adaptation de la grandeur de correction, les signaux de sortie du régulateur lambda, qui se produisent directement en raccordement à un bond du signal de sonde lambda, sont, dans des conditions de fonctionnement prédéfinies, filtrés avec une formule récursive de filtre passe-bas, auquel cas la récursion s'effectue pour chaque bond de la grandeur de réglage,
    - pour cette adaptation de la grandeur de correction, il n'est pas utilisé d'autres précédents signaux de sortie du régulateur lambda.
  2. Procédé selon la revendication 1, caractérisé en ce que :
    - la récursion n'est mise en oeuvre qu'après le déroulement d'un nombre prédéfini (ns) de bonds du signal de sonde lambda (sauts des grandeurs de réglage) qui succèdent à un changement de grandeurs caractéristiques du fonctionnement (changement de surface d'adaptation),
    - au début de la récursion, la valeur initiale (Ya(i+ns)) d'un filtre passe-bas (13) est mise à une valeur prédéfinie (Xr'(i+ns)),
    - la prise en charge de la valeur de correction fournie par le filtre passe-bas, pour un facteur respectif d'adaptation (FSA, FGA), ne s'effectue qu'après que se soit écoulé un nombre prédéfini (ms) d'étapes de récursion du filtre (13).
  3. Procédé selon la revendication 2, caractérisé en ce que les valeurs du filtre passe-bas sont déterminées selon la formule récursive :

    (b.Ya(j-1)+Xr'(j))/(b+1)
    Figure imgb0010
  4. Procédé selon une des revendications 1 à 3, caractérisé en ce que la correction s'effectue au moyen d'un facteur structurel (FSA) et d'un facteur global (FGA) et qu'une correction structurelle et/ou globale ne peut être effectuée que lorsqu'un seuil minimal de correction est dépassé.
  5. Procédé selon une des revendications 1 à 4, caractérisé en ce que la correction structurelle est limitée par cycle d'apprentissage à une valeur prédéfinie.
  6. Procédé selon une des revendications 1 à 5, caractérisé en ce que la correction structurelle et la correction globale comportent un échelonnement différent.
  7. Dispositif pour l'adaptation de la commande du mélange dans des moteurs à combustion interne, dispositif dans lequel une grandeur de précommande dépendant de la charge et de la vitesse de rotation du moteur à combustion interne est influencée, pour le dosage du carburant, par au moins une grandeur de correction susceptible d'être modifiée de façon adaptative (adaptation structurelle, adaptation globale), tandis que la formation des grandeurs de correction s'effectue à partir du signal de sortie d'un régulateur lambda (11), dispositif caractérisé en ce qu'il est prévu des moyens (13) qui, pour l'adaptation de la grandeur de correction, filtrent dans des conditions de fonctionnement prédéfinies, avec une formule récursive de filtre passe-bas, les signaux de sortie du régulateur lambda, qui se produisent directement en raccordement à un bond du signal de sonde lambda, auquel cas la récursion s'effectue pour chaque bond de la grandeur de réglage, et pour cette adaptation de la valeur de correction, il n'est pas utilisé d'autres précédents signaux de sortie du régulateur lambda.
  8. Dispositif selon la revendication 7, caractérisé en ce qu'il est prévu des moyens de comptage et de commutation (18, 19), qui avec ajustement dynamique de l'adaptation à une grandeur caractéristique réelle du fonctionnement (η), assurent la transmission de la valeur (Xr') apparaissant après le bond de la grandeur de réglage au filtre passe-bas (13) qui forme sa moyenne, seulement lorsqu'un nombre prédéfini (ns) de bonds de la grandeur de réglage ou de passages de la sonde s'est écoulé.
  9. Dispositif selon la revendication 8, caractérisé en ce que la prise en charge de la valeur de correction (Ya) déterminée par le filtre passe-bas pour le facteur d'adaptation (FSA, FGA) n'est mise en oeuvre que lorsqu'un nombre prédéfini (ms) d'étapes de récursion du filtre (13) formant la moyenne de la grandeur de réglage du régulateur lambda (11) s'est écoulé.
  10. Dispositif selon une des revendications 7 à 9, caractérisé en ce qu'il est prévu des étages de pondération (16a, 16b), qui amènent la grandeur de correction (Ya), issue du filtre passe-bas (13), de façon différente (pondération k ou bien (k-1)) aux blocs d'étages de modification (14a, 14b) pour le facteur structurel (FSA) et pour le facteur global (FGA).
EP19860113946 1985-11-07 1986-10-08 Procédé et dispositif d'adaptation de la commande du mélange dans un moteur à combustion Expired - Lifetime EP0221386B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3539395 1985-11-07
DE19853539395 DE3539395A1 (de) 1985-11-07 1985-11-07 Verfahren und einrichtung zur adaption der gemischsteuerung bei brennkraftmaschinen

Publications (3)

Publication Number Publication Date
EP0221386A2 EP0221386A2 (fr) 1987-05-13
EP0221386A3 EP0221386A3 (en) 1988-08-17
EP0221386B1 true EP0221386B1 (fr) 1991-09-18

Family

ID=6285315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860113946 Expired - Lifetime EP0221386B1 (fr) 1985-11-07 1986-10-08 Procédé et dispositif d'adaptation de la commande du mélange dans un moteur à combustion

Country Status (3)

Country Link
EP (1) EP0221386B1 (fr)
JP (1) JPS62150047A (fr)
DE (2) DE3539395A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989009334A1 (fr) * 1988-04-02 1989-10-05 Robert Bosch Gmbh Procede et dispositif autodidactique de regulation de moteurs a combustion interne
WO1989011030A1 (fr) * 1988-05-14 1989-11-16 Robert Bosch Gmbh Procede et dispositif de reglage de la valeur lambda
US5590638A (en) * 1994-10-20 1997-01-07 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5606959A (en) * 1994-12-30 1997-03-04 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5632261A (en) * 1994-12-30 1997-05-27 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5657735A (en) * 1994-12-30 1997-08-19 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5657736A (en) * 1994-12-30 1997-08-19 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5666934A (en) * 1994-12-30 1997-09-16 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5755094A (en) * 1994-12-30 1998-05-26 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5758308A (en) * 1994-12-30 1998-05-26 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5758490A (en) * 1994-12-30 1998-06-02 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5758630A (en) * 1995-02-25 1998-06-02 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5787868A (en) * 1994-12-30 1998-08-04 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5806012A (en) * 1994-12-30 1998-09-08 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5908463A (en) * 1995-02-25 1999-06-01 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US6041279A (en) * 1995-02-25 2000-03-21 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833131B2 (ja) * 1987-06-26 1996-03-29 日産自動車株式会社 内燃機関の空燃比制御装置
DE3906083A1 (de) * 1989-02-27 1990-08-30 Voest Alpine Automotive Einrichtung zum steuern und regeln einer dieselbrennkraftmaschine
JPH04320160A (ja) * 1991-04-19 1992-11-10 Matsushita Electric Ind Co Ltd 画像信号圧縮伸長装置および領域識別処理装置
WO1996021098A1 (fr) * 1994-12-30 1996-07-11 Honda Giken Kogyo Kabushiki Kaisha Dispositif de commande d'injection de carburant destine a un moteur a combustion interne
US5636621A (en) * 1994-12-30 1997-06-10 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
DE19727861C1 (de) * 1997-06-30 1998-12-17 Siemens Ag Verfahren zur Adaption der Kraftstoff-Wandfilmkompensationsmenge bei einem Kraftstoffregelsystem für eine Brennkraftmaschine
DE19819462A1 (de) 1998-04-30 1999-11-11 Siemens Ag Verfahren zur Bestimmung der NOx-Konzentration
DE10047813A1 (de) 2000-09-27 2002-04-18 Volkswagen Ag Verfahren zum Steuern bzw. Regeln des Verhaltens eines Verbrennungsmotors
US7340339B1 (en) * 2003-02-14 2008-03-04 Caterpillar Inc. Power management system
EP1517023B1 (fr) * 2003-07-30 2007-03-07 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Procédé pour pré-ajuster l'étranglement de l'air d'aspiration dans un moteur à combustion interne
DE102005012950B4 (de) 2005-03-21 2019-03-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US7137386B1 (en) * 2005-09-02 2006-11-21 Gm Global Technology Operations, Inc. Closed loop A/F ratio control for diesel engines using an oxygen sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596339A (en) * 1979-01-13 1980-07-22 Nippon Denso Co Ltd Air-fuel ratio control method
DE3238753A1 (de) * 1982-10-20 1984-04-26 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zur regelung des einer brennkraftmaschine zuzufuehrenden kraftstoffluftgemischs
JPS6067744A (ja) * 1983-09-21 1985-04-18 Nippon Denso Co Ltd 空燃比制御方法
US4703430A (en) * 1983-11-21 1987-10-27 Hitachi, Ltd. Method controlling air-fuel ratio
JPS60128950A (ja) * 1983-12-16 1985-07-10 Mazda Motor Corp エンジンの空燃比制御装置
DE3408215A1 (de) * 1984-02-01 1985-08-01 Robert Bosch Gmbh, 7000 Stuttgart Steuer- und regelverfahren fuer die betriebskenngroessen einer brennkraftmaschine
DE3505965A1 (de) * 1985-02-21 1986-08-21 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und einrichtung zur steuerung und regelverfahren fuer die betriebskenngroessen einer brennkraftmaschine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989009334A1 (fr) * 1988-04-02 1989-10-05 Robert Bosch Gmbh Procede et dispositif autodidactique de regulation de moteurs a combustion interne
US5065726A (en) * 1988-04-02 1991-11-19 Robert Bosch Gmbh Learning control method for an internal combustion engine and apparatus therefor
WO1989011030A1 (fr) * 1988-05-14 1989-11-16 Robert Bosch Gmbh Procede et dispositif de reglage de la valeur lambda
US5590638A (en) * 1994-10-20 1997-01-07 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5666934A (en) * 1994-12-30 1997-09-16 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5632261A (en) * 1994-12-30 1997-05-27 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5657735A (en) * 1994-12-30 1997-08-19 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5657736A (en) * 1994-12-30 1997-08-19 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5606959A (en) * 1994-12-30 1997-03-04 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5755094A (en) * 1994-12-30 1998-05-26 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5758308A (en) * 1994-12-30 1998-05-26 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5758490A (en) * 1994-12-30 1998-06-02 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5787868A (en) * 1994-12-30 1998-08-04 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5806012A (en) * 1994-12-30 1998-09-08 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5758630A (en) * 1995-02-25 1998-06-02 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5908463A (en) * 1995-02-25 1999-06-01 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US6041279A (en) * 1995-02-25 2000-03-21 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine

Also Published As

Publication number Publication date
JPS62150047A (ja) 1987-07-04
DE3681555D1 (de) 1991-10-24
EP0221386A2 (fr) 1987-05-13
EP0221386A3 (en) 1988-08-17
DE3539395A1 (de) 1987-05-14

Similar Documents

Publication Publication Date Title
EP0221386B1 (fr) Procédé et dispositif d'adaptation de la commande du mélange dans un moteur à combustion
DE3502573C2 (de) Vorrichtung zur Entlüftung von Kraftstofftanks
EP0191923A2 (fr) Procédé et dispositif de commande et procédé de régulation des grandeurs de fonctionnement d'un moteur à combustion
DE3032323A1 (de) Kraftstoffsteuervorrichtung fuer verbrennungsmotoren, insbesondere otto-motoren
DE4140527A1 (de) Steuervorrichtung fuer das luft/brennstoff-verhaeltnis zur verwendung in einem verbrennungsmotor
DE3241761C2 (fr)
DE3221640A1 (de) Verfahren und vorrichtung zur optimalregelung von brennkraftmaschinen
DE3524970A1 (de) Lernregelanordnung zum regeln eines kraftfahrzeugmotors
DE3432379C2 (fr)
DE3524971C2 (fr)
DE3526835C2 (fr)
DE3330700C2 (fr)
DE3714342A1 (de) Steuervorrichtung fuer das luft-brennstoff-verhaeltnis eines motors mit einem elektronisch gesteuerten automatikgetriebe
DE3526895A1 (de) Anordnung zum regeln des luft-brennstoff-verhaeltnisses eines kraftfahrzeugmotors
DE3309235A1 (de) Steuerverfahren fuer eine brennkraftmaschine
WO1997029276A1 (fr) Procede pour determiner une quantite supplementaire de carburant a injecter lors de la reinjection de carburant dans un moteur a combustion interne
EP0629775A1 (fr) Procédé et dispositif pour commander la stabilité de marche d'un moteur à combustion interne
DE4417802B4 (de) Vorrichtung zur Regelung der Motorleistung oder der Fahrgeschwindigkeit eines Fahrzeugs
DE3704587A1 (de) Kraftstoffversorgungs-regelverfahren fuer brennkraftmaschinen nach dem anlassen
EP0205916B1 (fr) Procédé de commande et/ou de régulation des caractéristiques de fonctionnement d'un moteur à combustion
DE2551688A1 (de) Kraftstoffeinspritzeinrichtung fuer brennkraftmaschinen
DE3726892A1 (de) Gemischverhaeltnissteuersystem fuer einen kraftfahrzeugmotor
WO1989008777A1 (fr) Procede et systeme pour le reglage de la valeur lambda
DE3525895C2 (fr)
DE3525393C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19890217

17Q First examination report despatched

Effective date: 19890823

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3681555

Country of ref document: DE

Date of ref document: 19911024

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed
RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941222

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950915

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951018

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961008

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051008