EP0213349B1 - Procédé de sécurité et de secours pour un moteur à combustion à autoallumage et dispositif mettant en oeuvre ce procédé - Google Patents

Procédé de sécurité et de secours pour un moteur à combustion à autoallumage et dispositif mettant en oeuvre ce procédé Download PDF

Info

Publication number
EP0213349B1
EP0213349B1 EP86109719A EP86109719A EP0213349B1 EP 0213349 B1 EP0213349 B1 EP 0213349B1 EP 86109719 A EP86109719 A EP 86109719A EP 86109719 A EP86109719 A EP 86109719A EP 0213349 B1 EP0213349 B1 EP 0213349B1
Authority
EP
European Patent Office
Prior art keywords
safety
signal
brake
speed
pedal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86109719A
Other languages
German (de)
English (en)
Other versions
EP0213349A3 (en
EP0213349A2 (fr
Inventor
Rainer Dipl.-Ing. Buck
Werner Dipl.-Ing. Fischer
Hermann Dr. Ing. Kull
Albrecht Dipl.-Ing. Sieber
Wolf Ing. Grad. Wessel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0213349A2 publication Critical patent/EP0213349A2/fr
Publication of EP0213349A3 publication Critical patent/EP0213349A3/de
Application granted granted Critical
Publication of EP0213349B1 publication Critical patent/EP0213349B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/106Detection of demand or actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/107Safety-related aspects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • F02D2041/226Fail safe control for fuel injection pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/406Electrically controlling a diesel injection pump
    • F02D41/407Electrically controlling a diesel injection pump of the in-line type

Definitions

  • the invention is based on a method or a device according to the type of the independent claims. It is known to use electrical signal boxes controlled by electrical signals for the electronic control of the operation of self-igniting internal combustion engines (diesel engines), a central control unit generating the necessary control signals instead of mechanical fuel metering and control systems.
  • Electrical fuel metering systems in diesel engines are reliable in terms of their reliability, but they may be less and less able to take into account the multitude of different operating conditions and environmental influences today.
  • EDC electronic diesel control
  • a safety device for an internal combustion engine with auto-ignition it is known (DE-OS 33 01 742), continuously certain signals relating to the operation of the internal combustion engine, such as accelerator pedal position, calculated setpoint of the control path, speed, brake pedal position and the like. and to create a corrected control path setpoint by selecting the minimum value and supplying it to the control controller of the EDC system.
  • This corrected control path setpoint also serves to determine a control path deviation, including a feedback of the control path actual value signal. If the predetermined limits are exceeded, the known safety device either reacts by switching off the injection pump, de-energizing the output stage of the control regulator or introducing emergency operation.
  • an idle signal can be obtained by a corresponding idle contact on the accelerator pedal - but this is not valid if, for example, the internal combustion engine is equipped with a cruise control. It is also conceivable that, for whatever reason (sporty driving, warning rearward driver at high speed, etc.), a driver briefly depresses the brake pedal or even taps, but on the other hand the foot pedal remains deflected, i.e. not in the Idle position.
  • EDC electronic diesel control
  • the invention solves this problem with the features of the independent claims and has the advantage that in the event of a safety event, i.e. incompatible external operating state variables (brake and foot pedal actuated simultaneously), these signals are to be classified in a time grid and a waiting time specified and only after their expiration to reduce the injection quantity not abruptly but in a ramp over time with a given slope.
  • a safety event i.e. incompatible external operating state variables (brake and foot pedal actuated simultaneously)
  • FIG. 1 shows a simplified schematic illustration of an internal combustion engine with auto-ignition and its essential associated components including actual value transmitters
  • FIG. 2 shows a block diagram of a comprehensive safety and emergency driving device
  • FIG. 3 shows in the form of a diagram the control path specified for the emergency driving state via the speed below Inclusion of a so-called start hysteresis
  • Fig. 4 in the form of discrete gate circuits, the essential processing possibility of external operating variables for detecting the safety event in which to switch or to be adjusted according to predetermined characteristics
  • Fig. 5 in the form of a diagram of the course of the supplied injection quantity over time when a occurs 6 and in the form of a block diagram, switching options to a replacement controller with simultaneous, continuous observation of the first controller or normal controller for reusability.
  • the internal combustion engine with auto-ignition (diesel engine) is designated 10; it has an intake pipe 11 and an exhaust pipe 12.
  • a fuel injection pump 13 is connected to an injection valve 14, shown schematically here as representative of the required amount of injection valves, via a pressure line 15.
  • the injection valve 14 can comprise an injection initiator 16, which feeds a redundant speed signal to a speed signal detection and processing block 17 via a connecting line 16a indicated by dashed lines, or which conveys this speed signal to further processing blocks.
  • a speed sensor 18 is provided which, for example, the speed of the internal combustion engine via a ring gear 19 driven by its crankshaft detected and the output of which is connected to the wire number signal detection block 17.
  • the block diagram representation of FIG. 1 also shows, in addition to the speed signal N present at the output of the speed detection block 17, further means for signal acquisition.
  • the actual value of the control path RWist which is generated from the position of the control rod 13a of the fuel pump 13, for example via an actual value transmitter or converter for the control path, an accelerator pedal position signal FFG (foot pedal), for example detected by the position of a tap in a mechanical connection with the Foot pedal 21 standing potentiometer 22, from which signal an accelerator pedal idle signal FFG-LL can be derived, but which can also be generated in the same way by an idle contact switch on the foot pedal.
  • a brake contactor 24 assigned to the brake pedal 23 is also of importance, which can also operate the brake lights 25 or generates the brake signal separately.
  • a brake contactor can also be part of a switch arranged in the brake cylinder.
  • a central control unit 26 which contains a main computer and further peripheral circuits, is provided for electronic control and guidance of the injection pump 13. As indicated at 27, the control unit 26 is supplied with a large number of external operating signals, circulation signals and setpoints and the main computer contained in the control unit 26 then uses these input values to generate at least one signal for the setpoint of the control path RWsoll, which is supplied to a downstream control controller 27 which has a predetermined control behavior and is usually a so-called PID controller, which controls the actuator 28 via a current controller output stage (not shown in FIG. 1), which moves the control rod 13a into the respectively desired position.
  • a downstream control controller 27 which has a predetermined control behavior and is usually a so-called PID controller, which controls the actuator 28 via a current controller output stage (not shown in FIG. 1), which moves the control rod 13a into the respectively desired position.
  • FIG. 2 A block diagram of the safety and emergency driving device 29 is shown in detail in FIG. 2 and its structure is first explained below. Components of the central control device 26 and the safety and emergency driving device 29 are shown in an interlocking manner in FIG. 2 - the main computer is designated 30, a monitoring function (watchdog) controlling only essential functions of the main computer is designated 30a.
  • a monitoring function watchdog
  • a first speed signal N comes from a normal speed sensor 31, for example formed by a disk 32 with signal markings rotating in synchronism with the internal combustion engine, a sensor 33 responding to it, a downstream pulse shaper stage 34 to the main computer 30, which receives the speed signal and the input 35 present Accelerator pedal signal FFG, usually evaluated with further variables that are not of interest in this context and generates a control path setpoint RWsoll and supplies it to a first control controller 36 via the output line 30b.
  • a current controller 37 connected to the output of the controller 36 (PID controller) directly controls the actuator 38 for the control rod position with its output stage.
  • a feedback actual value of the control path RWist reaches line 39 to the input of the controller 36, whereby the loop is closed for the execution of the normal functions.
  • At least one auxiliary speed sensor or replacement speed sensor 31 ' is provided, which can also be a spray start sensor (SB sensor), the output signal of which can be used as a replacement speed signal if the normal speed sensor 31 fails.
  • SB sensor spray start sensor
  • the starting quantity is output as the setpoint for the signal box control, but the output only then takes place if an error in the measurement of the internal resistance of the replacement speed sensor has not been detected by a replacement speed sensor monitoring.
  • An error detection of the sensor internal resistance only leads to the release of the starting quantity when a predetermined speed threshold is reached, determined from pulses from the normal speed sensor.
  • any other speed sensor 31 ' is used, for example, as a speed sensor on the starter ring gear.
  • the pulse shaping circuit 34 ' is one Divider circuit 42 connected downstream, which is provided for the safety and emergency driving case and in this respect reduces redundant speed signals to approximately the same frequency as the SB signal.
  • the main computer 30 receives normal and substitute speed signal, but the safety and emergency driving devices are supplied with speed information by the normal speed sensor via the speed processing block 41. It is equally possible to supply the S + N device or part of it with speed information from the replacement speed sensor.
  • FIG. 2 The further safety and emergency driving arrangements of FIG. 2 are explained below in connection with the safety cases that occur in each case and the functions resulting therefrom.
  • the actual value of the control path RWist therefore reaches a comparator 43 via a branch line 39 ′, the other input of which supplies an RWmin specification relating to the respective speed from an RWmin characteristic block 44.
  • the output signal of this comparator then represents a first and necessary signal, which is included in this check.
  • EDC electronic diesel control
  • the accelerator pedal is in the LL position and nevertheless the internal combustion engine is supplied with a high injection quantity as required, which corresponds to a large control path RWist.
  • FFG-LL detection that is to say the detection and evaluation of the idle position of the pedestrian, must be prevented in the FGR vehicle speed control.
  • the linkage takes place by means of a linkage circuit 46, which consists of two AND gates 46a, 46b and a downstream OR gate 47.
  • the redundant idle signal LL * results only if there is either no vehicle speed control function (is recognized by the negation at the corresponding input of AND gate 46b) and at the same time an idle signal FFG-LL is present by the pedestrian the vehicle speed control function is available, but the brake is applied.
  • Such a combination must not occur in normal operation because the FGR function must be eliminated when the brake is actuated.
  • Both signals reach the same input via the OR gate 47 as an LL * signal to one input one switched further gate circuit, namely again an AND gate 48, which then serves to switch to a control path which is safe for the engine and driver if necessary together with the redundant idle signal LL * and the check for the RWmin signal supplied by the comparator 43.
  • the AND gate 48 is followed by a delay block 49, which only controls a downstream reaction element for immediate actuation when a predetermined time period T has expired.
  • the reaction element is shown to illustrate the function as a bistable flip-flop 50 with the inputs S / R, but can also be implemented differently in a computer (eg setting a flag).
  • the flip-flop 50 is set at its input S when the security event occurs with consequences to be explained below and is reset at its input R, as can be seen, via an OR gate 51 immediately when the redundant idle signal LL * and moreover when a signal is supplied from a start hysteresis block 52 which indicates a start process, as will be explained below.
  • the limit speed threshold concept is therefore replaced by a speed-dependent control path characteristic for minimum control path RWmin, as indicated in the characteristic block 44 in FIG. 2 and shown in detail in the diagram in FIG. 3.
  • the RWmin curve over the speed is shown in Fig. 3 in solid lines, it should be added that all the functions described in the form of characteristic curves can also be equipped with more or less complex and each and also here a minimum level that is found to be useful is described.
  • the RWmin characteristic curve over the speed consists of three branches a), b) and c), the branch a) being above a threshold speed mentioned above and specifying control paths that are below the zero load quantity requirement of the engine, but above that Control path which is output by the main computer for the idle position of the foot pedal in undisturbed operation; Branch b), which rises below the limit speed, permits idle control in emergency driving mode, but lies above the idle control characteristic curve for normal operation, while the third branch c) permits control paths that enable a cold start.
  • this RWmin characteristic curve can jeopardize an automatic start quantity control by the electronic diesel control EDC, which wants to release more start quantity (correspondingly larger control path RW) than the RWmin characteristic curve in FIG. 3 allows during a cold start.
  • this RWmin characteristic curve is provided with a hysteresis for the start case, which is recognized by block 52 in FIG. 2, which can also be responsible for the change in the RWmin curve to be explained below is shown in dashed lines in FIG. 2 as RWmin 'and causes a shift towards higher speeds when switched on for the first time.
  • the diagram in FIG. 3 also has a dash-dot line and I denotes the normal starting quantity curve over the rotational speed.
  • RWmin ' i.e. from the expanded hysteresis configuration, then resets to the normal RWmin characteristic.
  • the comparator 43 compares the RWmin value taken from the RWmin characteristic with the actual RWist value, an incorrect setting of the control path RW is found here, i.e. if RWist is greater than RWmin and the idle condition LL * occurs at the same time, then after that Delay block 49 predetermined delay time set the flip-flop 50, which, via its output FFA and a downstream OR gate 53, switches the control of the control path to a second branch, which then, when this safety event occurs, regulates the RWmin characteristic just described in detail , and at the same time, via the return line 54, notifies the main computer 30 of this security event that has occurred.
  • the input of the control regulator 36 can then be switched to the output of the RWmin characteristic curve generation block 44, which is not shown in the drawing in FIG. 2, i.e. one continues to work with the same actuator 36, or one can (alternatively) switch to a second redundant actuator 36 'by actuating a switch 55 from the output of the flip-flop 50, since defects of the normal actuator 36 are also protected in this way.
  • Such a switchover via the OR gate 53 is also carried out when it is ascertained, namely via the watchdog 30a monitoring circuit of the main computer 30, that the main computer 30 itself is not operational, that is to say is defective, has a too low voltage or the like. Then watchdog 30a also switches switch 55 via line 56.
  • the safety changeover flip-flop 50 is reset in any case if, as already mentioned, the idle condition LL * occurs again is canceled, or in order to bring the flip-flop 50 into the defined starting position via the start hysteresis block 52 under starting conditions.
  • the feedback of the switch over the line 54 to the main computer 30 is necessary because the latter itself (if necessary) carries out monitoring for system deviation or to manipulate the main computer 30 in the desired sense, since otherwise this additional redundant switch-off via an additional Actuator (e.g. shut-off valve for the fuel), even the system could shut down altogether.
  • an additional Actuator e.g. shut-off valve for the fuel
  • An additional measure for pure operation via the RWmin characteristic curve is to additionally supply the RWmin characteristic curve generation block via the partial line 57a to the line 57 from the foot transmitter of a pedestrian signal FFG, which, added to the generated RWmin signal, allows any RW position to be regulated , so that an extended emergency drive is possible in a simple manner in the event of a main computer failure or failure of the components affected by the respective security case.
  • a detection switch block 58 is provided for failure of the control transmitter; This detection circuit 58 is therefore additionally supplied with the actual value signal of the control path RWist generated and reported by the control path transmitter.
  • any input signals linked to the actual position of the control path are supplied to the detection circuit 58, the control path sensor failure detection then being carried out by a known measure of the so-called signal range check.
  • the real control path signal RWist (which is no longer applicable in this respect) is no longer reported back to the position control (the control controller 36, 36 ') or to the main computer 30, but rather a simulated signal which is generated by a Switching of a switch 59 to an RWist * generation block 60 effected by the detection circuit 58 is generated.
  • This simulated signal is derived either from the controller output, as shown in FIG. 2, or from other available variables, for example also the output of the current controller 37 connected downstream of the controller.
  • the RWist generation block is an observer for the general case Position 38.
  • an overspeed protection circuit 61 which acts directly on the output stage of the current regulator 37 past all blocks and prevents overspeeds.
  • Essential features therefore consist in the fact that, in addition to the redundant speed sensor 31 'or injection start sensor, a redundant idling signal LL * is generated, as is an RWmin characteristic curve, which can additionally be displaced by signals from the driving foot sensor for extended emergency operation.
  • the RWmin characteristic curve is supplemented by a start hysteresis function, so that in addition to the extended emergency driving mode, starting processes are still possible.
  • the switchover to emergency operation takes place either by applying a reaction element, namely the flip-flop 50 or also via the watchdog directly assigned to the computer when the flip-flop switchover is reported.
  • a redundant control controller is preferably provided, which is controlled by the RWmin characteristic curve generation for the safety case and switchover to emergency operation. Furthermore, by generating a simulated control path signal, an actual value that can be evaluated for emergency operation can be obtained.
  • the actuator behavior can also be checked by including the actuator observer according to the RWist * generation block 60 in the monitoring program.
  • Another problem for general safety and emergency operation in self-igniting internal combustion engines is that the foot pedal can jam or can no longer return to idle position or if the signal evaluation of the accelerator pedal sensor in the control unit is defective or the signal is interpreted incorrectly by the computer; In this case, there is a risk that, even though the driver has taken his foot off the accelerator pedal, that is to say that there is an FFG-LL signal, the accelerator pedal is undesirable.
  • Such unwanted accelerating can be prevented by additionally including a brake signal BS, which is then caused by the normal reaction of the driver, as a redundant safety signal, as also happened in FIG.
  • the evaluation blocks 62 and 63 shown in FIG. 4 are therefore circuit means which can detect a time assignment or a successive occurrence of events and only emit a signal if the conditions indicated in the blocks are met.
  • the safety case corresponding to the assuming high-going signal at an output gate (AND circuit 64) therefore only arises if the signal "accelerator pedal is not in idle position" is supplied to one input, while a signal is sent from the upstream OR gate 65 to the other input either according to condition 2a) or 2b) above.
  • FIG. 6 A further addition to the present invention can finally be seen in the illustration in FIG. 6. This is the possibility, already mentioned above, of arranging a second control regulator or replacement regulator, which is designated by 66 in FIG. 6. As in FIG. 2, the normal regulator bears the reference symbol 36.
  • the safety and emergency driving system in the illustration in FIG. 2 likewise has a second and therefore redundant controller 36 '; In this system, this can also be optionally provided, since in the event of a safety situation, only the control of the control path switches over to the second branch, formed from blocks 44 and 52, so that control continues with the RWmin characteristic. This second branch can also be connected to the original actuator.
  • the redundant control controller 66 which is effectively provided in accordance with FIG. 6 increases the availability of the entire system and thus also of the vehicle. The following considerations form the basis for this.
  • the injection quantity is metered via the electromagnetic actuator 38 '(see FIG. 6) with position feedback (position of the control rod - RWist encoder) and a control regulator 36 in the control unit. If one of these regulators fails, quantity metering can no longer be carried out, so that the vehicle equipped with such an internal combustion engine also stops.
  • the embodiment of the invention here provides a second substitute controller 66 or redundant controller and also provides means which recognize whether the normal actuator 36 is inoperable so that it is possible to switch to the substitute controller 66. It goes without saying that such measures can also be applied to other regulators for other sizes, for example exhaust gas recirculation rate ARF, start of injection or the like.
  • a control controller As belonging to such a controller the actual controller (PID) itself, and in extension also assigned subsequent stages including the final stage (current controller 37). Since a control controller, as already mentioned, generally contains an I component, one can assume with a functional control controller that, in the presence of a control deviation, the controller output goes to the maximum possible position to compensate for the deviation, it runs to the stop, whereby the direction the deviation and the direction of the controller are mutually assigned at the stop. This assignment and the requirement that the controller runs to the stop allow the control controller and possibly subsequent stages to be checked, taking into account the principle that if there is a control deviation and if this control deviation is present, it is possible to determine whether the controller output is correct for a given fixed time at the appropriate stop.
  • the invention provides a comparison device 67, to which the control deviation is fed at input 67a and the controller starting position at input 67b.
  • the control deviation is obtained in the usual way at a summation point 68, to which the control rod setpoint RWsoll is supplied by the main computer and the feedback of the control rod actual value is supplied by the RWist encoder.
  • the comparator switches over to the replacement controller 66 via the switch 69, which can then either continue to work with the previous setpoint (supplied via line 70) or a separate setpoint value derived from this can also be supplied from an emergency driving device via line 71 as RWsetpoint-Not (see block 44, FIG. 2).
  • a failure of the normal setting controller 36 always means a complete switchover to the emergency travel branch in the latter case, which in some circumstances represents a simplification of the logic.
  • the target input of controller 36 (initially recognized as defective) switched to a fixed setpoint, likewise from the output of comparator 67 by actuating a switching device 72, this fixed setpoint preferably being in the middle of the normal operating range.
  • the comparator 67 continues to monitor the output of the normal controller 36.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (5)

1. Procédé de sécurité et de secours pour un moteur à combustion interne à auto-allumage, dans lequel pour la surveillance en continu du système installé, au moins un des signaux de l'état de fonctionnement du moteur à combustion interne est enregistré et exploité, comme par exemple le positionnement de la pédale d'accélérateur ("FFG-LL"), la vitesse de rotation ("N"), le positionnement de la pédale de freinage ou le signal lumineux de freinage ("BS"), la valeur réelle du positionnement de la barre du régulateur ("RW réel"), caractérisé en ce que, pour éviter l'arrêt ou la réduction du débit d'injection, le cas échéant jusqu'à la quantité nulle de sécurité, lors de l'apparition simultanée d'un signal de freinage ("BS") et d'un signal ("FFG-LL") de la pédale d'accélérateur se trouvant en dehors de la zone de la marche à vide, ces deux signaux sont transmis ensemble dans une dépendance de condition temporelle, de telle façon que, dans une condition de sécurité, ils soient reconnus ensuite seulement si, dans le cas ou le signal ("FFG-LL") est manquant, ou bien la pédale (21) d'accélérateur au début ne se trouve pas dans la position de la marche à vide et est ensuite actionnée après la pédale (23) de frein, ou bien la pédale (23) de frein est d'abord actionnée et qu'ensuite la pédale (21) d'accélérateur n'arrive pas à sa position de la marche à vide, et qu'en même temps la vitesse de véhicule est plus grande qu'une vitesse de sécurité minimale prédéterminée.
2. Procédé de sécurité et de secours selon la revendication 1, caractérisé en ce que lors de l'apparition de la condition de sécurité, un temps (Tw) d'attente démarre et, seulement après le déroulement du temps d'attente, le débit d'injection introduit par la commande correspondante du calculateur principal ou bien par les composants connectés en aval est réduit selon une rampe en fonction du temps avec une pente prédéterminée, et finalement réglé sur une vitesse de rotation (Ns) de sécurité prédéterminée.
3. Procédé de sécurité et de secours selon les revendications 1 ou 2, caractérisé en ce qu'après la cessation de la condition de sécurité, le débit d'injection est augmenté; selon une rampe en fonction du temps, avec une pente prédéterminée plus importante, jusqu'au débit prédéterminé par les valeurs normales demandées par l'appareil de commande.
4. Dispositif de sécurité et de secours pour un moteur à combustion interne à auto-allumage, avec des moyens qui enregistrent en continu au moins un des signaux de l'état de fonctionnement, comme par exemple le positionnement de la pédale (22) d'accélérateur, la vitesse de rotation (17) ou le positionnement de la pédale de freins ou le signal lumineux (24) de freinage, et avec un dispositif (29) de conduite de sécurité et de secours qui compare ces signaux de l'état de fonctionnement transmis au système de surveillance et exploite ces signaux pour déclencher l'arrêt du moteur à combustion interne ou le fonctionnement de secours, par l'application du procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que pour éviter l'apparition d'une condition de sécurité, lors de l'actionnement simultané des pédales de freins et d'accélérateur, des moyens (62, 63) sont prévus, qui enregistrent dans le temps l'un après l'autre l'apparition des signaux des pédales de freins et d'accélérateur, ces moyens étant construits de telle sorte que, lors d'une condition de sécurité, elle sera reconnue ensuite seulement si, dans le cas où le signal ("FFG-LL") est manquant, ou bien la pédale (21) d'accélérateur au début ne se trouve pas dans la position de la marche à vide et est ensuite actionnée après la pédale (23) de freins, ou bien la pédale (23) de freins est d'abord actionnée et qu'ensuite la pédale (21) d'accélérateur n'arrive pas à sa position de la marche à vide, et qu'en même temps la vitesse de véhicule est plus grande qu'une vitesse de sécurité minimale prédéterminée.
5. Dispositif de conduite de sécurité et de secours selon la revendication 4, caractérisé en ce que, à l'une des entrées d'une grille (64) (ET), produisant à sa sortie un signal de condition de sécurité, est amené un signal de positionnement de la pédale d'accélérateur ne se trouvant pas dans la position de la marche à vide, et à l'autre entrée un signal influencé par des blocs (62, 63) d'ordonnancement du temps, et que des moyens de commutation sont prévus qui, après le déroulement d'un temps (Tw) d'attente prédéterminé, réduisent le débit d'injection selon une rampe en fonction du temps jusqu'à l'obtention d'une vitesse de rotation prédéterminée de sécurité, règlent aussi longtemps que nécessaire cette vitesse de rotation de sécurité, puis, après la cessation de la condition de sécurité, règlent en hausse, selon une rampe en fonction du temps jusqu'au débit normal d'injection, et pour lesquels ces moyens de commutation, y compris les moyens (62, 63, 64, 65) de reconnaissance de la condition de sécurité, sont réalisés à l'intérieur du calculateur principal (30).
EP86109719A 1985-08-31 1986-07-16 Procédé de sécurité et de secours pour un moteur à combustion à autoallumage et dispositif mettant en oeuvre ce procédé Expired - Lifetime EP0213349B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3531198 1985-08-31
DE19853531198 DE3531198A1 (de) 1985-08-31 1985-08-31 Sicherheits- und notfahrverfahren fuer eine brennkraftmaschine mit selbstzuendung und einrichtung zu dessen durchfuehrung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP89116695.1 Division-Into 1986-07-16

Publications (3)

Publication Number Publication Date
EP0213349A2 EP0213349A2 (fr) 1987-03-11
EP0213349A3 EP0213349A3 (en) 1988-03-02
EP0213349B1 true EP0213349B1 (fr) 1990-04-11

Family

ID=6279870

Family Applications (2)

Application Number Title Priority Date Filing Date
EP86109719A Expired - Lifetime EP0213349B1 (fr) 1985-08-31 1986-07-16 Procédé de sécurité et de secours pour un moteur à combustion à autoallumage et dispositif mettant en oeuvre ce procédé
EP19890116695 Expired - Lifetime EP0350082B1 (fr) 1985-08-31 1986-07-16 Méthode et dispositif de sécurité et assistance pour un moteur à auto-allumage

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19890116695 Expired - Lifetime EP0350082B1 (fr) 1985-08-31 1986-07-16 Méthode et dispositif de sécurité et assistance pour un moteur à auto-allumage

Country Status (4)

Country Link
US (1) US4791900A (fr)
EP (2) EP0213349B1 (fr)
JP (1) JP2504421B2 (fr)
DE (3) DE3531198A1 (fr)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3743308A1 (de) * 1987-12-21 1989-06-29 Bosch Gmbh Robert Verfahren und vorrichtung zur ueberwachung eines antriebsmotorsollwertgeber
DE3804012A1 (de) * 1988-02-10 1989-08-24 Daimler Benz Ag Verfahren zum verhindern des ueberdrehens einer brennkraftmaschine
DE3808381C2 (de) * 1988-03-12 1996-07-11 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überwachung eines Sicherheitsabstellers bei Brennkraftmaschinen
JP2663982B2 (ja) * 1988-04-19 1997-10-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 車両用のブレーキ・ストップランプ回路
DE3832567A1 (de) * 1988-09-24 1990-03-29 Bosch Gmbh Robert Verfahren und vorrichtung zur sicherheitsabstellung des mengenstellwerks bei einspritzpumpen fuer dieselbrennkraftmaschinen
DE3838267C2 (de) * 1988-11-11 1997-04-17 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überwachung eines Sicherheitsabstellers bei Brennkraftmaschinen, insbesondere Dieselmotoren
WO1990006434A1 (fr) * 1988-11-29 1990-06-14 Robert Bosch Gmbh Dispositif permettant de detecter et de corriger toute discordance defectueuse entre la position desiree et la position effective d'un element regulateur servocommande
DE3844286C2 (de) * 1988-12-30 2002-03-07 Bosch Gmbh Robert Sicherheits-Notlaufverfahren und Sicherheits-Notlaufvorrichtung für Diesel-Brennkraftmaschinen
DE4002389A1 (de) * 1989-05-02 1990-11-08 Bosch Gmbh Robert Kraftstoffzumesssystem mit redundanter regeleinrichtung
DE3925877C2 (de) * 1989-08-04 1998-10-08 Bosch Gmbh Robert Verfahren und Einrichtung zur Steuerung der Kraftstoffzumessung bei einer Dieselbrennkraftmaschine
EP0444046B1 (fr) * 1989-09-21 1996-05-08 Robert Bosch Gmbh Systeme de controle pour transducteur de la course utile de la pedale d'acceleration d'un vehicule
US4993384A (en) * 1990-04-04 1991-02-19 Siemens Automotive L.P. Electric motor operated throttle for I.C. engine powered automotive vehicle
JPH0697007B2 (ja) * 1990-05-23 1994-11-30 シーメンス アクチエンゲゼルシヤフト 内燃機関のスロットルバルブを調節する装置
DE4103840B4 (de) * 1991-02-08 2011-02-10 Robert Bosch Gmbh Fehler-Überwachungsverfahren
DE4114999C2 (de) * 1991-05-08 2001-04-26 Bosch Gmbh Robert System zur Steuerung eines Kraftfahrzeuges
DE4215959C2 (de) * 1991-05-15 1997-01-16 Toyoda Automatic Loom Works Verstärkungsfaktor-Einstelleinrichtung für PID-Regler
DE4118558A1 (de) * 1991-06-06 1992-12-10 Bosch Gmbh Robert System zur steuerung einer brennkraftmaschine
EP0540218A3 (en) * 1991-11-01 1993-06-30 Lucas Industries Public Limited Company A method of and an apparatus for detecting a fault in a return system
DE4219669B4 (de) * 1992-06-16 2007-08-09 Robert Bosch Gmbh Steuergerät zur Berechnung von Steuergrößen für sich wiederholende Steuervorgänge
DE4302926C2 (de) * 1993-02-03 2003-05-15 Bosch Gmbh Robert Verfahren und Vorrichtung zur Fehlermeldung bei Fahrzeugen
US5713338A (en) * 1995-09-19 1998-02-03 N.S.I. Propulsion Systems, Inc. Redundant ignition system for internal combustion engine
DE19805299A1 (de) * 1998-02-10 1999-08-12 Deutz Ag Elektronische Regeleinrichtung
US5937826A (en) * 1998-03-02 1999-08-17 Cummins Engine Company, Inc. Apparatus for controlling a fuel system of an internal combustion engine
US6429658B1 (en) 1998-10-05 2002-08-06 Jeffrey E. Thomsen Engine ignition timing device
KR100311536B1 (ko) * 1999-06-23 2001-10-17 오세전, 차용원 자동차의 급발진 방지용 연료 제어밸브
DE10011410A1 (de) * 2000-03-09 2001-09-20 Bosch Gmbh Robert Vorrichtung zur sicheren Signalerzeugung
JP3775220B2 (ja) * 2000-12-27 2006-05-17 株式会社デンソー 内燃機関用制御装置
AU2002315691A1 (en) * 2001-05-23 2002-12-03 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Control device and method for controlling a drive train system during a starting operation
GB2392512B (en) * 2002-08-31 2004-11-24 Visteon Global Tech Inc Over-ride of driver demand in a motor vehicle
DE102005045284A1 (de) * 2005-09-22 2007-03-29 Pfeiffer Vacuum Gmbh Drehzahlüberwachungsvorrichtung
US8155853B2 (en) * 2008-06-26 2012-04-10 GM Global Technology Operations LLC Mechanical time dilation algorithm for collision avoidance system
JP5141829B2 (ja) * 2009-12-17 2013-02-13 トヨタ自動車株式会社 車両の制御装置
EP2514953B1 (fr) 2009-12-17 2019-08-14 Toyota Jidosha Kabushiki Kaisha Dispositif de commande de vehicule
CN102725188B (zh) * 2009-12-17 2015-05-13 丰田自动车株式会社 车辆控制装置
WO2011080798A1 (fr) * 2009-12-28 2011-07-07 トヨタ自動車株式会社 Dispositif de commande de véhicule
EP2472087B1 (fr) * 2009-12-28 2015-02-18 Toyota Jidosha Kabushiki Kaisha Dispositif de commande de véhicule
WO2011121637A1 (fr) * 2010-03-29 2011-10-06 トヨタ自動車株式会社 Dispositif de commande de véhicule
US8442741B2 (en) 2010-04-07 2013-05-14 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
JP5229265B2 (ja) * 2010-04-13 2013-07-03 日産自動車株式会社 内燃機関の出力制御装置
US9233682B2 (en) 2011-02-10 2016-01-12 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method of hybrid vehicle
JP5510399B2 (ja) 2011-06-17 2014-06-04 トヨタ自動車株式会社 車両の制御装置
US9166505B1 (en) * 2013-05-29 2015-10-20 Marvell International Ltd. Protection circuits for motors

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2735596C2 (de) * 1977-08-06 1986-09-18 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zur elektronischen Einspritzmengenregelung bei Brennkraftmaschinen mit Selbstzündung
US4401075A (en) * 1980-10-27 1983-08-30 The Bendix Corporation Automatic speed control for heavy vehicles
JPS57168033A (en) * 1981-04-10 1982-10-16 Nippon Denso Co Ltd Electric governor
US4491112A (en) * 1982-01-13 1985-01-01 Nissan Motor Company, Limited Failsafe for an engine control
JPS58144651A (ja) * 1982-02-22 1983-08-29 Isuzu Motors Ltd エンジン制御装置
JPS59119031A (ja) * 1982-12-24 1984-07-10 Isuzu Motors Ltd 電子ガバナ制御装置
DE3301742A1 (de) * 1983-01-20 1984-07-26 Robert Bosch Gmbh, 7000 Stuttgart Sicherheitseinrichtung fuer eine brennkraftmaschine mit selbstzuendung
DE3301743A1 (de) * 1983-01-20 1984-07-26 Robert Bosch Gmbh, 7000 Stuttgart Sicherheitseinrichtung fuer eine brennkraftmaschine mit selbstzuendung
JPS59153928A (ja) * 1983-02-18 1984-09-01 Toyota Motor Corp デイ−ゼル機関の燃料噴射制御装置
DE3510173C2 (de) * 1984-08-16 1994-02-24 Bosch Gmbh Robert Überwachungseinrichtung für eine elektronisch gesteuerte Drosselklappe in einem Kraftfahrzeug

Also Published As

Publication number Publication date
JPS6251737A (ja) 1987-03-06
US4791900A (en) 1988-12-20
EP0350082A3 (en) 1990-04-11
EP0350082B1 (fr) 1991-11-13
EP0350082A2 (fr) 1990-01-10
DE3531198A1 (de) 1987-03-12
EP0213349A3 (en) 1988-03-02
DE3670344D1 (de) 1990-05-17
JP2504421B2 (ja) 1996-06-05
EP0213349A2 (fr) 1987-03-11
DE3682510D1 (de) 1991-12-19

Similar Documents

Publication Publication Date Title
EP0213349B1 (fr) Procédé de sécurité et de secours pour un moteur à combustion à autoallumage et dispositif mettant en oeuvre ce procédé
DE3301742C2 (fr)
DE19833909B4 (de) Vorrichtung und Verfahren zur drehmomentgestützten Fahrzeuggeschwindigkeitsregelung
DE3301743C2 (fr)
EP1924474B1 (fr) Procede pour commander une unite d'entrainement d'un vehicule
DE3828850C2 (fr)
DE102005040780B4 (de) Verfahren und Motorsteuerungsgerät zur Verfügbarkeitserhöhung von Kraftfahrzeugmotoren
EP1924475A1 (fr) Procede pour limiter les couples theoriques dans le cadre de la commande de moteurs
DE10226579A1 (de) Motorsteuersystem
DE69304984T2 (de) Kraftstoffeinspritzungssteuersystem für Brennkraftmaschinen
DE102008014495B4 (de) Verfahren und Vorrichtung zur Steuerung eines Antriebsstrangs eines Fahrzeugs
EP2035672A1 (fr) Unité de commande pour le fonctionnement d'un entraînement de véhicule
EP0437559B1 (fr) Procede et dispositif de commande et/ou de regulation de la puissance du moteur a combustion interne d'un vehicule
DE19719518B4 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Kraftfahrzeugs
DE3802770A1 (de) Sicherheitssystem fuer brennkraftmaschinen
EP0936354A2 (fr) Dispositif de régulation éléctronique
DE4229540C2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE2754439C2 (de) Einrichtung zum Regeln der Fahrgeschwindigkeit eines Kraftfahrzeugs
EP0147611B1 (fr) Procédé et dispositif de régulation de la vitesse d'un moteur à combustion
DE4313746A1 (de) Verfahren und Vorrichtung zur Steuerung der Leistung einer Antriebseinheit eines Fahrzeugs
EP0814251A2 (fr) Système de sécurité pour véhicule à moteur
DE4017045C2 (fr)
DE4303560A1 (de) Verfahren und Vorrichtung zur Steuerung einer Verstelleinrichtung
EP1633965B1 (fr) Procede et dispositif de fonctionnement d'un moteur a combustion interne
DE3832567A1 (de) Verfahren und vorrichtung zur sicherheitsabstellung des mengenstellwerks bei einspritzpumpen fuer dieselbrennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19880728

17Q First examination report despatched

Effective date: 19890118

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 89116695.1 EINGEREICHT AM 16/07/86.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3670344

Country of ref document: DE

Date of ref document: 19900517

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050704

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050719

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050916

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060715

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20