EP0220511B1 - Schaltungsanordnung für einen Infrarot-Raumüberwachungsdetektor - Google Patents

Schaltungsanordnung für einen Infrarot-Raumüberwachungsdetektor Download PDF

Info

Publication number
EP0220511B1
EP0220511B1 EP86113333A EP86113333A EP0220511B1 EP 0220511 B1 EP0220511 B1 EP 0220511B1 EP 86113333 A EP86113333 A EP 86113333A EP 86113333 A EP86113333 A EP 86113333A EP 0220511 B1 EP0220511 B1 EP 0220511B1
Authority
EP
European Patent Office
Prior art keywords
operational amplifier
circuit layout
signal
feedback
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86113333A
Other languages
English (en)
French (fr)
Other versions
EP0220511A2 (de
EP0220511A3 (en
Inventor
Hermann Dipl.-Ing. Zierhut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirschmann Electronics GmbH and Co KG
Original Assignee
Hirschmann Electronics GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirschmann Electronics GmbH and Co KG filed Critical Hirschmann Electronics GmbH and Co KG
Publication of EP0220511A2 publication Critical patent/EP0220511A2/de
Publication of EP0220511A3 publication Critical patent/EP0220511A3/de
Application granted granted Critical
Publication of EP0220511B1 publication Critical patent/EP0220511B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems

Definitions

  • the invention relates to a circuit arrangement for an infrared room monitoring detector with a sensor and a field effect transistor connected downstream thereof, the gate electrode of which is connected to a connection of the infrared room detector.
  • FIG. 1a shows a circuit of this type known from US-A-4 367 408, in which one connection of a pyro element P is connected to ground or to the minus operating voltage terminal and the other connection to the gate electrode of a field effect transistor ( hereinafter abbreviated to FET).
  • the drain electrode of the FET is connected to the positive operating voltage terminal U B.
  • the source electrode of the FET is connected to ground via a resistor R A or to the minus operating voltage terminal -U B.
  • the signal voltage U A is tapped via this resistor R A.
  • the circuit shown is thus designed analogously to an emitter follower circuit.
  • the signal voltage U A in this circuit arrangement is very sensitive to interference voltages that are superimposed on the operating voltage U B , because such interference voltages due to the drain-gate reaction of the FET also affect the gate voltage and thus the signal voltage U A lies in the ⁇ V range.
  • the operating voltage + U B applied to the drain electrode of the FET has noise or interference components in said ⁇ V range, so that the sensor signal cannot be evaluated with sufficient reliability for signaling. It is therefore necessary to sieve the operating voltage U B very well, ie it is a power supply unit with a high sieve factor 100 to 120 dB required. To maintain the high sieve factor, two power supplies are often connected in series. The circuit complexity for screening the operating voltage U B is therefore high.
  • the invention is therefore based on the object of providing a circuit arrangement of the type mentioned at the outset which does not require a great deal of sieving in the power supply unit and which enables a high gain in the sensor signal in a simple manner.
  • drain electrode of the FET is connected to the minus input of an operational amplifier, the output signal of which is fed back via a feedback resistor to the minus input of the operational amplifier.
  • connection of an operational amplifier according to the invention and the specified circuit of the same in connection with the FET makes it possible to use the operational amplifier stabilization, which results in an attenuation of 80 to 100 dB.
  • the drain voltage of the FET is automatically kept stable without additional circuitry for screening and there is therefore practically no reaction on the gate electrode of the FET.
  • the operational amplifier circuit therefore automatically regulates all fluctuations in the mains voltage, the drain voltage of the FET remains constant, and this also results in an undisturbed useful signal or an undisturbed signal voltage.
  • the operational amplifier in the circuit arrangement according to the invention is not connected as a voltage amplifier, but rather as a current amplifier, as a result of which fluctuations at the minus input of the operational amplifier and thus at the drain electrode of the FET are suppressed, with the result that interference effects on the gate -Electrode of the FET does not occur.
  • C-MOS operational amplifiers are particularly suitable for this purpose.
  • the use of less high-impedance operational amplifiers is also possible, in particular if the operating voltage is additionally sieved with a sieve factor of 20 to 30 dB, for example using an upstream power supply unit.
  • a particularly advantageous embodiment of the invention consists in that the source electrode of the FET is provided with a constant current by means of a constant current source.
  • the DC value of the output signal can be kept constant by using a constant current source.
  • Another very advantageous possibility in connection with the present invention is to supply the constant current source with the output signal of the operational amplifier as a control signal.
  • the output signal of the operational amplifier is thus fed back via the constant current source, so that the output voltage or the quiescent current value of the output voltage is kept stable.
  • Another embodiment of the invention is to design the constant current source as a feedback quadrupole. It is particularly advantageous to provide an integration element for damping the useful signal in connection with the feedback quadrupole. This ensures that the entire circuit is operated in idle amplification.
  • Circuit parts and components which correspond to FIGS. 2 to 4 chen, are provided with the same reference numerals.
  • the gate electrode of a field effect transistor 2 is connected to a connection of a pyro element 1, the other connection of which is connected to ground or to the minus operating voltage source.
  • the source electrode of the FET 2 is connected via a resistor R 1 and a capacitor C 1 connected in parallel to this resistor R 1, also to ground or to the minus operating voltage terminal.
  • the drain electrode of the FET 2 is connected to the minus input of an operational amplifier 3, the plus input of which is connected to ground or to the minus operating voltage source via a capacitor C2.
  • the plus input of the operational amplifier 3 is provided with a reference voltage U Ref via a resistor R3.
  • the output signal S A of the operational amplifier 3 is fed back to the minus input of the operational amplifier 3 via a resistor R2.
  • the resistance R2 is preferably in the mega-ohm range. For example, it has a resistance value of 1 MOhm.
  • the operating voltage connections of the operational amplifier 3 are connected to the plus operating voltage terminal + U B or to the minus operating voltage terminal -U B or ground.
  • the output signal of the pyroelement 1 occurring at the drain electrode of the FET 2 is amplified in the operational amplifier 3, and this amplified signal is fed back via the feedback branch containing the resistor R2 to the minus input of the operational amplifier 3. Since the operational amplifier itself has a good sieving effect of approximately 80 to 100 dB for the supply voltage, this property of the operational amplifier is used in addition to the actual gain property for the useful signal in order to keep the drain voltage of the FET 2 stable. As a result, there is also no negative reaction from the drain electrode to the gate electrode, so that the useful signal cannot be negatively influenced.
  • the operational amplifier circuit regulates all fluctuations, so that the drain voltage remains completely constant. The useful signal is no longer subjected to voltage amplification, but rather to current amplification. As a result, the useful signal is free of any fluctuations or interference components that occur in the operating voltage.
  • the embodiment shown in Fig. 3 differs from the circuit arrangement in Fig. 2 only in that the existing from the resistor R1 and C1, in the source electrode branch of the FET 2 parallel circuit is now replaced by a constant current source 4. In this way, the direct current value of the useful signal S A can be kept constant even better.
  • a constant current source or a feedback quadrupole 5 is provided, the or the output signal S A of the operational amplifier 3 is supplied as a control signal. That is, the constant current source is fed back by means of the DC output voltage of the operational amplifier 3 in such a way that the DC voltage or quiescent voltage value of the output signal remains stable.
  • the feedback quadrupole 5 can be designed, for example, in the form of an operational amplifier, transistor or current mirror circuit.
  • the output signal of the feedback constant current source or the feedback quadrupole 5 can be amplified before being fed into the source electrode of the FET 2.
  • the integration element can be designed, for example, in the form of an operational amplifier with feedback via a capacitor. Furthermore, it is possible to design the feedback quadrupole as an attenuator whose attenuation factor is just as large as the total gain of the circuit arrangement should be.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Burglar Alarm Systems (AREA)
  • Fire-Detection Mechanisms (AREA)

Description

  • Die Erfindung betrifft eine Schaltungsanordnung für einen In­frarot-Raumüberwachungsdetektor mit einem Sensor und einem diesem nachgeschalteten Feldeffekttransistor, dessen Gate-­Elektrode mit einem Anschluß des Infrarot-Raumdetektors ver­bunden ist.
  • Fig. 1a zeigt eine aus der US-A-4 367 408 bekannte Schaltung dieser Art, bei der ein Anschluß eines Pyroelementes P an Masse bzw. an der Minus-Betriebsspannungs-klemme liegt und der andere Anschluß mit der Gate-Elektrode eines Feldeffekttransistors (nachfolgend mit FET abgekürzt) verbunden ist. Die Drain-Elektrode des FET steht mit der Plus-Betriebsspannungsklemme UB in Verbindung. Die Source-Elektrode des FETs liegt über einen Wi­derstand RA an Masse bzw. an der Minus-Betriebsspannungsklemme -UB. Über diesen Widerstand RA wird die Signalspannung UA abgegriffen. Die dargestellte Schaltung ist also analog einer Emitterfolger-Schaltung ausgebildet.
  • Die Signalspannung UA ist bei dieser Schaltungsanordnung sehr emp­findlich gegenüber Störspannungen, die der Betriebsspannung UB über­lagert sind, da sich derartige Störspannungen auf Grund der Drain-­Gate-Rückwirkung des FET auch auf die Gate-Spannung und damit auf die Signalspannung UA, die imµV-Bereich liegt, auswirkt. Die an der Drain-Elektrode des FETs anliegende Betriebsspanung +UB weist Rausch- oder Störkomponenten in dem besagten µV-Bereich auf, so daß das Sensorsig­nal nicht mit ausreichender Zuverlässigkeit für die Signalgabe ausge­wertet werden kann. Es ist daher erforderlich, die Betriebsspannung UB sehr gut zu sieben, d.h., es ist ein Netzteil mit einem hohen Siebfak­ tor von 100 bis 120 dB erforderlich. Um den hohen Siebfaktor zu erhal­ten, werden häufig auch zwei Netzteile hintereinander geschaltet. Der Schaltungsaufwand für die Siebung der Betriebsspannung UB ist daher hoch.
  • Es ist weiterhin bekannt, die Nutz- bzw. Signalspannung UA an der Drain-Elektrode des FET abzugreifen, wie dies aus der in Fig. 1b dar­gestellten schematischen Schaltungsanordnung zu ersehen ist. In diesem Falle wird die Betriebsspannung +UB der Drain-Elektrode des FETs über einen Widerstand RL bereitgestellt. Im Source-Elektrodenzweig liegt in diesem Falle die Parallelschaltung eines Widerstandes RA und eines Kondensators C.
  • Zusätzlich zu den besagten Nachteilen, die im Zusammenhang mit der in Fig. 1a dargestellten Schaltungsanordnung auftreten, kommt bei dieser in Fig. 1b dargestellten Schaltung hinzu, daß sich die der Versor­gungsspannung UB überlagernden Rausch- und Störkomponenten dem Nutz­signal bzw. der Signalspannung UA ebenfalls überlagern, das bzw. die am Widerstand RL auftritt und dort abgegriffen wird. Durch den Rück­wirkungsleitwert des Drain-Gate-Übergangs des FET wird das Signal/ Rausch-Verhältnis der Signalspannung UA noch schlechter.
  • Aus "Electronic Circuits Note Book Proven Designs for Systems Applications" (Edited by S. Weber); Copyright 1981, Mc Graw­Hill Inc., Seite 315, ist eine bilaterale Schalteranordnung bekannt, bei der die Source-Elektrode eines Feldeffektransi­stors mit dem Minus-Eingang eines mit einem Rückkoppelkreis versehenen Operationsverstärkers verbunden ist. Das Eingangs­signal liegt dabei jedoch nicht an der Gate-Elektrode des Feldeffekttransistors, sondern an der Drain-Elektrode an. Die Gate-Elektrode des Feldeffekttransistors erhält ein bipolares Steuersignal zugeführt, mit dem der Feldeffektransistor ent­sprechend dem bipolaren Signal aus- und eingeschaltet wird. Die Schaltungsanordnung dient also als sogenannter Chopper-­Verstärker. Mit ihr ist weder beabsichtigt, eine Stabilisie­rung der Drain-Spannung des Feldeffekttransistors gegen Netz­spannungsschwankungen zu stabilisieren, noch ist dies mit die­ser Schaltung möglich. Umgekehrt ist es nicht Aufgabe der er­findungsgemäßen Schaltung und auch nicht möglich, diese als Chopper-Verstärker einzusetzen.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Schaltungsanord­nung der eingangs genannten Art zu schaffen, die ohne hohen Siebauf­wand im Netzteil auskommt und eine hohe Verstärkung des Sensorsignals auf einfache Weise ermöglicht.
  • Diese Aufgabe wird dadurch gelöst, daß die Drain-Elektrode des FET mit dem Minus-Eingang eines Operationsverstärkers verbunden ist, dessen Ausgangssignal über einen Rückkoppelwiderstand auf dem Minus-Eingang des Operationsverstärkers rückgekoppelt ist.
  • Die erfindungsgemäße Verbindung eines Operationsverstärkers sowie die angegebene Schaltung desselben im Zusammenhang mit dem FET ermöglicht es, die Operationsverstärker-Stabilisierung auszunützen, die eine Dämpfung von 80 bis 100 dB ergibt. Dabei wird die Drain-Spannung des FET ohne zusätzlichen Schaltungsaufwand für eine Siebung automatisch stabil gehalten und es ergibt sich daher auch praktisch keine Rückwir­kung auf die Gate-Elektrode des FET. Die Operationsverstärker-Schal­tung regelt daher automatisch alle Schwankungen der Netzspannung aus, die Drain-Spannung des FET bleibt konstant, und damit ergibt sich auch ein ungestörtes Nutzsignal bzw. eine ungestörte Signalspannung. Anders ausgedrückt ist der Operationsverstärker bei der erfindungsgemäßen Schaltungsanordnung nicht als Spannungsverstärker, sondern als Strom­verstärker geschaltet, wodurch Schwankungen am Minus-Eingang des Ope­rationsverstärkers und damit an der Drain-Elektrode des FET unter­drückt werden, was zur Folge hat, daß Stör-Rückwirkungen auf die Gate-­Elektrode des FET nicht auftreten.
  • Besonders vorteilhaft ist es, einen Operationsverstärker mit hohem Eingangswiderstand zu wählen. Hierzu bieten sich insbesondere C-MOS-­Operationsverstärker an. Die Verwendung weniger hochohmiger Opera­tionsverstärker ist jedoch ebenfalls möglich, insbesondere dann, wenn die Betriebsspannung etwa mittels eines vorgeschalteten Netzteils zu­sätzlich noch mit einem Siebfaktor von 20 bis 30 dB gesiebt wird.
  • Eine besonders vorteilhafte Ausführungsform der Erfindung besteht da­rin, daß der Source-Elektrode des FET ein konstanter Strom mittels ei­ner Konstant-Stromquelle bereitgestellt wird. Statt der herkömmlichen RC-Kombination im Source-Elektrodenbereich des FET kann durch die Ver­wendung einer Konstantstromquelle der Gleichstromwert des Ausgangssig­nals weiter konstant gehalten werden.
  • Eine weitere sehr vorteilhafte Möglichkeit im Zusammenhang mit der vorliegenden Erfindung besteht darin, der Konstantstromquelle das Aus­gangssignal des Operationsverstärkers als Regelsignal zuzuleiten. Das Ausgangssignal des Operationsverstärkers wird also über die Konstant­stromquelle rückgekoppelt, so daß die Ausgangsspannung bzw. der Ruhe­stromwert der Ausgangsspannung stabil gehalten wird.
  • Eine weitere Ausgestaltung der Erfindung besteht darin, die Konstant­stromquelle als Rückkoppelvierpol auszubilden. Dabei ist es besonders vorteilhaft, im Zusammenhang mit dem Rückkoppelvierpol ein Integra­tionsglied zur Dämpfung des Nutzsignals vorzusehen. Dadurch wird er­reicht, daß die gesamte Schaltung in Leerlaufverstärkung betrieben wird.
  • Vorteilhaft ist weiterhin eine Ausführung, bei der der Rückkoppelvier­pol ein Dämpfungsglied aufweist, dessen Dämpfungsfaktor proportional zur Gesamtverstärkung der Detektorschaltungsanordnung geregelt ist. Auf diese Weise ist eine konstante Verstärkung des Nutzsignals unter Ausschaltung von Fertigungs-, Bauteile-, Temperatur- und sonstigen To­leranzen sichergestellt. Durch diese verstärkungsgeregelte Ausfüh­rungsform kann die Schaltungsanordnung besonders kostengünstig herge­stellt werden, da einfachste Bauelemente mit großen Toleranzen verwen­det werden können und dennoch kein Abgleich erforderlich ist.
  • Die Erfindung wird nachstehend anhand der Zeichnungen beispielsweise näher erläutert. Es zeigen:
    • Fig. 1a und 1b Schaltungsanordnungen herkömmlicher Art in schemati­scher Darstellung,
    • Fig. 2 die schematische Darstellung einer Schaltungsanordnung gemäß der vorliegenden Erfindung,
    • Fig. 3 eine vorteilhafte Modifikation der in Fig. 2 darge­stellten Schaltungsanordnung und
    • Fig. 4 eine weitere Ausführungsform der Erfindung.
  • Schaltungsteile und Bauelemente, die sich in den Fig. 2 bis 4 entspre­ chen, sind jeweils mit denselben Bezugszeichen versehen.
  • Wie Fig. 2 zeigt, ist die Gate-Elektrode eines Feldeffekttransistors 2 mit einem Anschluß eines Pyroelements 1 verbunden, dessen anderer An­schluß an Masse bzw. an der Minus-Betriebsspannungsquelle liegt. Die Source-Elektrode des FET 2 liegt über einen Widerstand R₁ und einem zu diesem Widerstand R₁ parallel geschalteten Kondensator C₁ ebenfalls an Masse bzw. an der Minus-Betriebsspannungsklemme. Die Drain-Elektrode des FET 2 ist mit dem Minus-Eingang eines Operationsverstärkers 3 ver­bunden, dessen Plus-Eingang über einen Kondensator C₂ an Masse bzw. an der Minus-Betriebsspannungsquelle liegt. Dem Plus-Eingang des Opera­tionsverstärkers 3 wird eine Referenzspannung URef über einen Wider­stand R₃ bereitgestellt. Das Ausgangssignal SA des Operationsverstär­kers 3 wird dem Minus-Eingang des Operationsverstärkers 3 über einen Widerstand R₂ rückgeführt. Der Widerstand R₂ liegt vorzugsweise im Mega-Ohm-Bereich. Er weist beispielsweise den Widerstandswert von 1 MOhm auf. Die Betriebsspannungsanschlüsse des Operationsverstärkers 3 sind mit der Plus-Betriebsspannungsklemme +UB bzw. mit der Minus-Be­triebsspannungsklemme -UB oder Masse verbunden.
  • Das an der Drain-Elektrode des FET 2 auftretende Ausgangssignal des Pyroelements 1 wird im Operationsverstärker 3 verstärkt, und dieses verstärkte Signal wird über den den Widerstand R₂ enthaltenden Rückkop­pelzweig auf den Minus-Eingang des Operationsverstärkers 3 rückgekop­pelt. Da der Operationsverstärker selbst eine gute Siebwirkung von et­wa 80 bis 100 dB für die Versorgungsspannung aufweist, wird diese Ei­genschaft des Operationsverstärkers zusätzlich zur eigentlichen Ver­stärkungseigenschaft für das Nutzsignal ausgenutzt, um die Drain-Span­nung des FET 2 stabil zu halten. Dadurch ergibt sich auch keine nega­tive Rückwirkung von der Drain-Elektrode auf die Gate-Elektrode, wo­durch das Nutzsignal insofern nicht negativ beeinflußt werden kann. Die Operationsverstärkerschaltung regelt also alle Schwankungen aus, so daß die Drain-Spannung vollkommen konstant bleibt. Das Nutzsignal wird dabei nicht mehr einer Spannungsverstärkung, sondern einer Strom­verstärkung unterzogen. Dadurch ist das Nutzsignal frei von etwa in der Betriebsspannung auftretenden Schwankungen oder Störkomponenten.
  • Die in Fig. 3 dargestellte Ausführungsform unterscheidet sich von der Schaltungsanordnung in Fig. 2 lediglich dadurch, daß die aus dem Wi­derstand R₁ und C₁ bestehende, im Source-Elektrodenzweig des FET 2 liegende Parallelschaltung nunmehr durch eine Konstantstromquelle 4 ersetzt ist. Auf diese Weise kann der Gleichstromwert des Nutzsignals SA noch besser konstant gehalten werden.
  • Bei der in Fig. 4 dargestellten Ausführungsform ist im Source-Elektro­denzweig des FET 2, statt einer an Masse liegenden Konstantstromquelle 4 bzw. einer Parallelschaltung aus einem Widerstand R₁ und einem Kon­densator C₁, eine Konstantstromquelle bzw. ein Rückkoppelvierpol 5 vorgesehen, der bzw. dem das Ausgangssignal SA des Operationsverstär­kers 3 als Regelsignal zugeleitet wird. Das heißt, die Konstantstrom­quelle wird mittels der Ausgangs-Gleichspannung des Operationsverstär­kers 3 so rückgekoppelt, daß der Gleichspannungs- bzw. Ruhespannungs­wert des Ausgangssignals stabil bleibt. Der Rückkoppelvierpol 5 kann beispielsweise in Form einer Operationsverstärker-, Transistor- oder Stromspiegel-Schaltung ausgebildet sein. Zusätzlich kann das Ausgangs­signal der rückgekoppelten Konstantstromquelle bzw. des Rückkoppel­vierpols 5 vor der Einspeisung in die Sourceelektrode des FET 2 verstärkt werden. Es ist weiterhin möglich, in diesem Schaltungsteil 5 ein Integrationsglied für eine Dämpfung des Signals vorzusehen, um die gesamte Schaltung in Leerlaufverstärkung zu betreiben, so daß ein ver­stärkungsgeregeltes Konzept vorliegt. Das Integrationsglied kann bei­spielsweise in Form eines Operationsverstärkers mit Rückkopplung über einen Kondensator ausgebildet sein. Weiterhin ist es möglich, den Rückkoppelvierpol als Dämpfungsglied auszubilden, dessen Dämpfungsfak­tor gerade so groß ist, wie die Gesamtverstärkung der Schaltungsanord­nung sein soll.
  • Die vorliegende Erfindung wurde anhand der dargestellten Ausführungs­formen erläutert. Dem Fachmann sind darüberhinaus selbstverständlich zahlreiche Abwandlungen und Ausgestaltungen der dargestellten Ausfüh­rungsformen möglich, ohne daß dadurch der Erfindungsgedanke verlassen wird.

Claims (7)

1. Schaltungsanordnung für einen Infrarot-Raumüberwachungsde­tektor mit einem Sensor und einem diesem nachgeschalteten Feldeffekttransistor, dessen Gate-Elektrode (G) mit einem Anschluß des Infrarot-Raumdetektors verbunden ist, dadurch gekennzeichnet, daß die Drain-Elektrode (D) des Feldeffekttransistors (2) mit dem Minus-Eingang eines Operationsverstärkers (3) verbunden ist, dessen Ausgangs­signal (SA) über einen Rückkoppelwiderstand (R₂) auf dem Minus-Eingang des Operationsverstärkers (3) rückgekoppelt ist.
2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß ein Operationsverstärker mit hohem Eingangswiderstand vorgesehen ist.
3. Schaltungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Source-Elektrode (S) des Feldeffekttransistors (2) ein kon­stanter Strom mittels einer Konstant-Stromquelle (4) bereitgestellt wird (Fig. 3).
4. Schaltungsanordnung nach Anspruch 3, dadurch gekennzeichnet, daß das Ausgangssignal (SA) des Operationsverstärkers (3) der Konstant-­Stromquelle (4 bzw. 5) als Regelsignal zugeleitet wird (Fig. 4).
5. Schaltungsanordnung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Konstant-Stromquelle (5) ein Rückkoppelvierpol ist.
6. Schaltungsanordnung nacch Anspruch 5, dadurch gekennzeichnet, daß der Rückkoppelvierpol ein Integrationsglied zur Dämpfung des Nutz­signals aufweist.
7. Schaltungsanordnung nach Anspruch 5, dadurch gekennzeichnet, daß der Rückkoppelvierpol ein Dämpfungsglied aufweist, dessen Dämp­ fungsfaktor proportional zur Gesamtverstärkung der Detektorschal­tungsanordnung geregelt ist.
EP86113333A 1985-10-19 1986-09-27 Schaltungsanordnung für einen Infrarot-Raumüberwachungsdetektor Expired - Lifetime EP0220511B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3537316 1985-10-19
DE3537316A DE3537316C1 (de) 1985-10-19 1985-10-19 Schaltungsanordnung fuer einen Infrarot-Raumueberwachungsdetektor

Publications (3)

Publication Number Publication Date
EP0220511A2 EP0220511A2 (de) 1987-05-06
EP0220511A3 EP0220511A3 (en) 1987-10-07
EP0220511B1 true EP0220511B1 (de) 1991-02-06

Family

ID=6284011

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86113333A Expired - Lifetime EP0220511B1 (de) 1985-10-19 1986-09-27 Schaltungsanordnung für einen Infrarot-Raumüberwachungsdetektor

Country Status (4)

Country Link
US (1) US4827133A (de)
EP (1) EP0220511B1 (de)
JP (1) JPS62100626A (de)
DE (2) DE3537316C1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ220217A (en) * 1987-05-06 1991-03-26 Graydon Aubrey Shepherd Pyro-electric sensor circuit
JPH0530105Y2 (de) * 1987-05-29 1993-08-02
US5034608A (en) * 1989-09-08 1991-07-23 Massachusetts Institute Of Technology Infrared sensor operable without cooling
DE19619459C2 (de) * 1996-05-14 2000-06-08 Heimann Optoelectronics Gmbh Schaltung zur Erfassung elektromagnetischer Strahlung
US6340816B1 (en) 1998-02-27 2002-01-22 Honeywell International, Inc. Pyroelectric detector with feedback amplifier for enhanced low frequency response
EP1043574B1 (de) * 1998-10-19 2003-08-27 Mitsubishi Denki Kabushiki Kaisha Infrarotsensor und infrarotsensormatrix mit demselben
DE602004019898D1 (de) * 2003-04-07 2009-04-23 Microsystems On Silicon Pty Lt Sensorvorrichtung für die erfassung eines physikalischen parameters
WO2012002496A1 (ja) * 2010-07-01 2012-01-05 パナソニック電工株式会社 対象物検出装置
JP2015049043A (ja) * 2013-08-29 2015-03-16 セイコーインスツル株式会社 赤外線検出装置
CN104316174B (zh) * 2014-10-31 2016-06-29 国网山东省电力公司潍坊供电公司 一种红外线光电检测电路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2113053A1 (de) * 1970-03-19 1971-09-30 Kureha Chemical Ind Co Ltd Verfahren und Vorrichtung zum Steuern eines elektrischen Stromkreises
US3944859A (en) * 1974-09-03 1976-03-16 Rca Corporation Bridge-balance detection circuit
US3987319A (en) * 1974-12-05 1976-10-19 The United States Of America As Represented By The Secretary Of The Army Radiation-activated sensor
US4101767A (en) * 1977-05-20 1978-07-18 Sensors, Inc. Discriminating fire sensor
US4367408A (en) * 1979-01-17 1983-01-04 Sanyo Electric Co., Ltd. Pyroelectric type infrared radiation detecting device
US4267468A (en) * 1979-04-23 1981-05-12 Motorola, Inc. Temperature sensing circuit
DE3404151A1 (de) * 1984-02-07 1985-08-08 Richard Hirschmann Radiotechnisches Werk, 7300 Esslingen Meldeeinrichtung
US4618770A (en) * 1985-03-21 1986-10-21 Rca Corporation Electrical controller having a window discriminator

Also Published As

Publication number Publication date
JPS62100626A (ja) 1987-05-11
DE3677456D1 (de) 1991-03-14
DE3537316C1 (de) 1987-03-12
EP0220511A2 (de) 1987-05-06
US4827133A (en) 1989-05-02
JPH054623B2 (de) 1993-01-20
EP0220511A3 (en) 1987-10-07

Similar Documents

Publication Publication Date Title
EP0218011B1 (de) Schaltungsanordnung für einen Infrarot-Raumüberwachungs-Detektor
DE2310266C2 (de) Verstärker
DE2660968C3 (de) Differentialverstärker
DE2920793C2 (de) Linearer Gegentakt-B-Verstärker
DE1904334B2 (de) Regelbarer Differenzverstärker
DE2641860A1 (de) Integrierte stromversorgungsschaltung
EP0220511B1 (de) Schaltungsanordnung für einen Infrarot-Raumüberwachungsdetektor
DE2707609A1 (de) In seiner verstaerkung steuerbarer wechselspannungsverstaerker
DE3108617A1 (de) "verstaerkungssteuerschaltung"
DE2305291C3 (de) Regelschaltung zur Regelung der Amplitude eines Signals
DE2715981A1 (de) Tonblende
DE3824556C2 (de) Symmetrische Eingangsschaltung für Hochfrequenzverstärker
EP0389654B1 (de) Integrierbare Verstärkerschaltung
EP0106088A1 (de) Halbleiter-Verstärkerschaltung
DE19630393A1 (de) Elektrische Signalverarbeitungsschaltung
DE3041156A1 (de) Verstaerkungssteuersystem
DE3026551C2 (de)
DE2641525C3 (de) Verstärker mit einstellbarer Verstärkung
DE3228785C2 (de)
DE2755827A1 (de) Schaltungsanordnung mit einem durch eine steuergleichspannung veraenderbaren frequenzgang
EP0961403A2 (de) Integrierte, temperaturkompensierte Verstärkerschaltung
DE3724980A1 (de) Spannungswiederholerschaltung fuer eine ohmsche komponente aufweisende last mit kompensation der oberwellenverzerrung
EP1310850A2 (de) Umschaltbare Stromquelle
DE2817602A1 (de) Spannungskomparatorschaltung
DE2716038B2 (de) Phasenschieberschaltung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860927

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE GB IT LI NL SE

17Q First examination report despatched

Effective date: 19891023

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RICHARD HIRSCHMANN GMBH & CO.

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL SE

REF Corresponds to:

Ref document number: 3677456

Country of ref document: DE

Date of ref document: 19910314

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930928

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930930

Year of fee payment: 8

Ref country code: GB

Payment date: 19930930

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931013

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931215

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940930

Ref country code: CH

Effective date: 19940930

EAL Se: european patent in force in sweden

Ref document number: 86113333.8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940927

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950601

EUG Se: european patent has lapsed

Ref document number: 86113333.8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050927