EP0221386B1 - Procédé et dispositif d'adaptation de la commande du mélange dans un moteur à combustion - Google Patents
Procédé et dispositif d'adaptation de la commande du mélange dans un moteur à combustion Download PDFInfo
- Publication number
- EP0221386B1 EP0221386B1 EP19860113946 EP86113946A EP0221386B1 EP 0221386 B1 EP0221386 B1 EP 0221386B1 EP 19860113946 EP19860113946 EP 19860113946 EP 86113946 A EP86113946 A EP 86113946A EP 0221386 B1 EP0221386 B1 EP 0221386B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- adaptation
- correction
- factor
- structural
- global
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 21
- 238000002485 combustion reaction Methods 0.000 title claims description 17
- 239000000203 mixture Substances 0.000 title claims description 7
- 230000006978 adaptation Effects 0.000 claims description 65
- 238000012937 correction Methods 0.000 claims description 29
- 230000008859 change Effects 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 239000000446 fuel Substances 0.000 claims description 12
- 239000000523 sample Substances 0.000 claims description 10
- 238000012935 Averaging Methods 0.000 claims description 7
- 230000001419 dependent effect Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 230000003044 adaptive effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2477—Methods of calibrating or learning characterised by the method used for learning
- F02D41/248—Methods of calibrating or learning characterised by the method used for learning using a plurality of learned values
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2454—Learning of the air-fuel ratio control
Definitions
- the invention is based on a method according to the type of the main claim and a device according to the type of the claim.
- the invention is a further development of the applicant's earlier application EP-A-191 923, in which the adaptive feedforward control influences both structurally determined areas of a basic map and, via a global factor, multiply each control value obtained from the map in the sense of a shift of all map support points .
- EP-A-152 604 which also goes back to the applicant, it is proposed that stored in a map and depending on To change the operating parameters of the internal combustion engine selected values in accordance with a learning process in such a way that not only a single predetermined map value, but also the respective map values located in its environment are additionally modified as a function of the change in the value concerned.
- an actual value specification about the actual operating state of the internal combustion engine is required, the control factor or the manipulated variable of a lambda controller usually being evaluated as the actual value.
- EP-A-0 145 992 discloses a method for fuel metering which, in addition to a pilot control and a lambda control of the fuel / air ratio, has an adaptation option.
- a lambda control factor influences an injection time predetermined from operating parameters so that the actual fuel / air ratio approaches the stoichiometric value. Longer-term deviations of this control factor from a target value are recorded by arithmetically averaging the values of this control factor when the probe signal changes from the rich to the lean signal and when the corresponding change from the lean to the fat signal occurs.
- a difference between this mean value and a target value leads to the formation of a correction factor which is multiplied in the calculation of the fuel metering signal and which is ideally dimensioned such that it eliminates the longer-term deviation of the control factor.
- Values of this adaptive correction are stored in a memory for a large number of operating states, so that a suitable correction factor is available as quickly as possible when changing between two operating states.
- the specified method still allows improvements in the actual adaptation, ie in eliminating the longer-term deviations of the average control factor from an ideal value.
- the invention is therefore based on the object of adaptive learning methods in the event of changing external conditions Improve fuel supply in internal combustion engines and ensure that the corrective action is distributed in the desired manner to the structural and global adaptation and includes a reference to the actual operating behavior of the internal combustion engine (frequency of the manipulated variable vibrations) also in the course of the adaptive learning process.
- the invention solves this problem with the characterizing features of main claims 1 and 7 and has the advantage that the learning ability is divided by different quantization of the factors for structural adaptation and global adaptation in such a way that external, slow-running operating change conditions (assuming a stable structure in the engine area) For example, changing air pressure) are essentially compensated for by the global factor and do not affect the structural area.
- the invention enables a division by means of a different weighting between global and structural adaptation such that where a structural correction is effectively required, this is also carried out by the structural factor in the respective map area and to a lesser extent is added to the global factor.
- the averaging of the manipulated variable of the lambda controller, the formation of the structural and global factor as well as other work processes in the grid of jumps in the manipulated variable of the lambda controller, that is to say related to the number of probe passes, is switched off, so that the adaptation is dynamically adapted to the operating variable ⁇ and does not run asynchronously in any time grid.
- the factors can therefore be optimally determined.
- FIG. 1 schematically shows a block diagram of the active learning area with evaluation of the manipulated variable curve of the lambda controller and division into structure and global adaptation
- FIG. 2 shows the area of an adaptation area with the entry and exit time of the operating parameters
- FIG. 3 in the form a diagram the time sequence of the lambda controller manipulated variable.
- Injection time map is used as a basis, which may be dependent on the speed throttle valve position and, for example, via a predefined one Number of speed and throttle valve signal points is spanned. For example, 15 speed and 15 throttle valve signal support points can be provided in numerical values.
- This basic injection map can then be designed, for example, for a special vehicle of a particular vehicle type. For example, to adapt to other vehicles with deviations such as in the engine area, throttle valve supports and. The same is superimposed on this basic map a structural map, which, expressed in numerical values, can have, for example, 8 speed and 8 throttle valve support points. These represent a subset of the 15x15 grid points of the injection time map.
- a so-called global factor also serves to adapt boundary conditions that have a multiplicative effect on the mixture formation as a whole (here, for example, ambient pressure differences due to height, temperature, aging of aggregates or the like come into question).
- the respective adaptation area for the learning process here first the structural adaptation in the map, is shown in FIG. 2 and results from the agreement that, as already mentioned above, the 8x8 support points of the structural adaptation map of a subset from the 15x15 support points of the reason Map, which can also be referred to as the injection time map, when the fuel is supplied to the internal combustion engine via electromagnetically actuated injection valves.
- These 8 basic support points span the adaptation surface 10.
- the limited manipulated variable issued by the lambda controller 11 (see FIG. 1) is limited and without taking into account the respective one "History" divided into global and structural parts.
- the learning process therefore proceeds as follows.
- the output of the lambda probe is fed to the lambda controller 11 at its input;
- a normalized lambda manipulated variable Xr which, after passing through a limiting block 12 for limiting the actuating stroke with the limit values Xr'max and Xr'min, reaches the low-pass filter 13 as a limited, standardized manipulated variable Xr ', which is the limited manipulated variable Xr 'of the lambda controller is subjected to averaging.
- FSA (t ⁇ T1) is the factor stored for the structural area FSA during the last learning process.
- An essential inventive measure in this context is that an adjustment of the factor for the structural area per learning cycle is only permissible by a predetermined percentage value, specifically only 3% in the preferred exemplary embodiment, ie the ⁇ value of the FSA is relative Coarse gradation only at 0.03 and therefore, as will be explained further below, significantly different from the ⁇ value of the factor for the global adaptation FGA. Attention is drawn overall to the illustration in FIG. 1, switches or function blocks which have not been explained so far being specified further below in connection with supplementary aspects in the present invention.
- FGA (T2) FGA (T ⁇ T1) + Zg (T2), where Zg (T2) is the value of the lambda controller manipulated variable pending at the time T2 at the output of the second filter.
- the total injection time t i output during normal operation is made up as follows:
- the factors are not interpolated.
- the manipulated variable of the lambda control becomes the opposite percentage changed by the same amount by which the factors stored at the two bases differ.
- a further embodiment of the present invention is based on the knowledge that, if the learning process assumes convergence per learning step (learning cycle), the full deviation is adopted as a correction value in the learning factors.
- the deviation is divided in such a way, namely above the low-pass filter 13 in the parallel branch for structural and global adaptation, weighting elements 16a, 16b, that the greater part of the deviation is added to the structural factor FSA and the smaller part to the global factor FGA.
- the weaker weighting (k) of the global factor means that corrections for structural reasons, if (inevitably) they are also taken up by the global factor, do not radiate too strongly to the other map points (structure).
- the different distribution of the correction value caused by the weighting blocks 16a, 16b therefore ensures the tendency to make structurally-related corrections in the factor for the structural correction (and therefore only in a certain map area) adaptively and to have an effect (multiplicative) on the entire map in the same way Capture changes through the global factor.
- This tendency is further reinforced and supported by the different grading ( ⁇ value for FSA and FGA per learning cycle) mentioned above, based on the assumption that global changes are relativized by the gross grading in the ability of the structural factor to be adopted and be suppressed.
- the circuit breaker 17 provided in FIG. 1 at the output of the low pass 13 serves to implement the general prohibition on adaption.
- a further, particularly advantageous embodiment of the invention consists in dynamically improving the adaptation of the mixture control, specifically in that, for example, the averaging (via the low-pass filter 13) of the manipulated variable X'r of the lambda controller 11, the formation of structural and global Factors FSA and FGA as well as, for example, the counting of the settling delay and the minimum averaging time in the steps of the steps of the manipulated variable of the lambda controller (see FIG. 3), where the number of these passes is the number of probe passes which is an operating parameter (actual value) Internal combustion engine is, corresponds.
- the adaptation does not run asynchronously in a time grid.
- the respective factors can be optimally determined by the dynamic adaptation - this also results in a self-locking design of the adaptation, because if the controller runs against one of its actuating stops, no further adaptation takes place because the manipulated variable no longer performs jumps and in this case is implausible is seen.
- the recursion takes place after each manipulated variable jump.
- the adoption of the correction value for the adaptation factor (formation of FSA and FGA) determined with the above equations is only permitted when at least m s recursion steps of the filter 13 have been completed.
- the adaptation By switching off (counting) probe passes or jumps at the manipulated variable of the lambda controller, the adaptation automatically becomes self-locking when the controller runs against one of its actuating stops. It makes sense to evaluate this case as implausible due to the large selectable adjustment and adaptation range and, at least as a first option, not to adapt any further.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Feedback Control In General (AREA)
- Exhaust Gas After Treatment (AREA)
Claims (10)
- Procédé pour l'adaptation de la commande du mélange dans des moteurs à combustion interne, procédé dans lequel une grandeur de précommande, dépendant de la charge et de la vitesse de rotation du moteur à combustion interne, est influencée pour le dosage du carburant par au moins une grandeur de correction susceptible d'être modifiée de façon adaptative (adaptation structurelle, adaptation globale), tandis que la formation des grandeurs de correction s'effectue à partir du signal de sortie d'un régulateur lambda (11), procédé caractérisé en ce que :- pour l'adaptation de la grandeur de correction, les signaux de sortie du régulateur lambda, qui se produisent directement en raccordement à un bond du signal de sonde lambda, sont, dans des conditions de fonctionnement prédéfinies, filtrés avec une formule récursive de filtre passe-bas, auquel cas la récursion s'effectue pour chaque bond de la grandeur de réglage,- pour cette adaptation de la grandeur de correction, il n'est pas utilisé d'autres précédents signaux de sortie du régulateur lambda.
- Procédé selon la revendication 1, caractérisé en ce que :- la récursion n'est mise en oeuvre qu'après le déroulement d'un nombre prédéfini (ns) de bonds du signal de sonde lambda (sauts des grandeurs de réglage) qui succèdent à un changement de grandeurs caractéristiques du fonctionnement (changement de surface d'adaptation),- au début de la récursion, la valeur initiale (Ya(i+ns)) d'un filtre passe-bas (13) est mise à une valeur prédéfinie (Xr'(i+ns)),- la prise en charge de la valeur de correction fournie par le filtre passe-bas, pour un facteur respectif d'adaptation (FSA, FGA), ne s'effectue qu'après que se soit écoulé un nombre prédéfini (ms) d'étapes de récursion du filtre (13).
- Procédé selon une des revendications 1 à 3, caractérisé en ce que la correction s'effectue au moyen d'un facteur structurel (FSA) et d'un facteur global (FGA) et qu'une correction structurelle et/ou globale ne peut être effectuée que lorsqu'un seuil minimal de correction est dépassé.
- Procédé selon une des revendications 1 à 4, caractérisé en ce que la correction structurelle est limitée par cycle d'apprentissage à une valeur prédéfinie.
- Procédé selon une des revendications 1 à 5, caractérisé en ce que la correction structurelle et la correction globale comportent un échelonnement différent.
- Dispositif pour l'adaptation de la commande du mélange dans des moteurs à combustion interne, dispositif dans lequel une grandeur de précommande dépendant de la charge et de la vitesse de rotation du moteur à combustion interne est influencée, pour le dosage du carburant, par au moins une grandeur de correction susceptible d'être modifiée de façon adaptative (adaptation structurelle, adaptation globale), tandis que la formation des grandeurs de correction s'effectue à partir du signal de sortie d'un régulateur lambda (11), dispositif caractérisé en ce qu'il est prévu des moyens (13) qui, pour l'adaptation de la grandeur de correction, filtrent dans des conditions de fonctionnement prédéfinies, avec une formule récursive de filtre passe-bas, les signaux de sortie du régulateur lambda, qui se produisent directement en raccordement à un bond du signal de sonde lambda, auquel cas la récursion s'effectue pour chaque bond de la grandeur de réglage, et pour cette adaptation de la valeur de correction, il n'est pas utilisé d'autres précédents signaux de sortie du régulateur lambda.
- Dispositif selon la revendication 7, caractérisé en ce qu'il est prévu des moyens de comptage et de commutation (18, 19), qui avec ajustement dynamique de l'adaptation à une grandeur caractéristique réelle du fonctionnement (η), assurent la transmission de la valeur (Xr') apparaissant après le bond de la grandeur de réglage au filtre passe-bas (13) qui forme sa moyenne, seulement lorsqu'un nombre prédéfini (ns) de bonds de la grandeur de réglage ou de passages de la sonde s'est écoulé.
- Dispositif selon la revendication 8, caractérisé en ce que la prise en charge de la valeur de correction (Ya) déterminée par le filtre passe-bas pour le facteur d'adaptation (FSA, FGA) n'est mise en oeuvre que lorsqu'un nombre prédéfini (ms) d'étapes de récursion du filtre (13) formant la moyenne de la grandeur de réglage du régulateur lambda (11) s'est écoulé.
- Dispositif selon une des revendications 7 à 9, caractérisé en ce qu'il est prévu des étages de pondération (16a, 16b), qui amènent la grandeur de correction (Ya), issue du filtre passe-bas (13), de façon différente (pondération k ou bien (k-1)) aux blocs d'étages de modification (14a, 14b) pour le facteur structurel (FSA) et pour le facteur global (FGA).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3539395 | 1985-11-07 | ||
DE19853539395 DE3539395A1 (de) | 1985-11-07 | 1985-11-07 | Verfahren und einrichtung zur adaption der gemischsteuerung bei brennkraftmaschinen |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0221386A2 EP0221386A2 (fr) | 1987-05-13 |
EP0221386A3 EP0221386A3 (en) | 1988-08-17 |
EP0221386B1 true EP0221386B1 (fr) | 1991-09-18 |
Family
ID=6285315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19860113946 Expired - Lifetime EP0221386B1 (fr) | 1985-11-07 | 1986-10-08 | Procédé et dispositif d'adaptation de la commande du mélange dans un moteur à combustion |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0221386B1 (fr) |
JP (1) | JPS62150047A (fr) |
DE (2) | DE3539395A1 (fr) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989009334A1 (fr) * | 1988-04-02 | 1989-10-05 | Robert Bosch Gmbh | Procede et dispositif autodidactique de regulation de moteurs a combustion interne |
WO1989011030A1 (fr) * | 1988-05-14 | 1989-11-16 | Robert Bosch Gmbh | Procede et dispositif de reglage de la valeur lambda |
US5590638A (en) * | 1994-10-20 | 1997-01-07 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5606959A (en) * | 1994-12-30 | 1997-03-04 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5632261A (en) * | 1994-12-30 | 1997-05-27 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5657735A (en) * | 1994-12-30 | 1997-08-19 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5657736A (en) * | 1994-12-30 | 1997-08-19 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5666934A (en) * | 1994-12-30 | 1997-09-16 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5755094A (en) * | 1994-12-30 | 1998-05-26 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5758308A (en) * | 1994-12-30 | 1998-05-26 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5758490A (en) * | 1994-12-30 | 1998-06-02 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5758630A (en) * | 1995-02-25 | 1998-06-02 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5787868A (en) * | 1994-12-30 | 1998-08-04 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5806012A (en) * | 1994-12-30 | 1998-09-08 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5908463A (en) * | 1995-02-25 | 1999-06-01 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US6041279A (en) * | 1995-02-25 | 2000-03-21 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0833131B2 (ja) * | 1987-06-26 | 1996-03-29 | 日産自動車株式会社 | 内燃機関の空燃比制御装置 |
DE3906083A1 (de) * | 1989-02-27 | 1990-08-30 | Voest Alpine Automotive | Einrichtung zum steuern und regeln einer dieselbrennkraftmaschine |
JPH04320160A (ja) * | 1991-04-19 | 1992-11-10 | Matsushita Electric Ind Co Ltd | 画像信号圧縮伸長装置および領域識別処理装置 |
WO1996021098A1 (fr) * | 1994-12-30 | 1996-07-11 | Honda Giken Kogyo Kabushiki Kaisha | Dispositif de commande d'injection de carburant destine a un moteur a combustion interne |
US5636621A (en) * | 1994-12-30 | 1997-06-10 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
DE19727861C1 (de) * | 1997-06-30 | 1998-12-17 | Siemens Ag | Verfahren zur Adaption der Kraftstoff-Wandfilmkompensationsmenge bei einem Kraftstoffregelsystem für eine Brennkraftmaschine |
DE19819462A1 (de) | 1998-04-30 | 1999-11-11 | Siemens Ag | Verfahren zur Bestimmung der NOx-Konzentration |
DE10047813A1 (de) | 2000-09-27 | 2002-04-18 | Volkswagen Ag | Verfahren zum Steuern bzw. Regeln des Verhaltens eines Verbrennungsmotors |
US7340339B1 (en) * | 2003-02-14 | 2008-03-04 | Caterpillar Inc. | Power management system |
EP1517023B1 (fr) * | 2003-07-30 | 2007-03-07 | Ford Global Technologies, LLC, A subsidary of Ford Motor Company | Procédé pour pré-ajuster l'étranglement de l'air d'aspiration dans un moteur à combustion interne |
DE102005012950B4 (de) | 2005-03-21 | 2019-03-21 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
US7137386B1 (en) * | 2005-09-02 | 2006-11-21 | Gm Global Technology Operations, Inc. | Closed loop A/F ratio control for diesel engines using an oxygen sensor |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5596339A (en) * | 1979-01-13 | 1980-07-22 | Nippon Denso Co Ltd | Air-fuel ratio control method |
DE3238753A1 (de) * | 1982-10-20 | 1984-04-26 | Robert Bosch Gmbh, 7000 Stuttgart | Verfahren und vorrichtung zur regelung des einer brennkraftmaschine zuzufuehrenden kraftstoffluftgemischs |
JPS6067744A (ja) * | 1983-09-21 | 1985-04-18 | Nippon Denso Co Ltd | 空燃比制御方法 |
US4703430A (en) * | 1983-11-21 | 1987-10-27 | Hitachi, Ltd. | Method controlling air-fuel ratio |
JPS60128950A (ja) * | 1983-12-16 | 1985-07-10 | Mazda Motor Corp | エンジンの空燃比制御装置 |
DE3408215A1 (de) * | 1984-02-01 | 1985-08-01 | Robert Bosch Gmbh, 7000 Stuttgart | Steuer- und regelverfahren fuer die betriebskenngroessen einer brennkraftmaschine |
DE3505965A1 (de) * | 1985-02-21 | 1986-08-21 | Robert Bosch Gmbh, 7000 Stuttgart | Verfahren und einrichtung zur steuerung und regelverfahren fuer die betriebskenngroessen einer brennkraftmaschine |
-
1985
- 1985-11-07 DE DE19853539395 patent/DE3539395A1/de not_active Withdrawn
-
1986
- 1986-10-08 DE DE8686113946T patent/DE3681555D1/de not_active Expired - Lifetime
- 1986-10-08 EP EP19860113946 patent/EP0221386B1/fr not_active Expired - Lifetime
- 1986-10-30 JP JP25709986A patent/JPS62150047A/ja active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989009334A1 (fr) * | 1988-04-02 | 1989-10-05 | Robert Bosch Gmbh | Procede et dispositif autodidactique de regulation de moteurs a combustion interne |
US5065726A (en) * | 1988-04-02 | 1991-11-19 | Robert Bosch Gmbh | Learning control method for an internal combustion engine and apparatus therefor |
WO1989011030A1 (fr) * | 1988-05-14 | 1989-11-16 | Robert Bosch Gmbh | Procede et dispositif de reglage de la valeur lambda |
US5590638A (en) * | 1994-10-20 | 1997-01-07 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5666934A (en) * | 1994-12-30 | 1997-09-16 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5632261A (en) * | 1994-12-30 | 1997-05-27 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5657735A (en) * | 1994-12-30 | 1997-08-19 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5657736A (en) * | 1994-12-30 | 1997-08-19 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5606959A (en) * | 1994-12-30 | 1997-03-04 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5755094A (en) * | 1994-12-30 | 1998-05-26 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5758308A (en) * | 1994-12-30 | 1998-05-26 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5758490A (en) * | 1994-12-30 | 1998-06-02 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5787868A (en) * | 1994-12-30 | 1998-08-04 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5806012A (en) * | 1994-12-30 | 1998-09-08 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5758630A (en) * | 1995-02-25 | 1998-06-02 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US5908463A (en) * | 1995-02-25 | 1999-06-01 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
US6041279A (en) * | 1995-02-25 | 2000-03-21 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JPS62150047A (ja) | 1987-07-04 |
DE3681555D1 (de) | 1991-10-24 |
EP0221386A2 (fr) | 1987-05-13 |
EP0221386A3 (en) | 1988-08-17 |
DE3539395A1 (de) | 1987-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0221386B1 (fr) | Procédé et dispositif d'adaptation de la commande du mélange dans un moteur à combustion | |
DE3502573C2 (de) | Vorrichtung zur Entlüftung von Kraftstofftanks | |
EP0191923A2 (fr) | Procédé et dispositif de commande et procédé de régulation des grandeurs de fonctionnement d'un moteur à combustion | |
DE3032323A1 (de) | Kraftstoffsteuervorrichtung fuer verbrennungsmotoren, insbesondere otto-motoren | |
DE4140527A1 (de) | Steuervorrichtung fuer das luft/brennstoff-verhaeltnis zur verwendung in einem verbrennungsmotor | |
DE3241761C2 (fr) | ||
DE3221640A1 (de) | Verfahren und vorrichtung zur optimalregelung von brennkraftmaschinen | |
DE3524970A1 (de) | Lernregelanordnung zum regeln eines kraftfahrzeugmotors | |
DE3432379C2 (fr) | ||
DE3524971C2 (fr) | ||
DE3526835C2 (fr) | ||
DE3330700C2 (fr) | ||
DE3714342A1 (de) | Steuervorrichtung fuer das luft-brennstoff-verhaeltnis eines motors mit einem elektronisch gesteuerten automatikgetriebe | |
DE3526895A1 (de) | Anordnung zum regeln des luft-brennstoff-verhaeltnisses eines kraftfahrzeugmotors | |
DE3309235A1 (de) | Steuerverfahren fuer eine brennkraftmaschine | |
WO1997029276A1 (fr) | Procede pour determiner une quantite supplementaire de carburant a injecter lors de la reinjection de carburant dans un moteur a combustion interne | |
EP0629775A1 (fr) | Procédé et dispositif pour commander la stabilité de marche d'un moteur à combustion interne | |
DE4417802B4 (de) | Vorrichtung zur Regelung der Motorleistung oder der Fahrgeschwindigkeit eines Fahrzeugs | |
DE3704587A1 (de) | Kraftstoffversorgungs-regelverfahren fuer brennkraftmaschinen nach dem anlassen | |
EP0205916B1 (fr) | Procédé de commande et/ou de régulation des caractéristiques de fonctionnement d'un moteur à combustion | |
DE2551688A1 (de) | Kraftstoffeinspritzeinrichtung fuer brennkraftmaschinen | |
DE3726892A1 (de) | Gemischverhaeltnissteuersystem fuer einen kraftfahrzeugmotor | |
WO1989008777A1 (fr) | Procede et systeme pour le reglage de la valeur lambda | |
DE3525895C2 (fr) | ||
DE3525393C2 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19890217 |
|
17Q | First examination report despatched |
Effective date: 19890823 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 3681555 Country of ref document: DE Date of ref document: 19911024 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ITF | It: translation for a ep patent filed | ||
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ROBERT BOSCH GMBH |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19941222 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19950915 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19951018 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19960801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19961008 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19961008 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19970630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051008 |